
N/A

A Conceptual Framework for Adaptation

Roberto Bruni, Dipartimento di Informatica, Università di Pisa
Andrea Corradini, Dipartimento di Informatica, Università di Pisa
Fabio Gadducci, Dipartimento di Informatica, Università di Pisa
Alberto Lluch Lafuente, IMT Institute for Advanced Studies Lucca
Andrea Vandin, IMT Institute for Advanced Studies Lucca

This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of
the adaptation logic from the application logic through a clear identification of control data and their role
in the adaptation logic. The framework provides an original perspective from which we survey archetypal
approaches to (self-)adaptation ranging from programming languages and paradigms, to computational
models, to engineering solutions.

Categories and Subject Descriptors: F.1.1 [Models of computation]: Self-modifying machines

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Adaptation, Self-*, Autonomic Computing, Computational Reflection,
Control Loops, Context-Oriented Programming

ACM Reference Format:
R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin 2012. A Conceptual Framework for
Adaptation. Draft N/A, N/A, Article N/A (0), 33 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Self-adaptive systems have been widely studied in several disciplines like Biology,
Engineering, Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of mastering the
complexity of modern software systems, networks and architectures. In particular, self-
adaptation is considered a fundamental feature of autonomic systems, often realized by
specialized self-* mechanisms like self-configuration, self-optimization, self-protection
and self-healing, as discussed for example in [IBM Corporation 2006].

The literature includes valuable works aimed at capturing the essentials of adaptation
both in the most general sense (see e.g. [Lints 2010]) and in particular fields such as
that of software systems (see e.g. [Salehie and Tahvildari 2009; Bouchachia and Nedjah
2012; McKinley et al. 2004a; Andersson et al. 2009c; Raibulet 2008]) providing in some
cases very rich surveys and taxonomies. A prominent and interesting example is the
taxonomy of concepts related to self-adaptation presented in [Salehie and Tahvildari
2009], whose authors remark the highly interdisciplinary nature of the studies of such
systems. Indeed, just restricting to the realm of Computer Science, active research on

This work is supported by the the European Integrated Project 257414 ASCENS.
Author’s addresses: R. Bruni, A. Corradini, F. Gadducci: Dipartimento di Informatica, Università di Pisa,
Largo Bruno Pontecorvo 3, 56126 Pisa, Italy; A. Lluch Lafuente, A. Vandin: IMT Institute for Advanced
Studies Lucca, Piazza San Ponziano 6, 55100 Lucca, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0 ACM 1539-9087/0/-ARTN/A $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:2 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

self-adaptive systems is carried out in Software Engineering, Artificial Intelligence,
Control Theory, and Network and Distributed Computing, among others.

Despite all these classification efforts, there is no agreement on the conceptual notion
of adaptation, neither in general nor for software systems, not to talk about a widely
accepted foundational model for it. Lofti Zadeh noticed in [Zadeh 1963] that “it is very
difficult -perhaps impossible to find a way of characterizing in concrete terms the large
variety of ways in which adaptive behavior can be realized”. Zadeh’s concerns were
conceived in the field of Control Theory but as many authors agree (e.g. [Raibulet 2008;
Salehie and Tahvildari 2009; Andersson et al. 2009c; Lints 2010]), they are valid in
Computer Science as well. One of the things that motivates Zadeh’s lack of hope for a
concrete unifying definition of adaptation is the attempt to subsume two aspects under
the same definition: the external manifestations of adaptive systems, and the internal
mechanisms by which adaptation is achieved. We shall refer to the first aspect as the
black-box perspective on adaptation, and to the second aspect as the white-box one.

Actually, in the realm of Software Engineering there are widely accepted informal
definitions, according to which a software system is called “self-adaptive” if it “modifies
its own behavior in response to changes in its operating environment” [Oreizy et al. 1999],
where such “environment” or “context” has to be understood in the widest possible way,
including both the external environment and the internal state of the system itself.
Typically, such changes are applied when the software system realizes that “it is not
accomplishing what the software is intended to do, or better functionality or performance
is possible” [Laddaga 1997]. Such definitions can be exploited, to a certain extent, to
measure what is often called the degree of adaptability or degree of adaptivity, i.e. to
estimate or predict the system robustness under some conditions. This approach can
be traced back to Zadeh’s proposal [Zadeh 1963], but has been later adopted by many
other authors (e.g. [Mühl et al. 2002; Hölzl and Wirsing 2011]).

The problem is that almost any software system can be considered self-adaptive
according to the definitions recalled above, since any realistic system can modify its
behaviour (for example by following different branches at the same control point)
as a reaction to a change in its context of execution (like the change of variables or
parameters). Therefore such definitions, concerned with the behavioral or observational
perspective only, are of difficult applicability for distinguishing (self-)adaptive systems
from plain (“non-adaptive”) ones. Furthermore, they are of little use for design purposes,
where separation-of-concerns, modularization, reuse and scalability are crucial aspects.

The development and success of many emergent Computer Science paradigms is
often strongly supported by the identification of key principles around which the
theoretical aspects can be conveniently investigated and fully worked out. For example,
in the case of distributed computing, there has been several efforts in studying the
key primitives for communication, including mechanisms for communicating means to
communicate (name mobility) and for code mobility (process passing), which has led
to a wide understood theory of mobile process calculi. There is unfortunately no such
agreement concerning (self-)adaptation, as it is not clear what are the characterizing
structural features that distinguish such systems from plain ones.

Summarizing: (i) existing definitions of adaptation (and related notions such as
adaptivity and adaptability) are not always useful in pinpointing adaptive systems, even
if they allow to discard many systems that certainly are not, and (ii) such definitions do
sometimes focus on the issue of how much a system adapts to some purpose and less on
the issue of in which manner.

Contribution. We take a white-box perspective that allows us to inspect, to some
extent, the internal structure of a system. Our goal is to distill a definition of adaptation

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:3

that is general enough to be cast for most of the approaches found in the literature,
in such a way that our notion of adaptation coincides with that of the authors when
instantiated to their work. Also, we aim at a separation of concerns to distinguish
changes of behaviour that are part of the application logic from those where they realize
the adaptation logic, calling “adaptive” only those systems capable of the latter.

More precisely, we propose a concrete answer to basic questions like “is a software
system adaptive?” or “where is the adaptation logic in an adaptive system?”.
As we shall explain, our answer is not free of ambiguities, but it enables at least the
designer of a system to choose a precise criterion that solves any ambiguity.

Large part of the paper is devoted to a proof of concept: we overview several proposals
in the literature and validate how our definition of adaptation is applied to them. For
example, self-adaptation is often obtained by enriching the software that implements the
standard application logic with a control loop which monitors the context of execution,
determines the changes to be enforced, and enacts them. Thus systems featuring such
an architectural pattern, often called MAPE-K [Horn 2001; IBM Corporation 2006;
Kephart and Chess 2003], should definitely be considered as adaptive. But there are
other, simpler adaptive patterns, like the Internal Feedback Loop pattern [Cabri et al.
2011], where the control loop is not as neatly separated from the application logic as in
MAPE-K, and the Reactive Adaptation pattern, where the system just reacts to events
from the environment by changing its behaviour. Also systems realizing such patterns
should be captured by a convincing definition of adaptation, and their adaptation logic
should be exposed and differentiated from their application logic.

Other software systems that can easily be categorized as (self-)adaptive are those
implemented with programming languages either explicitly designed to express these
features or explicitly advocated as suitable for that purpose. Archetypal examples are
languages belonging to such paradigms as Context Oriented Programming [Hirschfeld
et al. 2008; Salvaneschi et al. 2011], where the contexts of execution are first-class
citizens, or Dynamic Aspect Oriented Programming [Popovici et al. 2003; Greenwood
and Blair. 2004], where dynamic aspect weaving provides a natural mechanism for
realizing adaptive behaviors. Nevertheless, it is very important to remark that it is
not the programming language what makes a program adaptive or not: truly adaptive
systems can be programmed in traditional languages, exactly like object-oriented
systems can, with some effort, in traditional imperative languages. However, we stress
that, disregarding of the paradigm or language being used, the adaptation logic should
be clearly identified and the way it is designed and realized should be well disciplined.

Structure of the paper. The goal of this position paper is to present a conceptual
framework for adaptation, proposing a simple structural criterion to portray adaptation
(Section 2). To illustrate the framework we have selected a wide representative set
of approaches to adaptation. We discuss how systems developed according to them
are shown to be adaptive according to our definition and explain how to understand
adaptation therein. In particular we organize the overview and discussion of such
approaches into three main sections (3–5), respectively devoted to engineering aspects
(Section 3), foundational aspects (Section 4), and linguistic aspects (Section 5). Since
most of the surveyed approaches cover more than one such aspect, we have decided
to consider each work in the section devoted to the aspect that is more stressed in
the approach being discussed. In Section 6 we overview other surveys and taxonomies
conceived with the same aim as our work: to bring some light around the notion
of adaptation, in order to identify the main distinguishing features of self-adaptive
systems and establish a common ground for fruitful research debates. Finally, we wrap
up our considerations and discuss current and future research in Section 7.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:4 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

2. WHEN IS A SOFTWARE COMPONENT ADAPTIVE?
Software systems are made of one or more processes, roughly programs in execution,
possibly interacting among themselves and with the environment in arbitrarily complex
ways. A complex adaptive system, hence, can be built in a compositional way, e.g. by
integrating individual adaptive components according to specific patterns as we shall
discuss. Indeed, component-based design is a widely accepted key feature of self-
adaptive systems [McKinley et al. 2004a]. However, it may also happen that a complex
system made of components that are not considered to be adaptive exhibits a collective
behavior which is instead considered to be adaptive (see e.g. the discussion in [Lints
2010]). Such emergent adaptation is the result of the interaction among components.
Our framework focuses on the first form of adaptation, i.e. in the adaptation of (simple
or composite) components, for which we introduce the following conceptual framework.

The behavior of a component is governed by a program and according to the traditional
view (see e.g. [Wirth 1976]), a program is made of control (i.e. algorithms) and data.
Of course many more sophisticated views and paradigms have been introduced in
Computer Science but this very basic view of programs as control and data is sufficient
for the sake of introducing our approach. Therefore, we can say that control and data
are two conceptual ingredients that in presence of sufficient resources (like computing
power, memory or sensors) determine the behaviour of the component. Our conceptual
framework of adaptation requires to make explicit the fact that the behaviour of a
component depends on some well identified control data which can be changed to adapt
the component’s behaviors. At this level of abstraction we are neither concerned with
the structure of control data, nor with the way the behaviour of the component is
influenced by such data, nor with the causes of modification of control data.

Our definition of adaptation is then very simple but very concrete.

Definition (adaptation). Given a component with a distinguished collection of control
data, adaptation is the runtime modification of such control data.

From this basic definition we immediately derive several others. A component is
adaptable if it has a distinguished collection of control data that can be modified at
runtime. Thus if either the control data are not identified or they cannot be modified,
then the component is not adaptable. Further, a component is adaptive if it is adaptable
and its control data are actually modified at runtime, at least in some of its executions.
Moreover, a component is self-adaptive if it modifies its own control data at runtime.

Given the intrinsic complexity of adaptive systems, our conceptual view of adaptation
might look like an oversimplification. Our goal is to show that instead it enjoys most of
the properties that one would require from such a definition.

Any definition of adaptation should face the problem that the judgement whether a
system is adaptive or not is often subjective. Indeed, one can always argue that whatever
change in the behaviour the system is able to manifest is part of the application logic,
and thus should not be deemed as an adaptation. From our perspective, this is captured
by the fact that the collection of control data of a component can be defined, at least in
principle, in an arbitrary way, ranging from the empty set (“the system is not adaptable”)
to the collection of all the data of the program (“any data modification is an adaptation”).

As a concrete example, consider the following conditional statement.

if the hill is too steep then
assemble with others

else
proceed alone

end if

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:5

Can it be interpreted as a form of adaptation?

From a black-box perspective the answer is “it depends”. Indeed, the above statement
is typical of controllers for robots operating collectively as swarms and having to
face environments with obstacles (see e.g. [O’Grady et al. 2010b]). As some authors
observe [Harvey et al. 2005] “obstacle avoidance may count as adaptive behaviour if
[...] obstacles appear rarely. [...] If the normal environment is [...] obstacle-rich, then
avoidance becomes [...] normal behaviour rather than an adaptation”. In sum, the above
conditional statement can be a form of adaptation in some contexts but not in others.

Now, suppose that the statement is part of the software controlling a robot, and that
the hill is too steep is just a boolean variable set according to the value returned
by some sensors. If the hill is too steep is considered as a standard program vari-
able which is not part of the control data, then the change of behaviour caused by a
modification of its value is not considered as an adaptation in our framework. If the
variable the hill is too steep is instead considered as part of the control data, then
modifications of its value are considered to be adaptations.

Summing up, the above question (i.e.“can it be interpreted as a form of adaptation?”)
can be answered only after a clear identification of the control data. This means that
from our white-box perspective the answer is still “it depends” as it is for the black-box
case. However, there is a fundamental difference: the responsibility of declaring which
behaviours are part of the adaptation logic and which are not, is passed from the
observer of the component to its designer.

We remark that white-box approaches to adaptation have many advantages. For
example they allow software engineers to analyze adaptation requirements with the
help of the six honest men [Salehie and Tahvildari 2009]: (1) Why is adaptation required?
Is the purpose of adaptation to meet some robustness criteria, to improve the system’s
performance or to satisfy some other goal? (2) When should adaptation be enacted?
Should adaption be applied reactively or proactively? (3) Where should adaptation be
enacted? At the business level, at the architectural level, or at some other level? (4) What
parts of the system should be adapted? That is, which artifacts (components, connectors,
interfaces, etc.) should be adapted? (5) Who should enact the adaptation? Which entity
(e.g. human controller, autonomic manager) is in charge of each adaptation? (6) How
should adaptation be applied? That is, which is the plan that establishes the order in
which to apply the necessary adaptation actions?

Our conceptual framework follows this spirit and is mainly devoted to the identifica-
tion of the what (i.e. the control data), which then facilitates finding the right who, why,
when, where and how of a system’s adaptation mechanism.

Ideally, a sensible collection of control data should be chosen to enforce a separation of
concerns, allowing to distinguish neatly, if possible, the activities relevant for adaptation
(those that affect the control data) from those relevant for the application logic only
(that should not modify the control data).

Of course, any computational model or programming language can be used to im-
plement an adaptive system, just by identifying the part of the data that governs the
behavior. Consequently, the nature of control data can vary considerably, in the range
of all possible ways of encapsulating behavior: from simple configuration parameters to
a complete representation of the program in execution that can be modified at runtime
and passing through aspects, policies, rules, contexts, plans, and all that. The extreme
case of having entire program representations as control data is typical of computa-
tional models that support meta-programming or reflective features even if, at least in
principle, it is possible for any Turing-complete formalism.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:6 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

We shall discuss in Sections 4 and 5 how adaptation, as defined above, can be ob-
tained in systems implemented according to several computational formalisms and
programming paradigms. Before that, we survey in the next section several well ac-
cepted architectures, patterns and reference models for adaptive systems and discuss
how they can be cast in our framework.

3. ENGINEERING APPROACHES TO ADAPTATION
Several contributions in the literature describe engineering approaches to autonomic
computing and self-adaptive software. In this section we survey some of such proposals,
stressing for each of them how a reasonable notion of control data can be identified.
More explicitly, the criterion that we will use for determining such data is the following:
a system designed according to one of such approaches manifests an adaptation exactly
when the corresponding control data are subject to a change. We organize the discussion
around three main themes: reference models (Section 3.1), architectural approaches
(Section 3.2), and model-based approaches (Section 3.3).

3.1. Reference Models for Adaptation
One of the most influential reference models for adaptive systems is the MAPE-K (Mon-
itor, Analyse, Plan, Execute, Knowledge) reference model, introduced in the seminal
IBM paper [Horn 2001]. According to it, a self-adaptive system is made of a component
implementing the application logic, equipped with a control loop that monitors the
execution through suitable sensors, analyses the collected data, plans an adaptation
strategy, and finally executes the adaptation of the managed component through some
effectors; all the phases of the control loop access a shared knowledge repository. The
managed component is considered to be an adaptable component, and the system made
of both the component and the manager implementing the control loop is considered as
a self-adaptive component.

Fig. 1. Control data in MAPE-K.

This model naturally fits in our framework with
an obvious choice for the control data: these are
the data of the managed component which are
modified by the execute phase of the control loop.
Thus the control data of a managed component
is (explicitly or implicitly) available through the
interface it offers to its manager, which can use it
to enact its control loop, as shown in Fig. 1.

The construction can be iterated, as the man-
ager itself can be an adaptable component. We
shall see several examples of this throughout the
paper (e.g. [Lanese et al. 2010; Bucchiarone et al.
2011b]). As an example think of a system like the
one in [Bucchiarone et al. 2011b] where compo-
nents follow plans to perform their tasks and re-planning is used to overcome unpre-
dicted situations that may make current plans inefficient or impossible to realize. A
component in this scenario can be adaptable, having a manager which devises new
plans according to changes in the context or in the component’s goals. In turn, this
planning component might itself be adaptable, with another component that controls
and adapts its planning strategy, for instance determining the new strategy on the basis
of a tradeoff between optimality of the plans and computational cost of the planning
algorithms. In this case, the planning component (that realizes the control loop of the
base component) exposes itself some control data (conceptually part of its knowledge),
thus enabling a hierarchical composition that allows one to build towers of adaptive
components (Fig. 2).

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:7

Fig. 3. The FORMS reference model.

Fig. 2. Tower of adaptation.

Another general reference model has been proposed
in [Andersson et al. 2009b], where computational re-
flection is promoted as a necessary criterion for any
self-adaptive software system. Reflection implies the
presence, besides of base-level components and computa-
tions, of meta-level subsystems and meta-computations
that act on a meta-model. Meta-computations can in-
spect and modify the meta-model that is causally con-
nected to the base-level system, so that changes in ei-
ther one are reflected in the other. The authors argue
that most methodologies and frameworks proposed for
the design and development of self-adaptive systems
rely on some form of reflection, even if this is not al-
ways made explicit. Building on these considerations,
they introduce the FOrmal Reference Model for Self-
adaptation (FORMS) [Weyns et al. 2010; 2012], which
provides basic modeling primitives and relationships
among them, suitable for the design of self-adaptive
systems (cf. Fig. 3). Such primitives allow one to make
explicit the presence of reflective (meta-level) subsys-
tems, computations and models.

The goals of [Andersson et al. 2009b] are not dissim-
ilar from ours, as they try to capture the essence of
self-adaptive systems, identifying it in computational reflection (one of the key features
of self-adaptive systems according to [McKinley et al. 2004a]). The FORMS modeling
primitives can be instantiated and composed in a variety of ways. For example, the
authors of [Weyns et al. 2010] provide one example that conforms to the MAPE-K
reference model and another one that follows an application-specific design. A precise
identification of control data according to the criterion explained above depends on the
specific instantiation of the approach, and more precisely on the way modifications to
the meta-level (which are adaptations according to the authors) affect the base level.
Roughly speaking, control data will be located at the boundary between the meta-level
and the base-level components. The same authors provide in [Andersson et al. 2009c] a
more general perspective on adaptation that we discuss in detail in Section 6.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:8 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

In several other reflective systems containing an explicit meta-model of the base-level
system, it is pretty clear that such meta-model plays the role of control data. This is
precisely the case of systems conforming to the architecture-based solution proposed
in [Oreizy et al. 1999]. This approach is concerned with self-adaptation, and considers
also issues related to observation, evaluation and planning. It identifies a “spectrum of
self-adaptation” which matches pretty well with the spectrum of adaptive systems we
have identified: conditional expressions, online algorithms (deterministic, randomized
or probabilistic), generic or parametrized algorithms, algorithm selection, evolutionary
programming (genetic algorithms, AI-based learning), and so on. Besides the MAPE-K
control loop, the approach identifies an architecture-based solution to adaptation: at
runtime, an architectural model is mantained that describes the running implementa-
tion. This architectural model, made of components and connectors, can be modified by
the control loop (adding/removing components/connectors, or changing the topology).
An Evolution Manager (EM) ensures the consistency between the architectural model
and the implementation, that is modified to reflect the changes to the model.

3.2. Architectural approaches to adaptation
Some of the above discussed reference models put the stress on architectural aspects.
Indeed, many architectural solutions to self-* systems have been proposed, mainly
based on specific architectures aimed at facilitating the realization of control loops (see
e.g. [Brun et al. 2009]), or on architectural reconfiguration as the basic mechanisms for
self-adaptation (see the overview of [Bradbury et al. 2004] in Section 6).

A first example is the architectural approach of [Andrade and Fiadeiro 2002]. There,
a system specification has a two-layered architecture to enforce a separation between
computation and coordination. The first layer includes the basic computational com-
ponents with well-identified interfaces, while the second one is made of connectors
(called coordination contracts) that link the components appropriately in order to en-
sure the required system’s functionalities. Adaptation in this context is obtained by
reconfiguration, which can consist of removal, addition or replacement of both base
components and connectors among them. The possible reconfigurations of a system
are described declaratively with suitable rules, grouped in coordination contexts: such
rules can be either invoked explicitly, or triggered automatically by the verification of
certain conditions. In this approach, as adaptation is identified with reconfiguration,
the control data consist of the whole two-layered architecture, excluding the internal
state of the computational components.

Control loops have been extensively studied (see e.g. the survey of [Brun et al. 2009])
as a key mechanism for achieving self-adaptation in software systems, since their
introduction in engineering disciplines like Control Theory. The authors of [Cabri et al.
2011] propose a taxonomy of design patterns for adaptation, which includes typical
control loop patterns such as the internal control loop and the external control loop. Like
the MAPE-K reference model, also these patterns can be cast easily in our framework (cf.
Fig. 4). In the internal control loop pattern, the manager is a wrapper for the managed
component and it is not adaptable. Instead, in the external control loop pattern, the
manager is an adaptable component that is connected with the managed component.

The taxonomy of [Cabri et al. 2011] includes a third pattern called reactive pattern
that describes reactive components (see Fig. 4) capable of modifying their behavior in
reaction to an external event, without any control loop. In our conceptual framework, a
reactive system of this kind is (self-)adaptive if we consider as control data the variables
that are modified by sensing the environment. Other control loops can be found in [Brun
et al. 2009] and include, in addition to the MAPE-K control loop, the Model Identification
Adaptive Control loop and the Model Reference Adaptive Control loop.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:9

Fig. 4. External (top-left) and internal (bottom-left) control loop patterns and their presentation in terms of
the MAPE-K model (center), and the reactive pattern (right).

The Ensemble system [van Renesse et al. 1998] is a network protocol architecture
conceived with the aim of facilitating the development of adaptive distributed applica-
tions. The main idea is that each component of the application relies on a reconfigurable
stack made of simple micro-protocol modules, which implement different component-
to-component communication features. Adaptation can happen at different points. In
particular it may affect the components participating to the distributed application (or
to groups within it) or the communication infrastructure (i.e. the module stack). Hence,
generally speaking, the set of components, their state and the module stack form the
control data of the adaptive application.

The module stack imposes a layered structure to the communication infrastructure
which is used to guide its adaptation. For instance, adaptation can be triggered in a
bottom-up way, when a layer n discovers some environmental changes that require
an adaptation. Then the module at layer n may be adapted and, if not possible, the
adaptation request is propagated to the upper layer n+1. Such structure is also exploited
when a coordinated, distributed adaptation is needed. Such forms of adaptations are
one of the main concerns of the Ensemble system, which are tackled by the Protocol
Switching Protocol (PSP), one the key features of the approach. The protocol is initiated
by a global coordinator that sends the notification of the need of adaptation to each
component. Within each component the notification is propagated through the protocol
stack, so that each layer applies the necessary actions.

The authors of [Broy et al. 2009] propose a formal definition of when a system exposes
an adaptive behaviour with respect to a user. A system is modeled as a black-box
component that can interact with the user and with the environment through streams
of data. An ordinary system is assumed to be deterministic, i.e. it is expected to react in
the same way every time the user provides a given input stream. On the other hand,
if a system reacts non-deterministically, i.e. by reacting differently to the same input
stream provided by the user at different times, the system is considered to be adaptive.
The point is that a non-deterministic reaction is interpreted as an evidence of the
fact that the system adapted its behaviour after an interaction with the environment.
Different kinds of adaptation are considered, depending on how much of the interaction
between the environment and the system can be observed by the user. Even if formally
crisp, this definition of adaptation is based on strong assumptions, in particular that

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:10 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

Fig. 5. Petri net model of an adaptive system.

non-adaptive systems are deterministic and that all adaptive systems are interactive.
Such assumptions can restrict considerably its range of applicability. For example, it
would not classify as adaptive a system where a change of behaviour is triggered by
an interaction with the user. More generally, as we argued in the introduction, we
think that it is not convenient to base a formal definition of adaptation on a black-box
perspective based on the observable behaviour of systems only.

3.3. Model-based Approaches to Adaptation
In many frameworks for the design of adaptive systems the base-level system has a
fixed collection of possible behaviours (or behavioural models), and adaptation consists
of passing from one behaviour to another, for example for the sake of better performance
or to ensure, in case of partial failure, the contractually agreed functionalities, even if
in a degraded form. We shall see many examples that fall into this category throughout
the paper, in particular in Section 4 and in this section.

A prominent example is the approach proposed in [Zhang and Cheng 2006a], which
emphasizes the use of formal methods to validate the development of adaptive systems,
for example by requiring the definition of global invariants for the whole system and
of local requirements for the “local” behaviours. Specifically, it represents the local
behavioural models with coloured Petri nets, and the adaptation change from one local
model to another with an additional Petri net transition labeled adapt (cf. Fig. 5). Such
adapt transitions describe how to transform a state (a set of tokens) in the source
Petri net into a state in the target model, thus providing a clean solution to the state
transfer problem (i.e. the problem to transfer the state of the system before and after
the adaptation in a consistent way) common to these approaches. In this context, a
good choice of control data would be the Petri net that describes the current base-level
computation, which is replaced during an adaptation change by another local model.
Instead, the alternative, pretty natural choice of control data as the tokens that are
consumed by the adapt transition would be considered poor, as it would not separate
clearly the base-level from the meta-level computations.

Also [Karsai and Sztipanovits 1999] shares this view, showing how their approach to
Model-Integrated Computing can be applied to adaptive systems. Adaptation is mainly

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:11

reconfiguration followed by automatic deployment, triggered at runtime either by the
user or by the system as reaction to certain events. In the proposed case study, a simple
finite state automata determines the transition from one behaviour to another: clearly,
the control data of this approach are the states of the finite state automata.

The authors of [Bucchiarone et al. 2010] define a life-cycle for service-based applica-
tions where adaptation is a first class concern. Such life-cycle continues during runtime,
in order to cope with dynamic requirements and the corresponding adaptations. In
addition to the life-cycle, the authors focus on the identification of a number of design
principles and guidelines that are suitable for adaptable applications. Essentially, adap-
tation is understood as the modification of the workflow implementing a service-based
application, from substituting individual services by equivalent ones, to recomposing a
piece of the workflow to obtain an equivalent result. Therefore, roughly speaking, the
current workflow is the control data of the service-based applications.

4. COMPUTATIONAL MODELS FOR ADAPTATION
Computational reflection is widely accepted as one of the key instruments to model
and build self-adaptive systems (cf. [McKinley et al. 2004a; Dowling et al. 2000]). In-
deed computational paradigms equipped with reflective, meta-level or higher-order
features, allow one to represent programs as first-class citizens. In these cases adapta-
tion emerges, according to our definitions, if the program in execution is represented in
the control data of the system, and it is modified during execution causing changes of
behaviour. Prominent examples of such formalisms are process calculi with higher-order
or meta-level aspects (e.g. HO π-calculus [Sangiorgi 1992], MetaKlaim [Ferrari et al.
2004]), higher-order variants of Petri nets (e.g. Dynamic Petri Nets [Asperti and Busi
2009]) and Graph Grammars, rewrite theories with logical reflection like rewriting
logic [Meseguer 1992], Logic Programming [Lloyd 1987], and programming languages
like LISP, Java, C#, Perl and several others. Systems implemented in these paradigms
can realize adaptation within themselves (self-adaptation), but in general the program
under execution can be modified also by a different entity, like an autonomic manager
implemented in a different language, or in the same language but running in a separate
thread. Of course, computational reflection assumes different forms and, despite of be-
ing a very convenient mechanism, it is not strictly necessary: as we argued in Section 1
any programming language can be used to build a self-adaptive system.

We outline in this section some rules of thumb for the choice of control data within
some well-known computational formalisms (deferring programming paradigms and
languages to Section 5) and we argue how they can be used for modeling the behavior
of self-adaptive systems. In addition, we survey a representative set of models that
have been conceived with the specific purpose of modeling self-adaptive systems and
supporting their formal analysis. We focus on three main strands: declarative, rule-
based computational models (Section 4.1), computational models from the concurrency
theory field (Section 4.2), and automata-like computational models (Section 4.3).

4.1. Declarative and Rule-based Models for Adaptation
Logic programming [Lloyd 1987] and its variations are one of the most successful
declarative programming paradigms. In the simplest variant, a logic program consists
of a set of Horn clauses and, given a goal, a computation proceeds by applying repeatedly
SLD-resolution trying to reach the empty clause in order to refuse the initial goal.

Most often logic programming interpreters support two extra-logical predicates, assert
and retract, whose evaluation has the effect of adding or removing the specified Horn
clause from the program in execution, respectively, causing a change in its behaviour.
This is a pretty natural form of adaptation that fits perfectly in our framework by

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:12 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

considering the same clauses of the program as control data. More precisely, this is an
example of self-adaptation, because the program itself can modify the control data.

Rule-based programming is another example of a very successful and widely adopted
declarative paradigm, thanks to the solid foundations offered by rule-based theoretical
frameworks like term and graph rewriting. As many other programming paradigms,
several rule-based approaches have been tailored or directly applied to adaptive systems
(e.g. graph transformation [Ehrig et al. 2010a]). Typical solutions include dividing
the set of rules into those that correspond to ordinary computations and those that
implement adaptation mechanisms, or introducing context-dependent conditions in the
rule applications (which essentially corresponds to the use of standard configuration
variables). The control data are identified by the above mentioned separation of rules
in the first case, and they correspond to the context-dependent conditions in the latter.

The situation is different when we consider rule-based approaches which enjoy higher-
order or reflection mechanisms. A good example is logical reflection, a key feature of
frameworks like rewriting logic [Meseguer 1992]. At the ground level, a rewrite theory
R (e.g. a software module) lets us infer a computation step R ` t→ t′ from a term (e.g. a
program state) t into t′. A universal theory U lets us infer the computation at the “meta-
level”, where theories and terms are meta-represented as terms: U ` (R, t) → (R, t′).
Since U itself is a rewrite theory, the reflection mechanism can be iterated yielding what
is called the tower of reflection, where not only terms t, but also rules R of the lower level
can be accessed and modified at runtime. This mechanism is efficiently supported by
Maude [Clavel et al. 2007] and has given rise to many interesting meta-programming
applications like analysis and transformation tools.

Fig. 6. RRDs.

In particular, the reflection mechanism of
rewriting logic has been exploited in [Meseguer
and Talcott 2002] to formalize a model for dis-
tributed object reflection, suitable for the specifi-
cation of adaptive systems. Such model, sugges-
tively called Reflective Russian Dolls (RRD), has
a structure of layered configurations of objects,
where each layer can control the execution of ob-
jects in the lower layer by accessing and executing
the rules in their theories, possibly after modifying them, e.g. by injecting some specific
adaptation logic in the wrapped components (cf. Fig. 6). Even at this informal level, it is
pretty clear that the RRD model falls within our conceptual framework by identifying
as “control data” for each layer the rules of its theory that are possibly modified by the
upper layer. Note that, while the tower of reflection relies on a white-box architecture,
the Russian Dolls approach can deal equally well with black-box components, because
wrapped configurations can be managed by message passing. The RRD model has
been further exploited, among others, for modeling policy-based coordination [Talcott
2006], for the design of PAGODA, a modular architecture for specifying autonomous
systems [Talcott 2007], in the composite actors used in [Eckhardt et al. 2012], and in the
design and analysis of self-assembly strategies for robot swarms [Bruni et al. 2012b].

The RRD approach is also very suitable to model self-awareness in software systems,
intended as the means by which a software system is “aware of its self states and
behaviors” [Hinchey and Sterritt 2006]. Indeed, the self states can be modeled as the
meta-representation of the current state of the objects, while the self behaviors can be
modeled as the meta-representation of the objects rules.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:13

4.2. Models of Concurrency for Adaptation
Languages and models conceived in the area of concurrency theory are also good
candidates for the specification and analysis of self-adaptive systems. We inspect some
of the most widely applied formalisms to see how the conceptual framework can help us
in the identification of the adaptation logic within each model.

Petri nets are undoubtedly the most popular model of concurrency, based on a set of
repositories, called places, and a set of activities, called transitions. The state of a Petri
net is called a marking, that is a distribution of resources, called tokens, among the
places of the net. A transition is an atomic action that consumes several tokens and
produces fresh ones, possibly involving several repositories at once.

We already discussed an example (namely [Zhang and Cheng 2006a] in Section 3.3)
of how Petri nets can be used to model adaptive systems and others (e.g. [Popescu et al.
2012]) can be found in the literature. We provide now a more general discussion which
considers different classes of Petri nets and several reasonable choices for control data
in addition to the one in [Zhang and Cheng 2006a].

Since the topology of the net is static, there is little room to see a Petri net as an
adaptive component: the only possibility is to identify a subset of tokens as control data.
Since tokens are typed by repositories, i.e. places, the control data of a Petri net must
be a subset CP of its “control” places. Tokens produced or removed from places in CP
can enable or inhibit certain activities, i.e. adapt the net. The set CP can then be used
to distinguish the adaptation logic from the application logic: if a transition modifies
the tokens in CP , then it is part of the adaptation logic, otherwise it regards only the
application logic. In particular, the transitions with self-loops on places in CP are those
exploiting directly the control data in the application.

Mobile Petri nets [Asperti and Busi 2009] allow the use of colored tokens carrying
place names, so that the output places of a transition can depend on the data in the
tokens it consumes. In this case, it is natural to include the set of places whose tokens
are used as input parameters from some transition in the set of control places. Dynamic
nets [Asperti and Busi 2009] are an extension of Mobile Petri Nets that allow for
the creation of new subnets when certain transitions fire, so that the topology of the
net can grow dynamically. Such “dynamic” transitions (together with the control data
individuated for Mobile Petri nets) are natural candidates for the adaptation logic.

Classical process algebras (CCS, CSP, ACP) are certainly tailored to the modeling of
reactive systems and therefore their processes easily fall under the hat of the reactive
pattern of adaptation. Instead, characterizing the control data and the adaptation logic
is more difficult in this setting. Since process algebras are based on message passing
facilities over channels, an obvious attempt is to identify suitable adaptation channels.
Processes can then be distinguished on the basis of their behavior on such channels,
but in general this task is more difficult with respect to Petri nets, because processes
will likely mix adaptation, interaction and computation.

The π-calculus [Milner 1999], the join calculus [Fournet and Gonthier 2002] and other
nominal calculi, including higher-order versions (e.g. the HO π-calculus [Sangiorgi
1992]) can send and receive channels names, realizing some sort of reflexivity at the
level of interaction: they have the ability to communicate transmission media. The
situation is then analogous to that of Dynamic Petri nets, as new processes can be
spawn in a way which is parametric with respect to the content of the received messages.
If again we follow the distinction between adaptation channel names from ordinary
channel names, then we inherit all the difficulties described for process algebras and
possibly need sophisticated forms of type systems or flow analysis techniques to separate
the adaptation logic from the application logic.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:14 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

An example of the use of the π-calculus for modeling autonomic computing systems
can be found in [Wang et al. 2009]. There, adaptive systems are organized in two-levels:
the local level and the global one. The local level is formed by autonomic elements
structured in the MAPE-K spirit as a managed element and an autonomic manager,
all defined by π-calculus processes that communicate over designated channels. In
particular, the effector process enacts adaptation requests by sending messages to its
managed element over the effector channel, which can be understood as the control
data of the local adaptive behavior. At the global level a centralized autonomic manager
monitors and controls the local distributed autonomic managers. Again, adaptation is
realized by sending messages through suitable effector channels.

Similar approaches have been explored within process calculi that feature primitives
that seem adequate to model autonomic systems, including explicit locality aspects,
asynchronous communication and code mobility (e.g. based on tuple-spaces). A paradig-
matic example is the KLAIM process algebra [De Nicola et al. 1998], which has been
studied as a convenient mechanism for modeling self-adaptive systems in [Gjondrekaj
et al. 2012]. The authors describe how to adopt in KLAIM three paradigms for adapta-
tion: two that focus on the language-level, namely, context-oriented programming and
aspect-oriented programming (that are discussed in Sections 5.1 and 5.2, respectively),
and one that focuses on the architectural-level (i.e. MAPE-K).

Fig. 7. A KLAIM node.

The main idea in all cases is to rely on the
use of process tuples, that is, tuples (the equiv-
alent of messages in the tuple-space paradigm)
that denote entire processes. These process tuples
can be sent by manager components (locations in
KLAIM) to managed components, which can then
install them via the eval primitive of KLAIM (cf.
Fig. 7). In other words, adaptation is achieved by
means of code mobility and code injection. The
control data in this case amounts to the set of ac-
tive processes in each location. Indeed, adaptation
in their view is the act of installing a new process.

Stemming from this approach, the Service Component Ensemble Language (SCEL)
language has been proposed in [De Nicola et al. 2012a] which realizes adaptation
by combining different paradigms, namely policy-based programming (discussed in
Section 5.3), tuple-space communication, and knowledge-based reasoning. In this case
control data is spread among the policy rules, the process tuples and the knowledge
facts and clauses.

4.3. Automata-based Approaches to Adaptation
Many of the computational models for adaptation based on automata or transitions
systems rely on a multilayered structure reminiscent of hierarchical state machines
and automata. In the simple case of two layers, the base layer is formed by models of
various functional behaviors of the system, and the upper layer is a model that defines
transitions from one base model into another.

A first example of this tradition are the Adaptive Featured Transition Systems
(A-FTS) of [Cordy et al. 2012], which were introduced for the purpose of model check-
ing adaptive software (with a focus on software product lines). A-FTSs are a sort of
transition systems where states are composed by the local state of the system, its
configuration (set of active features) and the configuration of the environment. Transi-
tions are decorated with executability conditions that regard the valid configurations.
Adaptation corresponds to reconfigurations (changing the system’s features). Hence,

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:15

in terms of our white-box approach, system features play the role of control data. The
authors introduce the notion of resilience as the ability of the system to satisfy proper-
ties despite of environmental changes (which essentially coincides with the notion of
black-box adaptivity of [Hölzl and Wirsing 2011]). Properties are expressed in AdaCTL,
a variant of the computation-tree temporal logic CTL.

Another example of layered computational structures are S[B] systems [Merelli
et al. 2012], a model for adaptive systems based on 2-layered transitions systems. The
base transition system B defines the ordinary (and adaptable) behavior of the system,
while S is the adaptation manager, which imposes some regions (subsets of states)
and transitions between them (adaptations). Further constraints are imposed by S
via adaptation invariants. Adaptations are triggered to change region (in case of local
deadlock). Such regions, hence, form the control data of the system. The paper also
introduces formal notions of weak and strong adaptability, defined as the ability to
conclude a triggered adaptation in some or all possible behaviors, respectively, and
characterized by suitable CTL formulae.

As for automata, a prominent example are Mode automata [Maraninchi and Rémond
1998], which have been also advocated as a suitable model for adaptive systems. For
example, the approach of [Zhao et al. 2011a] represents adaptive systems with two
layers: a functional layer, which implements the application logic and is represented by
state machines called adaptable automata, and an adaptation layer, which implements
the adaptation logic and is represented with a mode automaton. Adaptation here
is the change of mode (the control data of this approach). The approach considers
three different kinds of specification properties: local (to be satisfied by the functional
behavior of one particular mode, not involving adaptation), adaptation (to be satisfied
by adaptation phases, i.e. transitions between modes), and global (to be satisfied by
all behaviors). An extension of linear-time temporal logic (LTL) called mLTL is used to
express such properties.

An automata-based model is also used in [Biyani and Kulkarni 2008] in order to
specify and verify correctness of overlap adaptations.

Fig. 8. An adaptation lattice.

Overlap adaptations arise in long-running open and dy-
namic distributed applications where components can be
removed, added or replaced with a certain frequency. The
set of components of the application correspond to its control
data. An overlap adaptation occurs when the execution of
old components (i.e. components that need to be adapted)
overlaps with the execution of new components (i.e. adapted
components). This overlap introduces non-trivial issues but
is required in order to adapt the whole application in a dis-
tributed manner without stopping it. The authors identify
several kinds of overlap adaptations which vary in the kind
of allowed interactions between old and new components.

The main concern of the approach is verifying the correct-
ness of adaptations. For this purpose the approach relies
on the concept of transitional adaptation lattices which are,
essentially, diamond-shaped graphs whose nodes represent
automata and whose transitions correspond to atomic adaptation actions (cf. Fig. 8).
Each automaton represents the behavior of the whole system in some state. The top
automaton corresponds to the system before adaptation starts, while the bottom au-
tomaton corresponds to the system when adaptation ends. The diamond shape of the
lattice implicitly imposes a confluent behavior of individual atomic adaptation actions.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:16 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

The lattice imposes further requirements. Notably, the bottom state must be reached at
some point (i.e. adaptation cannot be delayed forever). Morever, the lattice-like struc-
ture is annotated with invariant properties which express requirements on each of the
stages (old, intermediate, new) of the system being adapted.

Actually, the approach considers a finer granularity of components in terms of frac-
tions, which are essentially the local instance of components in process locations. This
fine-grained granularity introduces a combinatorial explosion in the size of the lattices
which has a negative impact in the effort required in their correctness verification. To
mitigate this the authors propose a framework based on particular architectures and
coordination protocols, where some specialized modules can drive the adaptation phase
through designated paths in the adaptation lattices. This implicitly introduces a higher-
level adaptation since a system may vary the strategy of such modules according to
various factors. In this case the control data of the system correspond to such strategies.

Another example of labelled transition system variant used for modeling self-adaptive
systems are the Synchronous Adaptive Systems (SAS) of MARS [Adler et al. 2007; Schae-
fer and Poetzsch-Heffter 2006], where systems are modeled as sets of modules, each
having a set of configurations. At runtime only one configuration is active. Adaptation
consists on changing the active configuration, selected according to the configuration
conditions and the current environment. Control data in this approach are those that
determine the active configuration.

A bit different in spirit is the proposal of [Bruni et al. 2013] since the authors
investigate a methodology to study the consequences of making a particular choice of
control data in an arbitrary model (namely, an Interface Automaton [de Alfaro and
Henzinger 2001]). For this purpose they introduce the concept of Adaptable Transition
Systems and its instantiation on Adaptable Interface Automata (AIA), an essential
model of adaptive systems inspired by the white-box approach to adaptation discussed
here, and based on a foundational model of component-based systems. The key feature
of AIAs are control propositions, the formal counterpart of control data. The choice of
control propositions is arbitrary, but it imposes a clear separation between ordinary,
functional behaviors and adaptive ones. The authors discuss how AIAs can be exploited
in the specification and analysis of adaptive systems, focusing on various notions
proposed in the literature, like adaptability, feedback loops, and control synthesis.

As should be evident, the “programs-of-programs” spirit of most approaches dis-
cussed in this section raises scalability and complexity issues. On the other hand, the
layered structure of the proposed models can be exploited to study adaptive systems
compositionally. As a matter of fact, the authors of [Zhang et al. 2009] propose a tech-
nique to verify properties of adaptive systems in a modular way. Adaptive programs
are modeled with n-plex adaptive programs which are essentially sets of finite state
machines, some of which representing steady state programs [Allen et al. 1998] and
the rest representing adaptation transitions between those programs. The structure
of an n-plex adaptive program makes explicit the separation of functional concerns
(realized by steady state programs) and adaptation concerns (realized by adaptation
transitions), which is exploited to reason about such systems in a modular way. Clearly,
the separation of concerns coincides with the spirit of our framework. In particular,
control data here are the individual steady state programs.

This separation of concerns has its counterpart in the property specification language
used, namely Adapt-operator extended LTL (A-LTL) proposed in [Zhang and Cheng
2006b]. A-LTL extends LTL with an adapt operator that does not provide more expres-
sive power but allows to express properties of adaptive systems in a significantly more
concise manner. With respect to similar approaches, the modular verification phase

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:17

exploits the separation of concerns and the assume/guarantee paradigm in order to
avoid the state explosion problem, thus providing a more scalable solution. For instance,
this allows the authors to tackle transitional properties of adaptation (e.g. graceful
adaptation, hot-swapping adaptation, restriction of adaptations to quiescent states, etc.)
in an efficient manner.

Structuring the behavior of adaptive system is a major concern in [Iftikhar and Weyns
2012]. The authors identify four main modes of operation (called state space zones)
in an adaptive system: the normal behavior zone (the system operates as expected),
the undesired behavior zone (the system has violated some constraint and needs to
be adapted), the invalid behavior zone (the system has violated some constraint and
cannot be adapted), and the adaptation behavior zone (the system is adapting to re-
enter the normal behavior zone). Their work is motivated by the necessity of shifting
the focus to behavioral aspects of adaptation, as evidenced in previous experiences of
the authors [Weyns et al. 2012] mainly concerned with architectural aspects. In this
approach, hence, the control data are those used to characterize the state space zones.
The authors use their approach to model and analyze the case study of a decentralized
adaptive traffic control system using timed automata and TCTL, a timed extension of
CTL. The authors distinguish two different adaptation capabilities (from the black-box
perspective): flexibility (ability to adapt to changing environments, e.g. to improve
performance) and robustness (ability to recover from failures).

Some of the above approaches rely on logical reasoning mechanisms to prove proper-
ties of adaptation. To this end, base steady programs are annotated with the properties
they ensure (cf. the above discussed adaptation lattices [Biyani and Kulkarni 2008]).
This idea of specification-carrying-programs is investigated in [Pavlovic 2000]. The
author identifies suitable semantical domains aimed at capturing the essence of adap-
tation. The behaviour of a system is formalized in terms of a category of specification-
carrying-programs (also called contracts), i.e. triples made of a program, a specification
and a satisfaction relation among them; arrows between contracts are refinement rela-
tions. Contracts are equipped with a functorial semantics, and their adaptive version is
obtained by indexing the semantics with respect to a set of stages of adaptation, yielding
a coalgebraic presentation potentially useful for further generalizations. An adaptation
is a transformation of a specification-carrying-program into another one, satisfying
some properties. As in many of the above approaches, the control data includes the
entire program being executed.

5. PROGRAMMING PARADIGMS FOR ADAPTATION
As observed in the previous sections, the nature of control data can vary considerably
depending both on the degree of adaptivity of the system and on the nature of the
computational formalisms used to implement it. Examples of control data include con-
figuration variables, rules and plans (in rule-based programming), contexts (in context-
oriented programming), interactions (in connector-centered approaches), policies (in
policy-driven languages), aspects (in aspect-oriented languages), monads and effects (in
functional languages), and even entire programs (in models of computation exhibiting
higher-order or reflective features). Indeed, many programming languages that consider
such forms of control data as first-class citizens have been promoted as suitable for pro-
gramming adaptive systems (see the overviews of [Ghezzi et al. 2011; Salvaneschi et al.
]). Just restricting to Java some examples of technologies supporting adaptation include
Jolie [Montesi et al. 2007], ContextJ [Appeltauer et al. pear], JavAdaptor [Pukall et al.
2013] and Chameleon [Autili et al. 2010]. We survey in this section a representative
set of such programming paradigms and explain their notion of adaptation in terms of
our conceptual framework. In particular, we organize the discussed approaches in three

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:18 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

paradigms: context-oriented programming (Section 5.1), aspect-oriented programming
(Section 5.2), and policy-oriented programming (Section 5.3).

5.1. Context-Oriented Programming for Adaptation
Context-oriented programing [Hirschfeld et al. 2008] has been designed as a convenient
paradigm for programming autonomic systems [Salvaneschi et al. 2011]. The main idea
of this paradigm is that the execution of a program depends on the runtime environment
under which the program is running.

Many languages have been extended to adopt the context-oriented paradigm. We
mention among others Lisp, Python, Ruby, Smalltalk, Scheme, Java, and Erlang. The
notion of context varies from approach to approach and in general it might refer to
any computationally accessible information. Without giving any concrete reference, a
typical example is the environmental data collected from sensors. In many cases the
universe of all possible contexts is discretised in order to have a manageable, abstract
set of fixed contexts. This is achieved, for instance by means of functions mapping
the environmental data into the set of fixed contexts. Code fragments like methods or
functions can then be specialized for each possible context. Such chunks of behaviours
associated with contexts are called variations.

Fig. 9. MAPE-K architecture in
context-oriented programming.

The context-oriented paradigm can be used to program
autonomic systems by activating or deactivating varia-
tions in reaction to context changes. The key mechanism
exploited here is the dynamic dispatching of variations.
When a piece of code is being executed, a sort of dispatcher
examines the current context of the execution in order
to decide which variation to invoke. Contexts thus act as
some sort of possibly nested scopes. Indeed, very often a
stack is used to store the currently active contexts, and a
variation can propagate the invocation to the variation of
the enclosing context.

The key idea to achieve adaptation along the lines of
the MAPE-K framework is for the manager to control the
context stack (for example, to modify it in correspondence
with environmental changes) and for the managed compo-
nent to access it in a read-only manner. Those points of the
code in which the managed component queries the current
context stack are called activation hooks (adaptation hooks
in [Lanese et al. 2010] and in [Gjondrekaj et al. 2012], as we shall see in Sections 5.2
and 5.3, respectively).

Quite naturally, context-oriented programming falls into our framework by consid-
ering the context stack as control data. With this view, the only difference between
the approach proposed in [Salvaneschi et al. 2011] (cf. Fig. 9) and our ideas is that
the former suggests the control data to reside within the manager (this is not clear in
the figure but we refer to the detailed example in the cited paper), while we locate the
control data in the interface of the managed component.

5.2. Aspect-Oriented Programming for Adaptation
Aspect-oriented programming [Kiczales et al. 1997] and, in particular, dynamic aspect-
oriented programming [Popovici et al. 2003] have been advocated as a convenient
mechanism for the development of self-adaptive software by many authors since the
original proposal of [Greenwood and Blair. 2004].

The main idea is that the separation-of-concerns philosophy of aspects facilitates
the addition of autonomic computing capabilities to software systems. Indeed, while

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:19

early works [Greenwood and Blair. 2004] put the stress on monitoring as an aspect,
subsequent works have generalized this idea to other capabilities. Adaptation, for
instance, can be realized through aspect weaving, i.e. the activation and deactivation
of advices (the code to be executed at join points), possibly enacted by an autonomic
manager. Advices, hence, can be understood as the control data of the aspect-based
adaptation paradigm. Dynamic aspect oriented programming languages, which are
equipped with dynamic aspect weaving mechanisms, thus facilitate the realization of
dynamic adaptation.

Adaptation hooks are also used in this paradigm. For instance in the tuple-space
approach of [Gjondrekaj et al. 2012], already discussed in Section 4.2. The idea is to
establish such hooks at join points as checks for adaptations in terms of installation or
removal of advices.

5.3. Policy-Oriented Programming for Adaptation
As we have seen in Section 4.1, rule-based approaches have been advocated as a
convenient mechanism for realizing self-adaptation. Another example of this tradition
are policies. Generally speaking, policies are in fact rules that determine the behavior
of an entity under specific conditions. Policies have been seen as mechanisms enjoying
the flexibility required by self-* systems, and tackling the problem at the right (high-)
level of abstraction.

A prominent example is PobSAM [Khakpour et al. 2012] (Policy-based Self-Adaptive
Model), a formal framework for modeling and analyzing self-adaptive systems which
relies on policies as a high-level mechanism to realize adaptive behaviors. Building upon
the authors experience in the development of the PAGODA framework [Talcott 2007]
(cf. Section 4.1), PobSAM combines the actor model of coordination [Agha 1986] with
process algebra machinery and shares the white-box spirit of separating application
and adaptation concerns. Indeed, the overall architecture of the system is composed by
managed actors, which implement the functional behavior of the system, and autonomic
manager (meta-)actors, which control the behavior of managed actors by enforcing
policies. In this manner, the adaptation logic is encoded in policies whose responsi-
bility relies on well-identified system components (i.e. the managers). In particular,
the configuration of managers is determined by their sets of policies which can vary
dynamically. The currently active set of policies represents the control data in this
approach. Adaptation is indeed the switch between active policies. Policies are rules
that determine under which condition a specified subject must or must not do a certain
action. PobSAM distinguishes between governing policies, which control the managed
actors in their stable (cf. steady, normal) state and adaptation policies, which drive the
actors in the transient states (cf. adaptation phases).

The authors of [Lanese et al. 2010] propose a framework for dynamic adaptation
based on the combination of adaptation hooks, which specify where to apply adaptation,
and policies called adaptation rules, which specify when and how to apply it. In their
approach an adaptable application is an application that exposes part of its states and
the set of activities that it performs in a suitable interface called application interface.
Adaptation is enacted by suitable managers that exploit the adaptation rules in order
to introduce changes in the application through its interface. In particular, the rules
define adaptations that may change the activities by instantiating new code or changing
their configuration parameters and may also change part of the application’s state.
Hence, in this approach both the set of activities and the exposed application state are
to be considered as control data in the basic adaptation layer. On top of this basic layer,
dynamic adaptation can occur, which consists on modifying the adaptation rules at

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:20 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

runtime. This makes adaptation managers adaptable as well. At this layer, hence, the
control data are precisely the adaptation rules, which determine the behavior of the
adaptation managers.

The approach is instantiated in Jolie [Montesi et al. 2007] (Java Orchestration
Language Interpreter Engine) a framework for rapid prototyping of service oriented
applications. The approach is, however, language agnostic. As a matter of fact, the
authors identify the basic ingredients needed to implement their approach in other
settings and a generic architecture to structure the framework. The former consists
of mechanisms needed to implement the adaptation interface and its manipulation
based on code mobility. At the architectural level applications are structured as clients
which rely on an activity manager to run their activities. Adaptation is governed by
adaptation servers, which are coordinated globally by an adaptation manager service.

6. RELATED WORK

We have already discussed some of our sources of inspiration in the previous sections
and how the underlying notion of adaptation can be recast in terms of our approach. In
this section we focus on other works about adaptation that have inspired our contri-
bution or that have been conceived with a similar aim to ours: conceptual notions of
adaptation to explain or capture concrete existing approaches to adaptation. We are
aware that they represent only a fragment of the vast literature on adaptive systems
which, for obvious reasons, we cannot discuss here in a comprehensive manner. How-
ever, we believe that this section covers the most significant surveys on the topic under
study, and the references that can be found there can help to complete the picture.

The survey on self-adaptive software of [Salehie and Tahvildari 2009] is one of
the most comprehensive studies on the topic. It presents a taxonomy of adaptation
concerns, surveys a wide set of representative approaches from many different areas
and identifies some key research challenges. All the discussion is driven by the six
honest men mentioned in Section 1, namely the why, when, where, what, who, and
how issues in adaptation processes. Even if the focus is on self-adaptive software and
software engineering, the authors study and discuss also approaches to adaptation from
the fields of artificial intelligence, control theory and engineering, decision theory, and
network and distributed computing.

Fig. 10. An adaptation loop.

In the authors view, modern software can be
seen as an open loop, since it has life-cycles that
are inevitably subject to continuous modifications,
reparations and maintenance operations. Self-
adaptive software is the solution to such openness
by closing the loop with feedback from the soft-
ware itself and its context of operation. In this
view self-adaptation is seen as a complex feature
built upon other self-* mechanisms (namely self-
configuring, self-healing, self-optimizing, and self-
protecting), self-awareness and context-awareness. Adaptation loops are seen as a
fundamental process to achieve adaptive behaviors. The authors identify an adaptation
loop (cf. Fig. 10) reminiscent of that of IBM’s MAPE-K reference model, whose main
activities are monitoring, detecting, deciding, and acting. Common sensor mechanisms
such as logging, profiling and events which feed the monitoring activities are surveyed
and so are effector mechanisms like design and architectural patterns, meta-object
protocols (cf. Fig. 11) and dynamic aspect weaving, which realize the acting activities.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:21

The taxonomy focuses on four main facets of adaptation: the object of adaptation
(what and where), the mechanisms by which adaptation is realized (how), temporal
issues (when) and interaction concerns (who).

Regarding the object to adapt, the taxonomy is refined into issues that concern the
structuring of software systems into layers, components and all that. Hence, the what
and where need to consider the layer at which adaptation is applied and the granularity
of the artifacts subject to adaptation which may range from single attributes to entire
components. The impact and cost of adaptation is another issue which is closely related
to the previously mentioned ones. The taxonomy distinguishes between weak adaptation
(e.g. modifying parameters) and strong adaptation (e.g. replacing entire components).

The how facet of the taxonomy distinguishes between static (design-time coded) and
dynamic (runtime) adaptation, and between external and internal control loops. The
authors stress the benefits of dynamic adaptation and the poor scalability and main-
tainability offered by internal control loops due to the intertwining of the application
and the adaptation logic, which contradicts the separation-of-concerns principle that
the authors (and many others) promote as key feature of self-adaptive systems. Another
issue considered is the distinction between engineering adaptation as designed built-in
mechanism and achieving it through generic learning mechanisms, typical of artificial
intelligence approaches. Further issues of the how facet are whether the system is
open or close to runtime alternative adaptations, whether models of the system and the
environment are used, or if the adaptation mechanism is generic or domain-specific.

The temporal facet (when) focuses on two main issues that dictate the way the
decision and monitoring activities are performed within the adaptation loop. Regarding
the former, a distinction is made between reactivity and proactivity. Reactive adaptation
is triggered by certain events (typically changes in the context or the system itself),
while proactive adaptation involves the use of planning or prediction mechanisms to
anticipate such events. Monitoring activities can be continuous or adaptive, which
means that the features being monitored are dynamically selected, typically trying to
restrict them in order to mitigate the introduced overhead.

Fig. 11. A reflective system.

The last facet regards the interaction between
self-adaptive systems and other entities. This in-
volves first the who question, the entities the self-
adaptive system interacts with. The main distinc-
tion is between the fully autonomic view and the
human-in-the-loop view, which entails human in-
volvement. Other sub-facets include trust-related
issues like security, assurance, dependability, and
predictability, and the support for interoperability.

The authors of [McKinley et al. 2004a] present
a survey of mechanisms to build adaptive systems together with a taxonomy of different
forms of compositional adaptation and some key challenges in this field. They argue that
there are two main approaches to adaptation: parameter adaptation, where program
variables that affect the system behavior are modified, and compositional adaptation,
based on component reconfiguration.

They identify three key technologies that enable the development of adaptive sys-
tems and that are nowadays widely accepted: component-based design, separation-
of-concerns, and computational reflection. Our framework promotes all these three
technologies, but does not require the latter, although we admit its power and suitability.

The authors pay a special attention to compositional adaptation and propose a taxon-
omy that focuses on three main questions: the how, when and where to compose. The
how includes mechanisms such as function pointers, wrappers, proxies, strategies and

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:22 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

virtual component patterns, the meta-object protocol (cf. Fig. 11), aspect weaving (cf.
Section 5.2), and middlewares (e.g. interception middlewares). The when ranges from
static composition, carried out at development-, compile/link- and load-time, and dy-
namic composition, carried out at runtime and which may be mutable or tunable. In the
where they discuss middleware-based adaptation versus application-based adaptation.

The authors also discuss some challenges of self-adaptive software: assurance, i.e.
to ensure the correctness of components with respect to their specifications (cf. the
discussion on specification-carrying-programs in Section 4.3) and to guarantee that the
system operates safely during adaptation; security, i.e. to ensure the integrity of data
despite of the invasive mechanisms such as code injection and message interception
that may be employed; interoperability, i.e. to perform adaptations in a coordinated way
in distributed and heterogeneous systems; and decision making, i.e. to provide answers
to the main questions of the taxonomy, i.e. how, when, and where to adapt.

The authors of FORMS (cf. the discussion on [Andersson et al. 2009b; Weyns et al.
2010; 2012] in Section 3) provide in [Andersson et al. 2009c] a classification of modeling
dimensions for self-adaptive systems. Each dimension identifies an aspect that is
relevant to self-adaptation in software systems. The main motivation of their work is
the lack of agreement in the research and industrial community in what regards those
dimensions. Hence, their classification can be used as common ground which provides
a simple vocabulary or taxonomy to support the development of new systems or the
comparison of existing ones.

The authors have studied several approaches and have focused on the implicit under-
lying conceptual models rather than on the concrete technologies used to realize them.
As a result they identify four main groups of dimensions: dimensions regarding the
goals or objectives of adaptation, the changes that trigger adaptation, the mechanisms
that realize the adaptation, and the effects of adaptation. Goal dimensions include evolu-
tion, flexibility, duration, multiplicity and dependency of the system objectives. Change
dimensions regard the source, the type, the frequency, and the level of anticipation of
the adaptation triggers. The mechanism-related dimensions range from the type, to
the level of autonomy, passing through organization, scope, duration, timeliness and
triggering. Last, the dimensions that regard the effects of adaptation are criticality,
predictability, overhead, and resilience.

The authors identify the research challenges of each of the dimensions. They stress,
among other, the need of mechanisms to conciliate conflicting goals in open systems
where participants may be in competition; the need of lightweight monitoring and
adaptation techniques to mitigate their overhead; the need of decentralized mechanisms
for coordinating adaptation in distributed systems; the need of responsive mechanisms
in adaptive real-time systems; and the need of verification, validation, and prediction
mechanisms to ensure that self-adaptive systems behave correctly and predictably.

The author of [Raibulet 2008] shares our concerns regarding the fact that there are
several, apparently different understandings of adaptation, and while she considers
the goal of finding a comprehensive definition of adaptation as a difficult, perhaps
impossible, task, she proposes to identify the facets of adaptation and the corresponding
research challenges.

Different forms of adaptation are identified, namely architectural, structural, behav-
ioral and content-based and the discussion is guided by three main questions: why is
adaptation needed?, which are the objectives of adaptation?, which are its main open
research issues?. Regarding the first question, the author concludes that, typically,
adaptation is needed to cope with resource variability, faults, the complexity of software
management (and the inherent overhead), and the convenience to tailor services to
users and their contexts. The second question is answered with an enumeration of

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:23

different fields where adaptation techniques have been employed intensively. These
include control engineering systems, operating systems, networks, robotics, artificial
intelligence systems, e-learning systems, multimedia applications, information retrieval
systems and service-oriented applications such as Web Services.

The author concludes that an adaptive system should be self-aware, context-aware,
autonomous and reflective in order to adapt automatically on the basis of meaningful
information. In her conclusion the author identifies as necessary research efforts the
development of verification and validation techniques to ensure the correctness of self-
adaptive systems, and wonders whether issues such as scalability, mobility, late-binding
or evolution mechanisms and self-* mechanisms such as self-healing, self-configuration,
self-management and self-optimization, are just additional facets of adaptation.

The research roadmap and vision of the Descartes research group described
in [Kounev 2011] contains interesting ideas regarding the challenge for engineering the
next generation of self-* systems and services. The key mechanism that the authors
identify is that of models for online QoS prediction. In the MAPE-K terminology this
means that the knowledge base contains a model of the performance of the system that
can be queried in order to proactively or reactively reconfigure the system.

Fig. 12. An online reconfiguration process.

Actually, they envision an architectural model
called the Online Reconfiguration Process (cf.
Fig. 12) which enriches the MAPE-K reference
model with two additional loops: one for refining
and calibrating the prediction models, and an-
other one for forecasting the workload evolution.

The prediction models are to be exploited at
runtime to adapt the system to changes in the
environment so to satisfy QoS in near-to-optimal
ways, both in terms of utility and resource con-
sumption. For example, self-adaptation actions
include the migration of virtual machines in a
cloud-based system and the rearrangement of re-
sources in general. The QoS query mechanisms
provided by the models are able to predict the
effect of such reconfigurations before making a
decision and effectively enacting the adaptation.

Notably, self-adaptation is seen as one of the
key properties of self-awareness, which may seem
to be in contradiction with [Salehie and Tahvildari 2009] where self-awareness is seen
as a key mechanism for achieving adaptation. Actually, there is no such contradiction,
but rather a different use of the term self-awareness which in [Salehie and Tahvildari
2009] and in our opinion should be understood as the ability of a system to be aware
of itself (i.e. its own state, architecture, behaviors) while in [Kounev 2011] is used in a
more general sense to denote autonomic, self-* systems.

The authors also identify a set of research areas that are contributing (and will
continue doing so) to the development of techniques and methods for engineering
self-* IT systems. They mention, among others, cloud computing, green computing,
service-oriented computing, distributed computing, and event-based computing.

The aim of the survey reported in [Bradbury et al. 2004] is to provide an overview of
approaches that support self-adaptation based on architectural reconfiguration. The
authors consider that an architecture is self-managed if it can perform architectural
changes at runtime by initiating, selecting, and assessing them by itself, without the
assistance of an external entity. Contrary to other surveys on architectural reconfigu-

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:24 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

ration (e.g. [Clements 1996; Mikic-Rakic and Medvidovic 2006]) the survey focuses on
formal models such as graphs, process algebras and logic.

The surveyed approaches are evaluated in terms of their support for basic reconfigu-
rations such as component or connector addition/removal and composite reconfiguration
operations such as sequentialization, iteration and choices. Most of the approaches
studied support all such basic reconfigurations and some of the composite ones.

The study puts a special emphasis in the different types of adaptation selection: pre-
defined, when the reconfiguration to be applied is predefined at design-time; constrained
when the reconfiguration to be applied is selected at runtime from a set of possible
reconfigurations that was defined at design-time; and unconstrained, when there is no
restriction on the reconfiguration to be applied.

Another issue considered is the ability of performing distributed reconfigurations in a
decentralized way. The authors claim that this is indeed one of the weakness of most of
the analyzed approaches, which limits their scalability and hence their ability to cope
with large-scale distributed architectures.

The author of [Lints 2010] discusses the notion of adaptation in a very general
sense, and identifies the main concepts around adaptation drawn from several different
disciplines, including evolution theory, biology, psychology, business, control theory
and cybernetics. The main motivation of the author is the vagueness in the use of the
term adaptation, and the large variety of non-conciliable definitions, which lead to
misunderstandings, confusion, and useless debates. The author aims at remedying this
by providing some general guidelines on the essential features of adaptive systems in
order to support their design and understanding.

The author claims that “in general, adaptation is a process about changing something,
so that it would be more suitable or fit for some purpose that it would have not been
otherwise”. Even if not explicitly stated, the author uses the term adaptability to denote
the capacity of enacting adaptation, and adaptivity for the degree or extent to which
adaptation is enacted. This leads to the identification of four main issues that typically
play a role in approaches to adaptation: goals, contexts, time-frames, and granularity.

Contexts play a fundamental role in most approaches to adaptation. For instance,
in control theory adaptation is a mechanism to deal with external (i.e. contextual)
perturbances. Most interestingly, in some fields (e.g. robotics and psychology) the
behavior of an entity is considered to be adaptive depending on the context in which
such behavior is enacted or even in how regular such context is (cf. the example of this
black-box perspective in the field of robotics [Harvey et al. 2005] in Section 2).

Adaptation as an act aimed at fulfilling specific goals or objectives is something
common, but not mandatory. There are indeed examples of adaptive systems that are
purely reactive and do not have an explicit goal to be pursued. This is often the case
in control systems, where robustness, the ability to keep the system in some state in
spite of external perturbances, is sometimes considered as an adaptation mechanism.
Lofti Zadeh [Zadeh 1963], for instance, proposes to consider a system as adaptive with
respect to operating conditions and a class of performance values if its performance in
those conditions stays within that class. adaptativity in this case is interpreted as a
measure to compare adaptive systems on the basis of the set of operating conditions
under which a system remains adaptive. Other authors, instead, propose to measure
adaptivity as the speed at which the system achieves its goals.

The time frame of adaptation is another of the four main issues. Adaptation, indeed,
can regard short- or long-term time frames. Very often a sequence of short-framed
actions can be considered as non-adaptive, e.g. worsening the system performance, but
they may lead the system toward its goals in the long-term. Long-term adaptation,
called evolution by some authors, does very often involve evolutionary and learning

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:25

CONTROL DATA ADAPTATION SECTIONS
Meta-models Meta-programming and hot-linking 3.1
Architectures Reconfiguration 3.1, 3.2, 3.3
Entire programs Meta-programming 4.1
Entire (sub)-programs Mode switching 3.1, 4.3
Code variations Variation activation 5.1, 5.2
Policies Policy enforcement, policy substitution 5.3
Communication means Communication 4.2
Middleware Message interception and modification 3.2

Fig. 13. Summary of some the control data forms discussed.

processes. Evolutionary approaches are original from in the field of biology, where
adaptation has been often seen as a selective process, which involves the notions of
feedback loops and fitness functions, fundamental as well in many other fields, control
theory among others. Evolutionary perspectives, however, often assume that adaptation
is driven by external selection forces, and adaptation is restricted to variations and
selection, but of course many adaptive systems rely on different mechanisms.

Related to the time-framing is the notion of granularity. Adaptation can be seen as a
feature of individuals (e.g. survival in biological systems) or collectives (e.g. continuation
of the species). As a matter of fact a system, even a software system, may be considered
as adaptive even if made of components that are not considered to be adaptive. This is
sometimes called emergent adaptation.

The author concludes his discussion suggesting that “due to the relativity of adaptation
it does not really matter whether a system is adaptive or not (they all are, in some way
or another), but with respect to what it is adaptive”.

Other interesting overviews on adaptation include the survey on context-aware ser-
vice engineering of [Kapitsaki et al. 2009] which focuses on mechanisms to realize
context-awareness in adaptive services; the survey on autonomic computing of [Hueb-
scher and McCann 2008], which provides a comprehensive and clear overview of the
past, present and future of autonomic computing research; the discussion of [Mühl et al.
2002], which, motivated by the lack of agreement on the meaning of self-managing
and self-organizing systems, introduces a classification of such systems building upon
Zadeh’s definition of adaptive systems; and the work reported in [Fritsch et al. 2008],
which describes a classification of automotive software with respect to their adaptation
requirements and defines a taxonomy of adaptation dimensions in automotive software.

7. CONCLUSION
We have presented a white-box conceptual framework for adaptation that promotes
a neat separation of the adaptation logic from the application logic through a clear
identification of control data and their role in the adaptation logic. To validate the
framework we have described a representative set of archetypal approaches to (self-)
adaptation ranging from engineering solutions (Section 3), to computational models
(Section 4) and to programming languages and paradigms (Section 5). For each of them
we have highlighted the main distinguishing features and we have discussed how they
fit in our framework. As a byproduct, our work provides an original perspective from
which to survey Computer Science approaches to self-adaptive systems. As a matter of
fact, we have also discussed (Section 6) other surveys and taxonomies conceived with
the same aim as our work: to establish a common ground for fruitful research debates
by clarifying and identifying the key features of self-adaptive systems.

The discussion of this paper has also helped us to identify many different forms of
control data that can be found in the literature. Figure 13 summarizes most of them,

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:26 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

together with the main mechanisms used to realize adaptation. Our position is that
there does not exist the best form of control data. Every form of control data can be
adequate. However, we strongly believe that the choice of control data should adhere
to the following three principles (cf. [McKinley et al. 2004a]): separation of concerns,
component-based design and computational reflection.

Regarding the first two principles, we believe that the choice of control data should
neatly separate the application logic from the adaptation logic, and should be clearly
identified and encapsulated in a specific component of a suitable adaptation loop, in
order to guarantee an understandable, modular design. For this purpose sound design
principles should be developed in order to ensure correctness-by-design, and guidelines
for the development of adaptive systems conforming to well-understood patterns.

As for the third principle (computational reflection), we believe that higher-order
forms of control data are to be preferred if computationally affordable, since they make
it easy to carry the life-cycle of reliable self-adaptive system to runtime, by providing
runtime models that can be used to monitor, predict and modify the systems.

Our paper focuses essentially on designed white-box adaptation, but there is also a
growing interest around the notion of emerging adaptation and black-box adaptation.

Emergent adaptation is typical of massively parallel and distributed systems such
as swarms and ensembles. A conceptual framework for that kind of systems requires
to shift from a local notion of control data to a global one, where the control data of
the individual components of the system are treated as a whole, which will possibly
require some mechanism to amalgamate them for the manager, and to project them
backwards to the components. Also, such systems use mechanisms coordinate the
adaptation of individual components in order to obtain a meaningful adaptation of the
whole system. Interesting in this regard can be to shift our focus to Singerian forms of
adaptation [Sagasti 1970; Bouchachia and Nedjah 2012] where the subject of adaptation
is the environment (i.e. control data resides in the environment) - typical of coordination
approaches based on the spatial computing paradigm (e.g. [Viroli et al. 2011; Beal et al.
2012]) - as opposed to the Darwinian adaptation we have focused on where the system
is the subject of the adaptation (i.e. control data resides in the system).

Black-box adaptation focuses on the external observation and requirements of self-
adaptive systems, i.e. at measuring or expressing requirements on how a software
system adapts his ability to reach some goal under specific context variations. We believe
that research efforts are needed to conciliate black-box and white-box perspectives.
Ideally, the internal mechanisms and external manifestations of adaptive behavior
should be coherent, so that, for instance, a black-box analysis can validate that the level
of adaptability is strongly dependent on the adaptation logic.

Acknowledgements. This work has been possible thanks to fruitful discussions with many colleagues
that motivated and contributed to its development. We would like to thank all of them: the members of
the ASCENS project, the organizers and participants of the AWASS summer school on self-awareness in
autonomic computing held in Edinburgh, and the organizers, participants and anonymous reviewers of the
15th International Conference on Fundamental Approaches to Software Engineering and the 21st International
Workshop on Algebraic Development Techniques for their valuable criticism and for the opportunity of
presenting preliminary versions of this work. In particular, the main differences and novelties with respect
to [Bruni et al. 2012a] are (i) the emphasis on the difference between white-box and black-box approaches
to adaptation (in particular in Section 1); (ii) the discussion of process algebraic (last part of Section 4.2),
automata-based and transition system variants (Section 4.3) specifically designed for adaptive systems; (iii)
the discussion of aspect- (Section 5.2) and policy-oriented paradigms (Section 5.3); and (iv) the overview and
comparison with respect to similar efforts such as surveys and taxonomies for adaptation (Section 6).

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:27

REFERENCES
ADLER, R., SCHAEFER, I., SCHÜLE, T., AND VECCHIÉ, E. 2007. From model-based design to formal

verification of adaptive embedded systems. In Proceedings of the 9th International Conference on Formal
Engineering Methods (ICFEM 2007), M. Butler, M. G. Hinchey, and M. M. Larrondo-Petrie, Eds. Lecture
Notes in Computer Science Series, vol. 4789. Springer, 76–95.

AGHA, G. 1986. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
MA, USA.

ALDINUCCI, M., DANELUTTO, M., AND VANNESCHI, M. 2006. Autonomic qos in assist grid-aware components.
In Proceedings of the 14th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP 2006). IEEE Computer Society, 221–230.

ALDINUCCI, M. AND TUOSTO, E. 2010. Toward a formal semantics for autonomic components.
CoRR abs/1002.2722.

ALLEN, R., DOUENCE, R., AND GARLAN, D. 1998. Specifying and analyzing dynamic software architectures.
In (FASE 1998). 21–37.

ANDERSSON, J., DE LEMOS, R., MALEK, S., AND WEYNS, D. 2009a. Modeling dimensions of self-adaptive
software systems. In Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar],
B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Lecture Notes in Computer
Science Series, vol. 5525. Springer, 27–47.

ANDERSSON, J., DE LEMOS, R., MALEK, S., AND WEYNS, D. 2009b. Reflecting on self-adaptive software
systems. In Proceedings of the ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2009). IEEE Computer Society, 38–47.

ANDERSSON, J., LEMOS, R., MALEK, S., AND WEYNS, D. 2009c. Software engineering for self-adaptive
systems. Springer-Verlag, Berlin, Heidelberg, Chapter Modeling Dimensions of Self-Adaptive Software
Systems, 27–47.

ANDOVA, S., GROENEWEGEN, L., STAFLEU, J., AND DE VINK, E. P. 2009. Formalizing adaptation on-the-fly.
Electr. Notes Theor. Comput. Sci. 255, 23–44.

ANDRADE, L. F. AND FIADEIRO, J. L. 2002. An architectural approach to auto-adaptive systems. In Proceed-
ings of the 22nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02).
IEEE Computer Society, 439–444.

ANDREI, O. AND KIRCHNER, H. 2009. A higher-order graph calculus for autonomic computing. In Graph
Theory, Computational Intelligence and Thought, Essays Dedicated to Martin Charles Golumbic on the
Occasion of His 60th Birthday, M. Lipshteyn, V. E. Levit, and R. M. McConnell, Eds. Lecture Notes in
Computer Science Series, vol. 5420. Springer, 15–26.

APPELTAUER, M., HIRSCHFELD, R., HAUPT, M., AND MASUHARA, H. to appear. Contextj: Context-oriented
programming with java. Journal of the Japan Society for Software Science and Technology (JSSST) on
Computer Software.

ARDAGNA, D., COMUZZI, M., MUSSI, E., PERNICI, B., AND PLEBANI, P. 2007. Paws: A framework for
executing adaptive web-service processes. IEEE Software 24, 6, 39–46.

ASHLEY-ROLLMAN, M. P., LEE, P., GOLDSTEIN, S. C., PILLAI, P., AND CAMPBELL, J. 2009. A language for
large ensembles of independently executing nodes. In Logic Programming, 25th International Conference,
ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, P. M. Hill and D. S. Warren, Eds. Lecture
Notes in Computer Science Series, vol. 5649. Springer, 265–280.

ASPERTI, A. AND BUSI, N. 2009. Mobile petri nets. Mathematical Structures in Computer Science 19, 6,
1265–1278.

ASTROM, K. J. AND WITTENMARK, B. 1994. Adaptive Control 2nd Ed. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

AUTILI, M., BENEDETTO, P. D., AND INVERARDI, P. 2009. Context-aware adaptive services: The plastic
approach. In Fundamental Approaches to Software Engineering, 12th International Conference, FASE
2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings, M. Chechik and M. Wirsing, Eds. Lecture Notes in Computer
Science Series, vol. 5503. Springer, 124–139.

AUTILI, M., BENEDETTO, P. D., AND INVERARDI, P. 2010. A programming model for adaptable java appli-
cations. In Proceedings of the 8th International Conference on Principles and Practice of Programming
in Java, PPPJ 2010, Vienna, Austria, September 15-17, 2010, A. Krall and H. Mössenböck, Eds. ACM,
119–128.

BANÂTRE, J.-P., RADENAC, Y., AND FRADET, P. 2004. Chemical specification of autonomic systems. In
Proceedings of the ISCA 13th International Conference on Intelligent and Adaptive Systems and Software
Engineering. ISCA, 72–79.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:28 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

BARTELS, B. AND KLEINE, M. 2011. A csp-based framework for the specification, verification, and imple-
mentation of adaptive systems. In 2011 ICSE Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24, 2011, H. Giese and
B. H. C. Cheng, Eds. ACM, 158–167.

BASTIDE, G., SERIAI, A., AND OUSSALAH, M. 2007. Software component re-engineering for their run-
time structural adaptation. In Proceedings of the 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007). IEEE Computer Society, 109–114.

BAUER, S., HENNICKER, R., AND LEGACY, A. 2012. Component interfaces with contracts on ports. In
Proceedings of the 9th International Symposium on Formal Aspects of Component Software (FACS 2012).

BEAL, J., CLEVELAND, J., AND USBECK, K. 2012. Self-stabilizing robot team formation with proto: Ieee
self-adaptive and self-organizing systems 2012 demo entry. In Sixth IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO 2012). IEEE Computer Society, 233–234.

BERNARDI, G., BUGLIESI, M., MACEDONIO, D., AND ROSSI, S. 2008. A theory of adaptable contract-
based service composition. In SYNASC 2008, 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara, Romania, 26-29 September 2008, V. Negru, T. Jebelean,
D. Petcu, and D. Zaharie, Eds. IEEE Computer Society, 327–334.

BETTINI, L. AND VENNERI, B. 2011. Object reuse and behavior adaptation in java-like languages. In
Proceedings of the 9th International Conference on Principles and Practice of Programming in Java
(PPPJ 2011), C. W. Probst and C. Wimmer, Eds. ACM, 111–120.

BIYANI, K. N. AND KULKARNI, S. S. 2008. Assurance of dynamic adaptation in distributed systems. J.
Parallel Distrib. Comput. 68, 8, 1097–1112.

BOUCHACHIA, A. AND NEDJAH, N. 2012. Introduction to the special section on self-adaptive systems: Models
and algorithms. ACM Transactions on Autonomous and Adaptive Systems 7, 1, 13:1–13:4.

BOUCHENAK, S., BOYER, F., CLAUDEL, B., DE PALMA, N., GRUBER, O., AND SICARD, S. 2011. From
autonomic to self-self behaviors: The jade experience. ACM Transactions on Autonomous and Adaptive
Systems 6, 4, 28:1–28:22.

BRADBURY, J. S., CORDY, J. R., DINGEL, J., AND WERMELINGER, M. 2004. A survey of self-management
in dynamic software architecture specifications. In Proceedings of the 1st ACM SIGSOFT Workshop on
Self-Managed Systems (WOSS 2004), D. Garlan, J. Kramer, and A. L. Wolf, Eds. ACM, 28–33.

BROGI, A., CANAL, C., AND PIMENTEL, E. 2004. Behavioural types and component adaptation. In Algebraic
Methodology and Software Technology, 10th International Conference, AMAST 2004, Stirling, Scotland,
UK, July 12-16, 2004, Proceedings, C. Rattray, S. Maharaj, and C. Shankland, Eds. Lecture Notes in
Computer Science Series, vol. 3116. Springer, 42–56.

BROY, M., LEUXNER, C., SITOU, W., SPANFELNER, B., AND WINTER, S. 2009. Formalizing the notion of
adaptive system behavior. In Proceedings of the 2009 ACM Symposium on Applied Computing (SAC
2009), S. Y. Shin and S. Ossowski, Eds. ACM, 1029–1033.

BRUN, Y., SERUGENDO, G. D. M., GACEK, C., GIESE, H., KIENLE, H. M., LITOIU, M., MÜLLER, H. A.,
PEZZÈ, M., AND SHAW, M. 2009. Engineering self-adaptive systems through feedback loops. In Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Lecture Notes in Computer Science Series, vol. 5525. Springer,
48–70.

BRUNI, R., CORRADINI, A., GADDUCCI, F., LAFUENTE, A. L., AND VANDIN, A. 2013. Adaptable transition
systems. In Proceedings of the 21st International Workshop on Algebraic Development Techniques (WADT
2012). Number 7841.

BRUNI, R., CORRADINI, A., GADDUCCI, F., LLUCH-LAFUENTE, A., AND VANDIN, A. 2012a. A conceptual
framework for adaptation. In Proceedings of the Fundamental Approaches to Software Engineering -
15th International Conference (FASE 2012), J. de Lara and A. Zisman, Eds. Lecture Notes in Computer
Science Series, vol. 7212. Springer, 240–254.

BRUNI, R., CORRADINI, A., GADDUCCI, F., LLUCH-LAFUENTE, A., AND VANDIN, A. 2012b. Modelling and
analyzing adaptive self-assembly strategies with Maude. In Proceedings of the 9th International Workshop
on Rewriting Logic and Its Applications (WRLA 2012), F. Durán, Ed. Lecture Notes in Computer Science
Series, vol. 7571. Springer, 118–138.

BUCCHIARONE, A., CAPPIELLO, C., NITTO, E. D., KAZHAMIAKIN, R., MAZZA, V., AND PISTORE, M. 2010.
Design for adaptation of service-based applications: Main issues and requirements. In Proceedings of
the 2009 international conference on Service-oriented computin (ICSOC/ServiceWave 2009), A. Dan,
F. Gittler, and F. Toumani, Eds. LNCS Series, vol. 6275. 467–476.

BUCCHIARONE, A., MARCONI, A., PISTORE, M., AND SIRBU, A. 2011a. A context-aware framework for
business processes evolution. In Workshops Proceedings of the 15th IEEE International Enterprise

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:29

Distributed Object Computing Conference, EDOCW 2011, Helsinki, Finland, August 29 - September 2,
2011. IEEE Computer Society, 146–154.

BUCCHIARONE, A., PISTORE, M., RAIK, H., AND KAZHAMIAKIN, R. 2011b. Adaptation of service-based
business processes by context-aware replanning. In 2011 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA 2011), K.-J. Lin, C. Huemer, M. B. Blake, and B. Benatallah,
Eds. IEEE, 1–8.

BUCKLEY, J., MENS, T., ZENGER, M., RASHID, A., AND KNIESEL, G. 2005. Towards a taxonomy of software
change. Journal of Software Maintenance 17, 5, 309–332.

CABRI, G., PUVIANI, M., AND ZAMBONELLI, F. 2011. Towards a taxonomy of adaptive agent-based collabo-
ration patterns for autonomic service ensembles. In CTS 2011, W. W. Smari and G. C. Fox, Eds. IEEE
Computer Society, 508–515.

CERNUZZI, L., MOLESINI, A., OMICINI, A., AND ZAMBONELLI, F. 2011. Adaptable multi-agent systems:
The case of the Gaia methodology. International Journal of Software Engineering and Knowledge
Engineering 21, 4, 491–521.

CHEN, W.-K., HILTUNEN, M. A., AND SCHLICHTING, R. D. 2001. Constructing adaptive software in dis-
tributed systems. In ICDCS. 635–643.

CHENG, B. H. C., DE LEMOS, R., GIESE, H., INVERARDI, P., MAGEE, J., ANDERSSON, J., BECKER, B.,
BENCOMO, N., BRUN, Y., CUKIC, B., SERUGENDO, G. D. M., DUSTDAR, S., FINKELSTEIN, A., GACEK, C.,
GEIHS, K., GRASSI, V., KARSAI, G., KIENLE, H. M., KRAMER, J., LITOIU, M., MALEK, S., MIRANDOLA,
R., MÜLLER, H. A., PARK, S., SHAW, M., TICHY, M., TIVOLI, M., WEYNS, D., AND WHITTLE, J. 2009.
Software engineering for self-adaptive systems: A research roadmap. In Software Engineering for Self-
Adaptive Systems [outcome of a Dagstuhl Seminar], B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Lecture Notes in Computer Science Series, vol. 5525. Springer, 1–26.

CHENG, S.-W. AND GARLAN, D. 2012. Stitch: A language for architecture-based self-adaptation. Journal of
Systems and Software 85, 12, 2860–2875.

CHOI, O. AND YOON, Y. 2007. A meta data model of context information for dynamic service adaptation on
user centric environment. In MUE. IEEE Computer Society, 108–113.

CLAVEL, M., DURÁN, F., EKER, S., LINCOLN, P., MARTÍ-OLIET, N., MESEGUER, J., AND TALCOTT, C. L.
2007. All About Maude. LNCS Series, vol. 4350. Springer.

CLEMENTS, P. 1996. A survey of architecture description languages. In International workshop on software
specification and design. IEEE Computer Society Press, 16–25.

CORDY, M., CLASSEN, A., HEYMANS, P., SCHOBBENS, P.-Y., AND LEGAY, A. 2012. Model checking adaptive
software with featured transition systems. In Proceedings of the 4th Workshop on Games for Design,
Verification and Synthesis.

DAVID, P.-C. AND LEDOUX, T. 2003. Towards a framework for self-adaptive component-based applications.
J.-B. Stefani, I. M. Demeure, and D. Hagimont, Eds. Lecture Notes in Computer Science Series, vol. 2893.
Springer, 1–14.

DE ALFARO, L. AND HENZINGER, T. A. 2001. Interface automata. In ESEC / SIGSOFT FSE. 109–120.
DE LEMOS, R., GIESE, H., MÜLLER, H., SHAW, M., ANDERSSON, J., BARESI, L., BECKER, B., BENCOMO, N.,

BRUN, Y., CIKIC, B., DESMARAIS, R., DUSTDAR, S., ENGELS, G., GEIHS, K., GOESCHKA, K. M., GORLA,
A., GRASSI, V., INVERARDI, P., KARSAI, G., KRAMER, J., LITOIU, M., LOPES, A., MAGEE, J., MALEK,
S., MANKOVSKII, S., MIRANDOLA, R., MYLOPOULOS, J., NIERSTRASZ, O., PEZZÈ, M., PREHOFER, C.,
SCHÄFER, W., SCHLICHTING, W., SCHMERL, B., SMITH, D. B., SOUSA, J. P., TAMURA, G., TAHVILDARI,
L., VILLEGAS, N. M., VOGEL, T., WEYNS, D., WONG, K., AND WUTTKE, J. 2011. Software Engineering
for Self-Adpaptive Systems: A second Research Roadmap. In Software Engineering for Self-Adaptive
Systems, R. de Lemos, H. Giese, H. Müller, and M. Shaw, Eds. Number 10431 in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany.

DE NICOLA, R., FERRARI, G., LORETI, M., AND PUGLIESE, R. 2012a. A Language-based Approach to
Autonomic Computing. In FMCO 2011. LNCS 7542. Springer, 25–48.

DE NICOLA, R., FERRARI, G. L., AND PUGLIESE, R. 1998. Klaim: A kernel language for agents interaction
and mobility. IEEE Trans. Software Eng. 24, 5, 315–330.

DE NICOLA, R., LORETI, M., PUGLIESE, R., AND TIEZZI, F. 2012b. SCEL: a Language for Autonomic
Computing. Technical Report. http://rap.dsi.unifi.it/scel/.

DONG, X., HARIRI, S., XUE, L., CHEN, H., ZHANG, M., PAVULURI, S., AND RAO, S. 2003. Autonomia: an
autonomic computing environment. In Performance, Computing, and Communications Conference, 2003.
Conference Proceedings of the 2003 IEEE International. 61 – 68.

DOWLING, J., SCHÄFER, T., CAHILL, V., HARASZTI, P., AND REDMOND, B. 2000. Using reflection to support
dynamic adaptation of system software: A case study driven evaluation. In Proceedings of the 1st OOPSLA

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:30 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

Workshop on Reflection and Software Engineering, W. Cazzola, R. J. Stroud, and F. Tisato, Eds. Lecture
Notes in Computer Science Series, vol. 1826. Springer, 169–188.

ECKHARDT, J., MÜHLBAUER, T., MESEGUER, J., AND WIRSING, M. 2012. Statistical model-checking for
composite actor systems. In Preproceedings of the 21st International Workshop on Algebraic Development
Techniques (WADT 2012).

EHRIG, H., ERMEL, C., RUNGE, O., BUCCHIARONE, A., AND PELLICCIONE, P. 2010a. Formal analysis and
verification of self-healing systems. In FASE 2010, D. Rosenblum and G. Taentzer, Eds. LNCS Series, vol.
6013. Springer, 139–153.

EHRIG, H., ERMEL, C., RUNGE, O., BUCCHIARONE, A., AND PELLICCIONE, P. 2010b. Formal analysis and
verification of self-healing systems. In Proceedings of the 13th International Conference on Fundamental
Approaches to Software Engineering (FASE 2010), D. S. Rosenblum and G. Taentzer, Eds. Lecture Notes
in Computer Science Series, vol. 6013. Springer, 139–153.

FERRARI, G. L., MOGGI, E., AND PUGLIESE, R. 2004. Metaklaim: a type safe multi-stage language for global
computing. Mathematical Structures in Computer Science 14, 3, 367–395.

FOURNET, C. AND GONTHIER, G. 2002. The join calculus: A language for distributed mobile programming.
In International Summer School on Applied Semantics (APPSEM 2000), G. Barthe, P. Dybjer, L. Pinto,
and J. Saraiva, Eds. Lecture Notes in Computer Science Series, vol. 2395. Springer, 268–332.

FRITSCH, S., SENART, A., SCHMIDT, D. C., AND CLARKE, S. 2008. Time-bounded adaptation for automo-
tive system software. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds. ACM, 571–580.

GARLAN, D., CHENG, S.-W., HUANG, A.-C., SCHMERL, B. R., AND STEENKISTE, P. 2004. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37, 10, 46–54.

GEORGAS, J. C., VAN DER HOEK, A., AND TAYLOR, R. N. 2009. Using architectural models to manage and
visualize runtime adaptation. IEEE Computer 42, 10, 52–60.

GHEZZI, C. 2012. Evolution, adaptation, and the quest for incrementality. In Large-Scale Complex IT Systems.
Development, Operation and Management - 17th Monterey Workshop 2012, Oxford, UK, March 19-21,
2012, Revised Selected Papers, R. Calinescu and D. Garlan, Eds. Lecture Notes in Computer Science
Series, vol. 7539. Springer, 369–379.

GHEZZI, C., PRADELLA, M., AND SALVANESCHI, G. 2011. An evaluation of the adaptation capabilities in
programming languages. In SEAMS 2011, H. Giese and B. H. Cheng, Eds. ACM, 50–59.

GJONDREKAJ, E., LORETI, M., PUGLIESE, R., AND TIEZZI, F. 2012. Modeling adaptation with a tuple-
based coordination language. In Proceedings of the ACM Symposium on Applied Computing (SAC 2012),
S. Ossowski and P. Lecca, Eds. ACM, 1522–1527.

GORTON, I., LIU, Y., AND TRIVEDI, N. 2008. An extensible and lightweight architecture for adaptive server
applications. Softw., Pract. Exper. 38, 8, 853–883.

GREENWOOD, P. AND BLAIR., L. 2004. Using dynamic aspect-oriented programming to implement an
autonomic system. In Proceedings of the 2004 Dynamic Aspects Workshop (DAW04). RIACS, 76–88.

GREENWOOD, P. AND BLAIR, L. 2006. A framework for policy driven auto-adaptive systems using dynamic
framed aspects. 4242, 30–65.

GROENEWEGEN, L. AND DE VINK, E. P. 2006. Evolution on-the-fly with paradigm. In Proceedings of the 8th
International Conference on Coordination Models and Languages (COORDINATION 2006), P. Ciancarini
and H. Wiklicky, Eds. Lecture Notes in Computer Science Series, vol. 4038. Springer, 97–112.

GÜDEMANN, M., ORTMEIER, F., AND REIF, W. 2006. Formal modeling and verification of systems with self-x
properties. In Autonomic and Trusted Computing, Third International Conference, ATC 2006, Wuhan,
China, September 3-6, 2006, Proceedings, L. T. Yang, H. Jin, J. Ma, and T. Ungerer, Eds. Lecture Notes in
Computer Science Series, vol. 4158. Springer, 38–47.

HARVEY, I., PAOLO, E. A. D., WOOD, R., QUINN, M., AND TUCI, E. 2005. Evolutionary robotics: A new
scientific tool for studying cognition. Artificial Life 11, 1-2, 79–98.

HE, J., GAO, T., HAO, W., YEN, I.-L., AND BASTANI, F. B. 2007. A flexible content adaptation system using a
rule-based approach. IEEE Trans. Knowl. Data Eng. 19, 1, 127–140.

HINCHEY, M. G. AND STERRITT, R. 2006. Self-managing software. IEEE Computer 39, 2, 107–109.
HIRSCHFELD, R., COSTANZA, P., AND NIERSTRASZ, O. 2008. Context-oriented programming. Journal of

Object Technology 7, 3, 125–151.
HÖLZL, M. M. AND WIRSING, M. 2011. Towards a system model for ensembles. In Formal Modeling: Actors,

Open Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th
Birthday, G. Agha, O. Danvy, and J. Meseguer, Eds. LNCS Series, vol. 7000. Springer, 241–261.

HORN, P. 2001. Autonomic Computing: IBM’s Perspective on the State of Information Technology.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:31

HUEBSCHER, M. C. AND MCCANN, J. A. 2008. A survey of autonomic computing - degrees, models, and
applications. ACM Comput. Surv. 40, 3.

IBM CORPORATION. 2006. An Architectural Blueprint for Autonomic Computing.
IFTIKHAR, U. AND WEYNS, D. 2012. A case study on formal verification of self-adaptive behaviors in a

decentralized system. In Proceedings of the 11th International Workshop on Foundations of Coordination
Languages and Self Adaptation (FOCLASA 2012).

KAPITSAKI, G. M., PREZERAKOS, G. N., TSELIKAS, N. D., AND VENIERIS, I. S. 2009. Context-aware service
engineering: A survey. Journal of Systems and Software 82, 8, 1285–1297.

KARSAI, G. AND SZTIPANOVITS, J. 1999. A model-based approach to self-adaptive software. Intelligent
Systems and their Applications 14, 3, 46–53.

KELLER, R. AND HÖLZLE, U. 1998. Binary component adaptation. In Proceedings of the 12th European
Conference on - Object-Oriented Programming (ECOOP’98), E. Jul, Ed. Lecture Notes in Computer
Science Series, vol. 1445. Springer, 307–329.

KEPHART, J. O. AND CHESS, D. M. 2003. The vision of autonomic computing. Computer 36, 1, 41–50.
KHAKPOUR, N., JALILI, S., TALCOTT, C., SIRJANI, M., AND MOUSAVI, M. 2012. Formal modeling of evolving

self-adaptive systems. Science of Computer Programming 78, 1, 3 – 26. Special Section: Formal Aspects
of Component Software (FACS09).

KHAKPOUR, N., KHOSRAVI, R., SIRJANI, M., AND JALILI, S. 2010. Formal analysis of policy-based self-
adaptive systems. In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre,
Switzerland, March 22-26, 2010, S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung,
Eds. ACM, 2536–2543.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., MARC LOINGTIER, J., AND IRWIN, J.
1997. Aspect-oriented programming. In ECOOP. SpringerVerlag.

KICZALES, G. AND RIVIERES, J. D. 1991. The Art of the Metaobject Protocol. MIT Press, Cambridge, MA,
USA.

KOUNEV, S. 2011. Self-Aware Software and Systems Engineering: A Vision and Research Roadmap. In GI
Softwaretechnik-Trends, 31(4), November 2011, ISSN 0720-8928. Karlsruhe, Germany.

KULKARNI, S. S. AND BIYANI, K. N. 2004. Correctness of component-based adaptation. In Component-
Based Software Engineering, 7th International Symposium, CBSE 2004, Edinburgh, UK, May 24-25,
2004, Proceedings, I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C. Wallnau, Eds. Lecture Notes in
Computer Science Series, vol. 3054. Springer, 48–58.

LADDAGA, R. 1997. Self-adaptive software. Tech. rep. Tech. Rep. 98-12, DARPA BAA.
LANESE, I., BUCCHIARONE, A., AND MONTESI, F. 2010. A framework for rule-based dynamic adaptation. In

Proceedings of the 5th international conference on Trustworthly global computing. TGC’10. Springer.
LI, Z. AND PARASHAR, M. 2005. Rudder: An agent-based infrastructure for autonomic composition of grid

applications. Multiagent and Grid Systems 1, 3, 183–195.
LINTS, T. 2010. The essentials in defining adaptation. In Proceedings of the 4th Annual IEEE Systems

Conference. 113–116.
LLOYD, J. W. 1987. Foundations of Logic Programming, 2nd Edition. Springer.
LYMBEROPOULOS, L., LUPU, E., AND SLOMAN, M. 2003. An adaptive policy-based framework for network

services management. J. Network Syst. Manage. 11, 3, 277–303.
MAMEI, M., MENEZES, R., TOLKSDORF, R., AND ZAMBONELLI, F. 2006. Case studies for self-organization in

computer science. Journal of Systems Architecture 52, 8-9, 443–460.
MARANINCHI, F. AND RÉMOND, Y. 1998. Mode-automata: About modes and states for reactive systems. In

Proceedings of the 7th European Symposium on Programming (ESOP 1998), C. Hankin, Ed. Lecture
Notes in Computer Science Series, vol. 1381. Springer, 185–199.

MARANINCHI, F. AND RÉMOND, Y. 2003. Mode-automata: a new domain-specific construct for the develop-
ment of safe critical systems. Sci. Comput. Program. 46, 3, 219–254.

MARTÍ-OLIET, N., MESEGUER, J., AND VERDEJO, A. 2009. A rewriting semantics for maude strategies.
Electr. Notes Theor. Comput. Sci. 238, 3, 227–247.

MCHUGH, J. 2007. Adaptive networks vision. ProCurve Networking, HP Innovation, available at http:
//www.hp.com/md/pdfs/Adaptive_Networks_Vision_White_Paper.pdf.

MCKINLEY, P. K., SADJADI, S. M., KASTEN, E. P., AND CHENG, B. H. C. 2004a. Composing adaptive
software. IEEE Computer 37, 7, 56–64.

MCKINLEY, P. K., SADJADI, S. M., KASTEN, E. P., AND CHENG, B. H. C. 2004b. A taxonomy of compositional
adaptation. Tech. Rep. MSU-CSE-04-17, Department of Computer Science, Michigan State University,
East Lansing, Michigan. May.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

N/A:32 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin.

MERELLI, E., PAOLETTI, N., AND TESEI, L. 2012. A multi-level model for self-adaptive systems. In Proceed-
ings of the 11th International Workshop on Foundations of Coordination Languages and Self Adaptation
(FOCLASA 2012).

MESEGUER, J. 1992. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science 96, 1, 73–155.

MESEGUER, J. AND TALCOTT, C. 2002. Semantic models for distributed object reflection. In ECOOP 2002,
B. Magnusson, Ed. LNCS Series, vol. 2374. Springer, 1–36.

MIKIC-RAKIC, M. AND MEDVIDOVIC, N. 2006. A classification of disconnected operation techniques. In
Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA 2006). IEEE, 144–151.

MILNER, R. 1999. Communicating and mobile systems - the Pi-calculus. Cambridge University Press.
MONTESI, F., GUIDI, C., LUCCHI, R., AND ZAVATTARO, G. 2007. JOLIE: a Java orchestration language

interpreter engine. Electr. Notes Theor. Comput. Sci. 181, 19–33.
MÜHL, G., WERNER, M., JAEGER, M., HERRMANN, K., AND PARZYJEGLA, H. 2002. On the Definitions of

Self-Managing and Self-Organizing Systems. In In T. Braun, G. Carle, and B. Stiller, editors, KiVS 2007
Workshop: Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme (SAKS 2007). 291–301.

O’GRADY, R., CHRISTENSEN, A. L., PINCIROLI, C., AND DORIGO, M. 2010a. Robots autonomously self-
assemble into dedicated morphologies to solve different tasks. In AAMAS 2010, W. van der Hoek, G. A.
Kaminka, Y. Lespérance, M. Luck, and S. Sen, Eds. IFAAMAS, 1517–1518.

O’GRADY, R., GROSS, R., CHRISTENSEN, A. L., AND DORIGO, M. 2010b. Self-assembly strategies in a group
of autonomous mobile robots. Autonomous Robots 28, 4, 439–455.

OREIZY, P., GORLICK, M. M., TAYLOR, R. N., HEIMBIGNER, D., JOHNSON, G., MEDVIDOVIC, N., QUILICI,
A., ROSENBLUM, D. S., AND WOLF, A. L. 1999. An architecture-based approach to self-adaptive software.
Intelligent Systems and their Applications 14, 3.

OUDSHOORN, M. J., FUAD, M. M., AND DEB, D. 2006. Towards autonomic computing: Injecting self-
organizing and self-healing properties into java programs. In Proceedings of the 2006 conference on New
Trends in Software Methodologies, Tools and Techniques: Proceedings of the fifth SoMeT’06. IOS Press,
Amsterdam, The Netherlands, The Netherlands, 384–406.

PAVLOVIC, D. 2000. Towards semantics of self-adaptive software. In Self-Adaptive Software, First Interna-
tional Workshop, IWSAS 2000, Oxford, UK, April 17-19, 2000, Revised Papers, P. Robertson, H. E. Shrobe,
and R. Laddaga, Eds. LNCS Series, vol. 1936. Springer, 65–74.

POPESCU, R., STAIKOPOULOS, A., BROGI, A., LIU, P., AND CLARKE, S. 2012. A formalized, taxonomy-
driven approach to cross-layer application adaptation. ACM Transactions on Autonomous and Adaptive
Systems 7, 1, 7:1–7:30.

POPOVICI, A., ALONSO, G., AND GROSS, T. R. 2003. Just-in-time aspects: efficient dynamic weaving for java.
In AOSD. 100–109.

PUKALL, M., KÄSTNER, C., CAZZOLA, W., GÖTZ, S., GREBHAHN, A., AND REIMAR SCHRÖTER, G. S. 2012.
Javadaptor: Flexible runtime updates of java applications. Software: Practice and Experience, n/a–n/a.

PUKALL, M., KÄSTNER, C., CAZZOLA, W., GÖTZ, S., GREBHAHN, A., SCHRÖTER, R., AND SAAKE, G. 2013.
Javadaptor - flexible runtime updates of java applications. Softw., Pract. Exper. 43, 2, 153–185.

RAIBULET, C. 2008. Facets of adaptivity. In Proceedings of the Second European Conference on Software
Architecture (ECSA 2008), R. Morrison, D. Balasubramaniam, and K. E. Falkner, Eds. Lecture Notes in
Computer Science Series, vol. 5292. Springer, 342–345.

RAMIREZ, A. J., CHENG, B. H. C., MCKINLEY, P. K., AND BECKMANN, B. E. 2010. Automatically generating
adaptive logic to balance non-functional tradeoffs during reconfiguration. In Proceedings of the 7th
International Conference on Autonomic Computing, ICAC 2010, Reston, VA, USA, June 7-11, 2010,
M. Parashar, R. J. Figueiredo, and E. Kiciman, Eds. ACM, 225–234.

REDMOND, B. AND CAHILL, V. 2002. Supporting unanticipated dynamic adaptation of application behaviour.
In Proceedings of the 16th European Conference Object-Oriented Programming (ECOOP 2002), B. Mag-
nusson, Ed. Lecture Notes in Computer Science Series, vol. 2374. Springer, 205–230.

SAGASTI, F. 1970. A conceptual and taxonomic framework for the analysis of adaptive behavior. General
Syst. XV, 151160.

SALEHIE, M. AND TAHVILDARI, L. 2009. Self-adaptive software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems 4, 2.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. An analysis of language-level support for self-adaptive
software. ACM Transactions on Autonomous and Adaptive Systems.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. 2011. Context-oriented programming: A programming
paradigm for autonomic systems. CoRR abs/1105.0069.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

A Conceptual Framework for Adaptation N/A:33

SANGIORGI, D. 1992. Expressing mobility in process algebras: First-order and higher-order paradigms. Ph.D.
thesis, University of Edinburgh.

SCHAEFER, I. AND POETZSCH-HEFFTER, A. 2006. Using abstraction in modular verification of synchronous
adaptive systems. In Proceedings of the Workshop on ”Trustworthy Software”, S. Autexier, S. Merz, L. W. N.
van der Torre, R. Wilhelm, and P. Wolper, Eds. OASICS Series, vol. 3. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

SCHNEIDER, K., SCHUELE, T., AND TRAPP, M. 2006. Verifying the adaptation behavior of embedded systems.
In Proceedings of the 2006 international workshop on Self-adaptation and self-managing systems. SEAMS
’06. ACM, 16–22.

SECELEANU, T. AND GARLAN, D. 2006. Developing adaptive systems with synchronized architectures.
Journal of Systems and Software 79, 11, 1514–1526.

TALCOTT, C. L. 2006. Coordination models based on a formal model of distributed object reflection. In
MTCoord 2005, L. Brim and I. Linden, Eds. ENTCS Series, vol. 150(1). 143–157.

TALCOTT, C. L. 2007. Policy-based coordination in PAGODA: A case study. In CoOrg 2006 & MTCoord 2006,
G. Boella, M. Dastani, A. Omicini, L. W. van der Torre, I. Cerna, and I. Linden, Eds. ENTCS Series, vol.
181. 97–112.

TARVAINEN, P. 2007. Adaptability evaluation of software architectures; a case study. In Proceedings of the
31st Annual International Computer Software and Applications Conference (COMPSAC 2007). IEEE
Computer Society, 579–586.

VAN RENESSE, R., BIRMAN, K. P., HAYDEN, M., VAYSBURD, A., AND KARR, D. A. 1998. Building adaptive
systems using ensemble. Softw., Pract. Exper. 28, 9, 963–979.

VAN RIEMSDIJK, M. B., MEYER, J.-J. C., AND DE BOER, F. S. 2006. Semantics of plan revision in intelligent
agents. Theor. Comput. Sci. 351, 2, 240–257.

VINOGRADOV, R. AND SOKOLOV, V. 2010. On a class of high-level finite-state automata. Automatic Control
and Computer Sciences 44, 398–406. 10.3103/S0146411610070059.

VIROLI, M., CASADEI, M., MONTAGNA, S., AND ZAMBONELLI, F. 2011. Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive
Systems 6, 2, 14.

WANG, H., LV, H., AND FENG, G. 2009. A self-reflection model for autonomic computing systems based
on π-calculus. In NSS 2009, Y. Xiang, J. Lopez, H. Wang, and W. Zhou, Eds. IEEE Computer Society,
310–315.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2010. FORMS: a formal reference model for self-adaptation. In
ICAC 2010, R. Figueiredo and E. Kiciman, Eds. ACM, 205–214.

WEYNS, D., MALEK, S., AND ANDERSSON, J. 2012. FORMS: Unifying reference model for formal specification
of distributed self-adaptive systems. ACM Transactions on Autonomous and Adaptive Systems 7, 1, 8.

WIRSING, M., HÖLZL, M., TRIBASTONE, M., AND ZAMBONELLI, F. ASCENS: Engineering autonomic
service-component ensembles. To appear.

WIRTH, N. 1976. Algorithms + Data Structures = Programs. Prentice-Hall.
YANG, F., AOTANI, T., MASUHARA, H., NIELSON, F., AND NIELSON, H. R. 2011. Combining static analysis

and runtime checking in security aspects for distributed tuple spaces. In Proceedings of the 13th Interna-
tional Conference,Coordination Models and Languages (COORDINATION 2011), W. D. Meuter and G.-C.
Roman, Eds. Lecture Notes in Computer Science Series, vol. 6721. Springer, 202–218.

ZADEH, L. A. 1963. On the definition of adaptivity. In Proceedings of the IEEE. Vol. 3. 469470.
ZHANG, J. AND CHENG, B. H. C. 2006a. Model-based development of dynamically adaptive software. In 28th

International Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 371–380.

ZHANG, J. AND CHENG, B. H. C. 2006b. Using temporal logic to specify adaptive program semantics. Journal
of Systems and Software 79, 10, 1361–1369.

ZHANG, J., GOLDSBY, H., AND CHENG, B. H. C. 2009. Modular verification of dynamically adaptive systems.
In Proceedings of the 8th International Conference on Aspect-Oriented Software Development (AOSD
2009), K. J. Sullivan, A. Moreira, C. Schwanninger, and J. Gray, Eds. ACM, 161–172.

ZHAO, Y., MA, D., LI, J., AND LI, Z. 2011a. Model checking of adaptive programs with mode-extended linear
temporal logic. IEEE International Workshop on Engineering of Autonomic and Autonomous Systems 0,
40–48.

ZHAO, Y., MA, D., LI, J., AND LI, Z. 2011b. Model checking of adaptive programs with mode-extended linear
temporal logic. In 8th IEEE International Conference and Workshops on Engineering of Autonomic and
Autonomous Systems (EASe). IEEE Computer Society, 40–48.

Draft, Vol. N/A, No. N/A, Article N/A, Publication date: 0.

