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Abstract

Designing sparse 1D and 2D filters has been the object of research in recent
years due mainly to the developments in the field of sparse representations.
The main goal is to reduce the implementation complexity of a filter while
keeping as much of the performance as possible. This paper describes a new
method for designing sparse filters in the minimax sense using a mixture of
reweighted l1 minimization and greedy iterations. The combination proves
to be quite efficient; after the reweighted l1 minimization stage is used to
introduce zero coefficients in bulk, a small number of greedy iterations serve
to eliminate a few extra coefficients. Experimental results and a comparison
with the latest methods show that the proposed method performs very well
both in the running speed and in the quality of the solutions obtained.
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1. Introduction

When designing 1D and 2D discrete-time filters, two important considered
factors are: the filter quality and the cost of the implementation. In the case
of 1D filters, the most important techniques that trade off these two issues
are: restricting the coefficients of the filters to binary values [1] or powers of
two [2] in order to completely remove the multiplications or replace them with
shifts, recursive running-sum prefilters [3], cyclotomic polynomial prefilters
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[4], interpolated FIR filters [5] and frequency-response masking [6]. Many of
these techniques can be extended to the 2D case, like for example frequency-
response masking [7].

The approach in this paper is to use tools from the field of sparse rep-
resentations [8] and the basic idea is to reduce the number of additions and
multiplications by setting coefficients of the filters to zero. We call a fil-
ter sparse if it contains a relatively large number of zero coefficients. Since
the problem of minimizing the number of nonzero coefficients is in general
NP-hard, fast methods that give good approximations of the real solution
were developed. The two most popular approaches that are used to induce
sparsity are: convex relaxation to l1 minimization [9] and greedy methods
[10]. In this sense, previous work for sparse filter design includes the use of
the orthogonal matching pursuit algorithm [11], greedy coefficient elimina-
tion [12] and linear programming [12], [13], [14]. In this paper we consider
a combination of the two approaches to design filters in the minimax sense.
In the first stage, reweighted l1 minimization (IRL1) [15] is used to induce
a relatively large number of zero coefficients and then, in the second stage,
greedy iterations are used to cut down extra coefficients one by one. This
combination proves to be very efficient both in the running time and the
quality of the obtained solutions.

The article is structured as follows: Section 2 details the design problems
for 1D and 2D FIR filters, Section 3 presents the proposed method called
IRL1G and finally Section 4 outlines the results and a comparison with two
other recent techniques used to design sparse filters.

2. Design problem formulation

2.1. 1D FIR filter design

Consider H(z) the linear phase FIR filter with odd length N whose am-
plitude response is

A(ω) =
n∑

k=−n

hke
−kjω = h0 +

n∑
k=1

2hk cos(kω), (1)

where hk ∈ R, n = (N − 1)/2 and the rightmost form of (1) results from
the symmetry of the coefficients: hk = h−k. Given a desired response D(ω),
the goal is to compute coefficients hk such that the maximum absolute value
of the error E(ω) = A(ω) − D(ω) is minimized over 0 ≤ ω ≤ π. Using a
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uniformly distributed dense grid of points ωi ∈ [0, π], i = 1, . . . , L (transition
bands not included), this problem can be formulated as the Linear Program
(LP)

minimize
hk,δ

δ

subject to |E(ωi)| ≤ δ.
(2)

Plugging in the error expression and expanding the absolute value term we
get the standard LP problem

minimize
x

cTx

subject to Qx ≤ b,
(3)

where

Q =

[
C −v
−C −v

]
∈ R2L×(n+2), b =

[
d
−d

]
∈ R2L

C =


1 cos(ω1) . . . cos(nω1)
...

...
...

...
1 cos(ωi) . . . cos(nωi)
...

...
...

...
1 cos(ωL) . . . cos(nωL)

 ∈ RL×(n+1)

v =


1
...
1
...
1

 ∈ RL, d =


D(ω1)

...
D(ωi)

...
D(ωL)

 ∈ RL

x = [ h0 2h1 . . . 2hn δ ]T ∈ Rn+2

c = [ 0 0 . . . 0 1 ]T ∈ Rn+2.

This optimization problem generates the filter H(z) whose coefficients are
h−n, . . . , h0, . . . , hn and is the closest in the minimax sense to the desired
response D(ω).
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2.2. 2D FIR filter design

Consider now H̃(z1, z2) the linear phase FIR filter with N2 coefficients;
its transfer function is

H̃(z1, z2) =
n∑

k1=−n

n∑
k2=−n

hk1,k2z
−k1z−k2 = zT1 H̃z2, (4)

where n = (N − 1)/2, hk1,k2 ∈ R, z1 = [zn1 zn−11 . . . z−n+1
1 z−n1 ]T , z2 =

[zn2 z
n−1
2 . . . z−n+1

2 z−n2 ]T and H̃ is the matrix of the filter coefficients. The
filter is quadrantally symmetrical and the coefficients obey to hk1,k2 = hk1,−k2
and hk1,k2 = h−k1,k2 . So, the matrix H̃ can be written as

H̃ =

 H̃11 h̃12 H̃13

h̃T21 h̃22 h̃T23
H̃31 h̃32 H̃33

 , (5)

and the following hold: H̃11 = flipud(fliplr(H̃33)), H̃13 = flipud(H̃33), H̃31 =
fliplr(H̃33), h̃12 = flipud(h̃32), h̃

T
21 = fliplr(h̃T23), where the function fliplr flips

a matrix from left to right and the function flipud flips a matrix upside down.
So, the distinct filter coefficients can be grouped in the matrix

Ĥ =

[
h̃22 2h̃T23

2h̃32 4H̃33

]
, (6)

where H̃33 ∈ Rn2
, h̃T23 ∈ Rn, h̃32 ∈ Rn and h̃22 ∈ R. Due to the symmetry of

the coefficients, the amplitude response is

A(ω) = A(ω1, ω2) = h0,0 +
n∑

k2=1

2h0,k2cos(k2ω2)+

n∑
k1=1

2hk1,0cos(k1ω1) +
n∑

k1=1

n∑
k2=1

4hk1,k2cos(k1ω1)cos(k2ω2) = cTwh,

(7)

where

h = [h0,0 2h0,1 . . . 2h0,n 2h1,0 . . . 2hn,0 4h1,1 . . . 4h1,n . . . 4hn,n]T

cw = [1 cos(ω2) . . . cos(nω2) cos(ω1) . . . cos(nω1)
cos(ω1) cos(ω2) . . . cos(ω1) cos(nω2) . . . cos(nω1) cos(nω2)]

T .
(8)
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Note that the vector h contains the elements of H̃ from (6). Like in the 1D
case, given a desired response D(ω), the goal is to compute coefficients hk1,k2
such that the maximum absolute value of the error E(ω) = A(ω)−D(ω) is
minimized, where this time ω = (ω1, ω2) and ω1, ω2 ∈ [0, π]. In the 2D case,
each discretization point ωi has two components (ωi,1, ωi,2). Let ñ = (n+1)2

be the number of distinct coefficients, then the reduced optimization problem
can be formulated exactly like in the 1D case

minimize
x

cTx

subject to Qx ≤ b,
(9)

where

Q =

[
C −v
−C −v

]
∈ R2L×ñ+1, b =

[
d
−d

]
∈ R2L

C =


cTω1

...
cTωi

...
cTωL

 ∈ RL×ñ, v =


1
...
1
...
1

 ∈ RL, d =


D(ω1)

...
D(ωi)

...
D(ωL)

 ∈ RL

x = [ hT δ ]T ∈ Rñ+1

c = [ 01×ñ 1 ]T ∈ Rñ+1.

The order of the coefficients hk1,k2 in the solution x is determined by (8).

3. Design of sparse filters

Since the problems of designing sparse filters were formulated in the same
manner for the 1D and 2D cases, this section describes an optimization
method that works in both situations. In order to find high order filters
that have a large number of zero coefficients and still manage to keep the
error below a fixed value δimposed, we use a combination of the two basic ap-
proaches in the sparse representations field: reweighted l1 minimization and
greedy algorithms. The general structure of the proposed algorithm, called
IRL1G, is described in Table 1.
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Table 1: General overview of the IRL1G Algorithm

Input: N - the length of the filter
ωi - the discretization points, i = 1, . . . , L
D(ωi) - desired response, i = 1, . . . , L
δimposed - the maximum allowed error

Stage A: IRL1 minimization detailed in Table 2
Stage B: greedy iterations detailed in Table 3
Output: the sparse filter H

In Stage A of the proposed method, the IRL1 minimization problem

minimize
x

cTx + µ||Wx||1

subject to Qx ≤ b

xi = 0, ∀i ∈ S
cTx ≤ δimposed

(10)

is solved; the l1 penalization term is added to the criterion of (3) or (9)
in order to promote sparse solutions. The diagonal matrix W contains the
weights associated with each coefficient and is initially

W =

[
I 0
0 0

]
, (11)

i.e. the coefficients are equally weighted; the last diagonal zero corresponds
to the error term. The weights are recomputed after each iteration. The
idea is to put high weights for coefficients that have small absolute value in
order to push them to zero and small weights for the large coefficients in
absolute value because it is unlikely that those coefficients can be pushed to
zero. The set S contains the indices of the coefficients that are forced to zero
and so are eliminated from the next iterations. The set can grow at each
iteration by the hard thresholding step (14). This means that the size of
the optimization problem solved shrinks at each iteration, speeding up the
running time of the overall algorithm. If the change in the solution x is below
εstop from one iteration to the next, as checked in (12), then the procedure
is terminated because further iterations will not make any progress. In the
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case of the 2D filters, we have modified the usual reweighting rule in (13)
because there exists an extra incentive to nullify coefficients that belong to
the H̃33 matrix: these coefficients participate four times in the final matrix
H̃ , as opposed to only two times for the others (and once for the central
coefficient). The extra weight is contained in the parameter a > 1.

Stage B consists of polishing the optimal filter with the support set S
given by Stage A, which is computed by (15), using a few greedy iterations.
The idea is to try to further eliminate the coefficients of the solutions that
are the smallest in absolute value while keeping the optimization problem
(15) feasible. This stage applies exactly the smallest coefficient rule (SCR)
presented in [12].

Stage A proves to be far more efficient than Stage B, because in Stage
A, in just a few iteration, a relatively large number of coefficients are set to
zero, whereas in Stage B only one coefficient is set to zero for each LP solved.

4. Results

4.1. 1D case

We present here the results obtained by the IRL1G method for designing
lowpass 1D filters with ωp = 0.26π and ωs = 0.34π. The parameters of the
algorithm are: maxSteps = 15, µ = 1, ε = 10−6, εstop = 10−4, εcut = 10−7

and L = 15N . For comparison, the smallest coefficient rule (SCR) algorithm
from [12] was also implemented. If the solution of the optimization problem
ends up having M zero coefficients, then using this strategy, M + 1 LPs are
solved. Compared to the method described in this paper that usually solves
8−9 LPs to reach a solution, the SCR runs for a large number of iterations if
M is large, making it harder to use in these settings. It is worth to mention
that the IRL1 steps have the same basic idea: try to push to zero coefficients
that have a small magnitude. The big difference is that while SCR can handle
only one coefficient at a time, IRL1 can generate more zero coefficients in a
single step.

Tests are conducted using filters of lengths from N = 71 to N = 101.
For each filter, 12 simulations are conducted using uniformly distributed
values of δimposed ∈ [1.5δminimax, 2.5δminimax] where δminimax is the minimax
error obtained with the optimized full filter. After running 192 simulations,
in 175 of the situations (91.16%), the two strategies performed the same.
This means that the sparsity of the final solutions is the same, although the
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Table 2: Stage A: Iterative reweighted l1 minimization

Parameters

1. maxSteps > 1, the maximum number of iterations for the IRL1 minimization

2. ε, 0 < ε� 1, parameter used for the computation of weights

3. εstop, 0 < εstop � 1, used as an extra stopping condition

4. εcut, 0 < εcut � 1, elimination threshold used to decide if a filter coefficient is
permanently set to zero

5. a > 1, extra penalizing weight

Procedure
for step = 1 . . . maxSteps do

1. solve problem (10)

2. if solution x is feasible

if ||x− xprevious||2 < εstop then break for loop (12)

3. if solution x is not feasible

• return to previous solution x = xprevious and set S = Sprevious

• decrease elimination threshold εcut = εcut/10

4. compute new weights

Wii =


a

|xi|+ε , 2D case, if xi ∈ H̃33

1
|xi|+ε , otherwise

(13)

5. decide the support of x
S = {i | |xi| ≤ εcut} (14)
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Table 3: Stage B: Greedy iterations

1. solve the LP
minimize

x
cTx

subject to Qx ≤ b

xi = 0, ∀i ∈ S
cTx ≤ δimposed

(15)

2. repeat until (15) is not feasible

• add to S the index for which x has the smallest nonzero absolute value

S = S ∪ {i | argmin
i
|xi|,∀i 6∈ S} (16)

• solve (15) with the new set S

solutions have a different support in some cases. In 5.20% of the cases, IRL1G
performed better and in the remaining 3.64% the straight SCR algorithm
reached a sparser solution. It is worth to mention that in both cases in
which one approach outperformed the other, the difference was one extra
zero coefficient.

Regarding the speed of the optimization procedures, our method takes
approximately 25 seconds to complete on a filter of length N = 101, while
SCR takes about 115 seconds. Simulations ran on an Intel i3 2.13GHz pro-
cessor with 4GB of RAM.

4.2. 2D case

For the 2D case, simulations are done on four circular shaped lowpass
filters with ωp = 0.5π and ωs = 0.7π and four diamond shaped lowpass filters
with ωp = 0.6π and ωs = π, of sizes 11×11, 17×17, 23×23 and 29×29. The
grid discretization step size is 0.025π, giving L = 1120 discretization points
for the diamond shaped filters and L = 1304 for the circular shaped filters,
in the passband and stopband regions. Aside of the IRL1G, we also propose
a variation that provides better results: the IRL1G method is applied three
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Table 4: Values of parameter µ

diamond shaped circular shaped
N µ1 µ2 µ1 µ2

29 µ1 = 10−3 µ2 = 10−3 µ1 = 0.03 µ2 = 10−3

23 µ1 = 10−3 µ2 = 10−3 µ1 = 0.03 µ2 = 10−3

17 µ1 = 0.03 µ2 = 10−3 µ1 = 0.01 µ2 = 10−3

11 µ1 = 0.1 µ2 = 0.1 µ1 = 0.1 µ2 = 1

times with increasing values for δimposed
i with i = 1, . . . , 3, where δimposed

3

is the original δimposed and the first two are situated between the minimum
possible error that can be reached with a filter of the given size and δimposed.
Simulations show that good choices for the first two errors are a quarter and
a half of the defined distance; we call this approach IRL1G×3. By applying
this strategy, the less important coefficients are discarded early on, when
it is clear they are not needed. The support set S is transferred from one
instance of IRL1G to the next. The results are compared with the minimax
hard thresholding approach for designing sparse 2D filter presented in [14]. In
this paper, the authors propose solving the standard l1 minimization problem
(10) (without the extra constraint on δimposed ,W as (11) and S = ∅) and
then setting the smallest coefficients in absolute value of the filter to zero in
one single step such that the desired sparsity degree is reached. The number
of zero coefficients is chosen so that the sparse filter has exactly the same
amount of nonzero coefficients as some full filter. This way a comparison can
be made between the maximum absolute value of the error for a high order
sparse filter and for a smaller order full filter. For example, for size 29× 29,
from the 841 coefficients just 361 are nonzero because the comparison is made
with the full filter of size 19×19. After the zero coefficients are fixed, the filter
is optimized on the support set by solving (10) again with the selected set S
and no weights. The filters are generated using the parameters: maxSteps =
15, ε = 10−5, εstop = 10−4, εcut = 10−6, a = 4 and δimposed the value obtained
by using the method from [14]. For each filter designed using the method
from [14] a sweep is done with (10) for several values of µ1 to identify the
one that gives the best results. For our approach a different parameter µ2

is used. The values used for the µ parameters are given in Table 4. Table 5
and Table 6 describe the results obtained using the diamond and circular
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Table 5: 2D sparse diamond shaped lowpass filters simulations results

nonzero coefficients δminimax

N IRL1G×3 IRL1G [14] OFF IRL1G×3 IRL1G [14] OFF
29 317 323 361 361 0.000921 0.000966 0.000984 0.00210
23 199 205 225 225 0.00366 0.00365 0.00373 0.00553
17 165 169 169 169 0.00536 0.00539 0.00539 0.01076
11 43 43 49 49 0.08075 0.08075 0.08077 0.08733

Table 6: 2D sparse circular shaped lowpass filters simulations results

nonzero coefficients δminimax

N IRL1G×3 IRL1G [14] OFF IRL1G×3 IRL1G [14] OFF
29 347 349 361 361 0.00812 0.00804 0.00812 0.01117
23 221 221 225 225 0.01818 0.01818 0.01827 0.02871
17 165 165 169 169 0.02895 0.02895 0.02942 0.03609
11 49 49 49 49 0.11599 0.11599 0.11892 0.15853

shaped low pass filters and a comparison with the optimal full filters (OFF)
of appropriate length and [14]. While IRL1G solves on an average 7 − 8
LPs, the method proposed in [14] solves 2 optimization problems. But, as
it can be seen clearly from Table 5, the error is smaller and the number of
nonzero coefficients is smaller in our approach, especially for the filters with
larger order. On an average, IRL1G×3 runs for about 30 LPs but it is able
to reach more zero coefficients in the process. The amplitude responses are
depicted in Figure 1 for the diamond shaped lowpass filters with N = 29
generated using both approaches.

In the case of the N = 29 diamond shaped lowpass filter, the running time
is about 240 seconds for IRL1G×3 and about 15 seconds for the approach
from [14].

5. Conclusions

By combining two of the most popular approaches in the field of sparse
representations we have developed a new efficient method called IRL1G that
can be used to design sparse 1D and 2D FIR filters. The power of IRL1G re-
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(a) (b) (c)

Figure 1: Amplitude responses of the sparse 2D FIR diamond shaped lowpass
filters of size 29× 29 generated using the method described in this paper (a)
and using the method described in [14] (b). The equivalent full optimized
2D filter of size 19 × 19 with δminimax = 0.0021 and 361 nonzero coefficients
in (c).

lies on its two stages: the reweighted l1 minimization that induces a relatively
large number of zero coefficients in just a few iterations and the polishing
greedy iterations that run only for a few steps and further eliminate a few
extra coefficients. This combination means that the algorithm is fast, even
for filters of large size, and experimental results show that it is able to de-
sign sparse filters with low errors. A comparison of the obtained results with
recent methods for sparse filter design is also supplied showing that IRL1G
provides a faster running time while maintaining the performance for the 1D
case and provides sparser filters for the 2D case.
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