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Abstract

Building adaptive systems with predictable emergent behavior is a challenging
task and it is becoming a critical need. The research community has accepted the
challenge by introducing approaches of various nature: from software architec-
tures, to programming paradigms, to analysis techniques. We recently proposed
a conceptual framework for adaptation centered around the role of control data.
In this paper we show that it can be naturally realized in a reflective logical
language like Maude by using the Reflective Russian Dolls model. Moreover,
we exploit this model to specify, validate and analyse a prominent example of
adaptive system: robot swarms equipped with self-assembly strategies. The
analysis exploits the statistical model checker PVeStA.

Keywords:
Adaptation, Autonomic Computing, Self-assembly, Ensembles, Maude,
Reflective Russian Dolls, Statistical Model Checking, PVeStA

1. Introduction

How to engineer autonomic system components so to guarantee that certain
goals will be achieved is one of todays’ grand challenges in Computer Science.
First, autonomic components run in unpredictable environments, hence they
must be engineered by relying on the smallest possible amount of assumptions,
i.e. as adaptive components. Second, no general formal framework for adaptive
systems exists that is widely accepted. Instead, several adaptation models and
guidelines are presented in the literature that offer ad-hoc solutions, often tailored
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to a specific application domain or programming language. Roughly, there is not
even a general agreement about what “adaptation” is. Third, it is not possible
to mark a black and white distinction between failure and success, because
the non-deterministic behaviour of the system prevents an absolute winning
strategy to exist. Fourth, efforts spent in the accurate analysis of handcrafted
adaptive components are unlikely to pay back, because the results are scarcely
reusable when the components software is frequently updated or extended with
new features.

We address here some of the above concerns, presenting the methodology we
have devised for prototyping well-engineered self-adaptive components. Such
methodology consists of a generic hierarchical and reflective architecture (§4.2)
to be instantiated for specific systems or scenarios (§5). Our main case study
consists of modelling (§6), debugging (§7.1), and analyzing and comparing (§7.2)
self-assembly strategies of robots cooperating for different purposes, including
morphogenesis (where robots assemble to form predefined shapes §6.1), obstacle
avoidance (e.g. hole-crossing or hill-climbing while navigating towards a light
source §6.2), and collective healing (where some robots cooperate to fix other
broken robots §6.3).

We specified such robotic scenarios with PMaude [1] (a probabilistic extension
of Maude [2]), exploiting on one hand the Reflective Russian Dolls (RRD)
model [3] and on the other hand the conceptual framework for adaptation that
we proposed in [4], which provides simple but precise guidelines for a clean
structuring of self-adaptive systems. Some of the modelled and analyzed self-
assembly strategies have been taken from the literature (e.g. from [5]), and the
comparison of their performances was carried out with the parallel statistical
model checker PVeStA [6].

When is a software system adaptive? Self-adaptation is a fundamental feature of
autonomic systems, that can specialize to several other so-called self-* properties
(like self-configuration, self-optimization, self-protection, self-assembly and self-
healing, as discussed e.g. in [7]). Self-adaptive systems have become a hot
topic in the last decade: an interesting taxonomy of the concepts related to
self-adaptation is presented in [8]. Several contributions have proposed reference
models for the specification and structuring of self-adaptive software systems,
ranging from architectural approaches (including the well-known MAPE-K [9, 7,
10], FORMS [11], the adaptation patterns of [12], and the already mentioned
RRD [3]), to approaches based on model-based development [13] or model
transformation [14], to theoretical frameworks based on category theory [15] or
stream-based systems [16]. A detailed discussion of some of these and other
related works is provided in §8.

Even if most of those models have been fruitfully adopted for the design
and specification of interesting case studies of self-adaptive systems, in our view
they missed the problem of characterizing what is adaptivity in a way that is
independent of a specific approach. We have addressed this problem in [4], where
we have proposed a very simple criterion: a software system is adaptive if its
behaviour depends on a precisely identified collection of control data, and such
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control data is modified at run time. We discuss further this topic in §3.

Is Maude a convenient setting to study self-adaptation? A “convenient” frame-
work should provide a reusable methodology for modelling self-adaptive systems
independently of their application domain together with a flexible analysis toolset
to investigate formal properties of such systems. There are several reasons why
we think that Maude [2] is a good candidate. First, the versatility of rewrite
theories can offer the right level of abstraction for addressing the specification,
modelling and analysis of self-adaptive systems and their environment within one
single coherent framework. Second, since Maude is a rule-based approach, the
control data can be expressed naturally as a subset of the available rules and the
reflection capability of Maude can be exploited to express control data manipu-
lation via ordinary rewrite rules, along the so-called tower of reflection and its
modular realization with the RRD model [17]. Third, the conceptual framework
for adaptation described in [4], to be further elaborated in §4, facilitates early and
rapid prototyping of self-adaptive systems. Fourth, the formal analysis toolset of
Maude can support simulations and analysis over the prototypes. In particular,
given the probabilistic nature of adaptive systems, where absolute guarantees
cannot be proved, we think that the parallel statistical model checker PVeStA [6]
is useful, because it allows to conduct quantitative analysis, parametric with
respect to the desired level of statistical confidence.

Pragmatically, the possibility to rapidly develop and simulate self-adaptive
systems, and to quantitatively analyze their behaviours at the early stages
of software development is very important for case studies like the robotic
scenarios described in the next paragraphs. Indeed, such physical devices require
specialized programming skills and their experimentation in real world testing
environments involves long time consumption (six hours or more for each run).
Additionally, only a limited number of robots is typically available (e.g. in [5]
only 6 out of the 25 existing s-bots were used) because their maintenance is
expensive. Also, their hardware (both mechanic and electronic parts) and
software are frequently updated, making it harder to build, to maintain and to
rely on sophisticated simulators that can take as input exactly the same code to
be run on the robots. Even when this has been attempted, the tests conducted
on the real systems can differ substantially from the simulated runs. Thus, early
simulation on prototypes, even if performed on a quite abstract representation of
the real system, can at least speed-up testing and debugging, and could dispense
the programmers from coding lowest-performance strategies.

Contribution and Synopsis. In §2 we present the robotic scenario and the self-
assembly strategy that will be used as main case study and running example
along the paper. In §3 we summarize the conceptual framework for adaptation
that we proposed in [4], and that we exploited in the design of the self-assembly
strategies in order to stress their adaptive features. The general guidelines and
principles used in Maude for modelling self-adaptive systems (including logical
reflection) are briefly described in §4, together with the conceptual, hierarchical
architecture based on the Reflective Russian Dolls model that we adopted.
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This architecture is instantiated to an implementation of the self-assembly
strategy of the case study in §5, based on MESSI (Maude Ensemble Strategies
Simulator and Inquirer) [18]. We first describe conceptually the role of each
of the three layers we use, and of the execution environment. Next we provide
details of the Maude implementation, including samples of code of the various
layers, and stressing the modularity of the methodology. Such modularity is
fully exploited in §6, where we validate our approach by presenting four more
strategies for three distinct scenarios, heavily reusing components developed for
the running example. Next in §7 we describe how to exploit our approach for
the analysis of self-assembly strategies. In particular, we first show how it is
possible to debug self-assembly strategies resorting to single simulations (and
to the automatically generated animations), and we show how to evaluate the
performance of strategies via statistical model checking. Interestingly, in §7.1
we discuss how we exploited the debugging capabilities to find some bizarre
behaviours in the strategy of [5]. Instead, in §7.2 we show how to exploit statistical
model checking to ensure that we get rid of such behaviours in our variants
of the strategy, and to compare the performances of some of the implemented
strategies. In §8 we discuss some approaches that have influenced and inspired
our work. This section covers most of the distinguishing features of our approach,
serving as an argument to convince the reader about its suitability. Finally, in
§9 we present some concluding remarks and we hint at ongoing research avenues.

We assume the reader to have some familiarity with the Maude framework.

A preliminary version of the present paper was published as [19]. The
initial work presented there evolved into the platform MESSI [18], designed
for early prototyping of self-assembly strategies, their debugging and analysis.
The modularity, applicability and accessibility of the framework was improved
by providing a library of generic controllers implementing basic behaviours,
like “move towards light”, or “assembly to the source of an admissible color
emission”. Intuitively, self-assembly strategies can be defined easily just by
specifying transitions (adaptations) between states executing different controllers,
and this is exploited here to present additional strategies w.r.t. [19]. In particular,
this is reflected by the totally revised §5, and by the novel §6. Moreover, in [19]
we discussed only some preliminary analysis result of a single strategy, while
in the revised §7 we show how to exploit our approach to properly analize and
compare the performances of several self-assembly strategies. Finally, also the
discussion of related work in §8 is original to this contribution.

2. Case Study: Self-Assembling Robot Swarms

Self-assembling robotic systems are formed by independent robots capable to
connect physically to form assemblies (or ensembles in our terminology) when the
environment prevents them from reaching their goals individually. Self-assembly
is a contingency mechanism for environments where versatility is a critical issue
and the size and morphology of the assembly cannot be known in advance. Thus,
self-assembly units must be designed in a modular way and their logic must be
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more sophisticated than, say, that of cheaper pre-assembled units. Such features
make the self-assembling robot swarm a challenging scenario to engineer.

In [5], different self-assembly strategies are proposed to carry out tasks
that range from hill-crossing and hole-crossing to robot rescue: case by case,
depending e.g. on the steepness of the hill, the width of the hole, or the location
of the robot to be rescued, the robots must self-assemble because unable to
complete their tasks individually. We focus on the hole-crossing scenario as a
running case study, where “the robots in the swarm are required to cross a hole
as they navigate to a light source” and depending on the width of the hole “a
single unit by itself will fall off into the crevice, but if it is a connected body,
falling can be prevented”. Additionally, in order to demonstrate the versatility
of our approach, in §6 we present strategies for other scenarios.

The experiments described in [5] were conducted on the SWARM-BOT
robotic platform [20], whose constituents are called s-bots (see Fig. 5, bottom
right). Each s-bot has a traction system that combines tracks, wheels and a
motorised rotation system, has several sensors (including infra-red proximity
sensors to detect obstacles, ground facing proximity sensors to detect holes,
and a 360 degrees view thanks to a camera turret), and is surrounded by a
transparent ring that contains eight RGB colored LEDs (Light Emitting Diodes)
distributed uniformly around the ring. The LEDs can provide some indications
about the internal state of the s-bot to (the omni-directional cameras of) nearby
s-bots. For example, the green color can be used to signal the willingness to
connect to an existing ensemble, and the red color can be used for the intention
to create a new ensemble. The ring can also be grasped by other s-bots thanks to
a gripper-based mechanism. From [5], we know that the s-bots have a maximal
speed of 30 cm/s and a diameter of 12 cm. Moreover, each robot is able to
perceive (with an acceptable accuracy) six different color emissions: red, green,
blue, magenta, yellow and cyan.

Roughly, the several strategies presented in [5] are: (i) the independent
execution strategy, where s-bots move independently from one another and
never self-assemble; (ii) the basic self-assembly response strategy (see below),
where each s-bot moves independently (blue light) until an obstacle is found, in
which case it tries to aggregate (green light) to some nearby assembly, if some is
available, or it becomes the seed of a new assembly (red light); (iii) the preemptive
self-assembly strategy, where the s-bots assemble together independently of the
environment and not by emergency as in the basic self-assembly response; (iv)
the connected coordination strategy, where the s-bots are pre-assembled in a
line, and their orientation with respect to the obstacle (hole/hill) is coordinated
according to a leader-following architecture.

The experiments reported in [5] concern different strategies in different
scenarios (with holes of different size and random initial positions of the s-bots)
and were repeated for each strategy within each scenario (from a minimum
of 20 times and 2 s-bots to a maximum of 60 times and 6 s-bots). Videos of
the experiments described in [5] are linked from the web page of the MESSI
framework [18].

5



Figure 1: Basic self-assembly response strategy (as proposed in [5]).

Basic self-assembly response strategy. We describe here the basic self-assembly
strategy of [5], on which we will focus as running case study in the rest of the
paper.

A finite state machine representing the strategy is depicted in Fig. 1. States
are depicted as bird-eye views of an s-bot (the outer circle represents the ring,
the inner one represents the body, while the eight small circles on the border
represent the LEDs), where we indicate the name of the state (e.g. IP or AS),
and the color of each LED (the letter inside each LED is the initial of its color).
Transitions are labelled with their firing condition.

This finite state machine is executed independently in each s-bot (a concrete
realization in [5], or a software abstraction in this work). In the starting state IP

(Independent Phototaxis) each s-bot turns on its blue LEDs, and navigates
towards the target light source, avoiding possible obstacles (e.g. walls or other
s-bots). If an s-bot detects a hole (through its infra-red ground sensors), or
sees a green or red s-bot, then it switches to state AP (Anti Phototaxis), i.e. it
turns on its green LEDs and retreats away from the direction of the light.

After the expiration of a timeout, the s-bot passes to state AGG (Aggregate):
it randomly moves searching for a red (preferably) or a green s-bot. In case
it sees a red s-bot, it switches to state SA (Self Assemble), assembles (grabs)
to the red s-bot, turns on its red LEDs and switches to state W (Wait). If
instead it sees a green s-bot, with probability Prob(seed) it switches to state AS

(Assembly Seed), turns on its red LEDs, and becomes the seed of a new ensemble.
Once in state AS (Assembly Seed), the s-bot waits until a timeout expires and
switches to state W (Wait), unless it sees another red s-bot, in which case it
reverts to state AGG (Aggregate). Once no green s-bots are visible, assembled
“waiting” s-bots switch to state CP (Connected Phototaxis) and navigate to the
light source.
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Even if not depicted, we consider a further transition in which s-bots move
into state GoalReached with yellow LEDs whenever they reach the goal.

3. A White-Box Conceptual Framework for Adaptation

Before describing how we modeled and analysed self-assembly scenarios like
the one we just presented, let us explain some guidelines that we followed
when designing them. The main goal was to develop a software system where
the adaptive behaviour of the robots is explicitly represented in the system
architecture. To this aim, as a first step we found it necessary to understand

“when is a software system adaptive”, by identifying the features distinguishing
such systems from ordinary (“non-adaptive”) ones, since, unfortunately, there
is no general agreement on the notion of adaptivity in general or in software
systems, and no general consensus is perceived around a foundational model
for adaptivity. We addressed this problem in [4], proposing a simple structural
criterion to characterize adaptivity.

According to widely accepted informal definitions, a software system is called
“self-adaptive” if it can modify its behaviour as a reaction to a change in its context
of execution. Unfortunately, this definition is hardly usable: accordingly to it
almost any software system can be considered self-adaptive. Indeed, any system
can modify its behaviour (e.g. executing different instructions, depending on
conditional statements) as a reaction to a change in the context of execution (like
the input of data from the user). Moreover, this definition is often approached
from a black-box (i.e. behavioral, observational) perspective. As a paradigmatic
example related to our case study, some authors [21] consider that “obstacle
avoidance may count as adaptive behaviour if [...] obstacles appear rarely. [...]
If the normal environment is [...] obstacle-rich, then avoidance becomes [...]
normal behaviour rather than an adaptation”. In sum, under such perspective
obstacle avoidance can be a form of adaptation in some contexts but not in
others. Indeed, such perspective focuses on the point of view of an observer and
does not care about the internal mechanisms by which the adaptive behavior
is achieved. We argue that such perspective is of little use for design purposes
where modularization and reuse are critical aspects.

In order to have a separation of concerns which facilitates distinguishing
situations where the modification of behaviour is part of the application logic from
those where they realize the adaptation logic, we follow a white-box approach,
where the internal structure of a system is exposed. Our framework requires to
make explicit that the behavior of a component depends on some well identified
control data. We define adaptation as the run-time modification of the control
data. From this definition we derive that a component is called adaptable if it has
a clearly identified collection of control data that can be modified at run-time.
Further, a component is adaptive if it is adaptable and its control data are
modified at run-time, at least in some of its executions; and it is self-adaptive if
it can modify its own control data.

Under this perspective, and not surprisingly, any computational model or
programming language can be used to implement an adaptive system, just by
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identifying the part of the data governing the behavior. Consequently, the nature
of control data can greatly vary depending on the degree of adaptivity of the
system and on the computational formalisms used to implement it. Examples
of control data include configuration variables, variations in context-oriented
programming [22], policies in policy-driven languages (e.g. [23]), aspects in
aspect-oriented languages (e.g. [24]), and even entire programs, in models of
computation exhibiting higher-order or reflective features (e.g. [17, 25]).

In [4] we discussed how our simple criterion for adaptivity can be applied to
several of the reference models we mentioned in the introduction. For each of
them we identified what would be a reasonable choice of control data, so that
our notion of adaptation (“modification of control data”) coincides with that of
the authors. Interestingly, in most situations the explicit identification of control
data has the effect of revealing a precise interface between a managed component
(mainly responsible for the application logic) and a control component (encharged
of the adaptation logic). As a paradigmatical example, consider the MAPE-K
architecture [9], according to which a self-adaptive system is made of a component
implementing the application logic, equipped with a control loop that monitors
the execution through sensors, analyses the collected data, plans an adaptation
strategy, and finally executes the adaptation of the managed component through
effectors; all the phases of the control loop access a shared knowledge repository.
Applying our criterion to this model suggests a natural choice for the control
data: these must include the data of the managed component that are modified
by the execute phase of the control loop (Fig. 2). Clearly, by our definitions the
managed component is adaptive, and the system made of both component and
control loop is self-adaptive.

Figure 2: Control data in MAPE.

The construction can be iterated, as the
control loop itself could be adaptive. Think
for example of an adaptive component which
follows a plan to perform some tasks. This
component might have a manager which de-
vises new plans according to changes in the
context or in the component’s goals. But this
planning component might itself be adaptive,
where some component controls and adapts
its planning strategy, for instance determining
the new strategy on the basis of a tradeoff
between optimality of the plans and computa-
tional cost. In this case the manager itself (the
control loop) should expose its control data (conceptually part of its knowledge
repository) in its interface. In this way, the approach becomes compositional in
a layered way, which allows one to build towers of adaptive components (Fig. 5,
left) as we do in the next sections for robot prototypes.
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4. Adaptivity in Maude

We start this section arguing again the suitability of Maude and rewriting
logic as a language and a model for adaptivity (§4.1), in more detail with respect
to the discussion offered in §1. Next, we describe a generic architecture for
developing adaptive components in Maude (§4.2) and we show that it conforms
to well-assessed conceptual models for adaptivity, including our generic framework
of [4] based on control data (§4.3).

4.1. Maude, Logical Reflection and Adaptivity
As argued in [17], Rewriting Logic (RL) [26] is well-suited for the specification

of adaptive systems, thanks to its reflective capabilities. Indeed, reflection is
widely accepted as one of the key instruments to realize self-adaptive software
systems [27] since it provides basic and flexible mechanisms for introspection
and meta-programming (see also the discussion in §8). The reflection mechanism
of rewriting logic yields what is called a tower of reflection. At the ground
level, a rewrite theory R (e.g. a software module) allows to infer a computation
step R ` t→ t′ from a term t (e.g. a program state) to a term t′. A universal
theory U lets infer the computation U ` (R, t) → (R, t′) at the “meta-level”
where theories and terms are meta-represented as terms. The process can be
repeated as U itself is a rewrite theory. This mechanism is efficiently supported
by Maude and fostered many meta-programming applications like analysis and
transformation tools. Since a theory can be represented by a term, it is also
possible to specify adaptation rules that change the (meta-representation of
the) theory, as in r ` (R, t)→ (R′, t′), so that the reduction continues with a
different set of rules R′.

The reflection mechanism of RL has been exploited in [17] to formalize a
model for distributed object reflection, suitable for the specification of adaptive
systems (see the discussion in §8). Such model, called Reflective Russian Dolls
(RRD), has a structure of layered configurations of objects, where each layer can
control the execution of objects in the lower layer by accessing and executing
the rules in their theories, possibly after modifying them, e.g. by injecting
some specific adaptation logic in the wrapped components. It is worth stressing
that logical reflection is only one possible way in which a layer can control the
execution of objects of the lower level: objects within a layer interact via message
passing, thus objects of the higher layer might intercept messages of the lower
level, influencing their behaviour (as e.g. in [28]). But even if the resulting model
is still very expressive, some form of reflection seems to be very convenient, if
not necessary, to implement adaptivity. This is clearly stated in [17] and at a
more general level in [29, 27], where (computational) reflection is promoted as a
necessary feature for any self-adaptive software system.

4.2. Generic Architecture
This section describes how we specialize the RRD architecture for modelling

adaptive components (similar approaches and alternatives are discussed in §8).
We focus on the structure of the layers and on the interactions among them,
abstracting from the considered case study.
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4.2.1. Intra-layer architecture

Figure 3: Intra-layer.

Each layer is a component having the structure illus-
trated in Fig. 3. Its main constituents are: knowledge (K),
effects (E), rules (R) and managed component (M). Some
of them are intentionally on the boundary of the component,
since they are part of its interface: knowledge and effects
act respectively as input and output interfaces, while rules
correspond to the component’s control interface. In fact we
will consider the rules R as the control data of a layer.

The managed component is a lower-level layer having
the same structure: clearly, this part is absent in the innermost layer. The
knowledge represents the information available in the layer. It can contain data
that represent the internal state of the component or assumptions about the
component’s surrounding environment. The effects are the actions that the
component is willing to perform on its enclosing context. The rules determine
which effects are generated on the basis of the knowledge and of the interaction
with the managed component. Typical rules update the knowledge of the
managed component, execute it and collect its effects. In this case the layer
acts as a sort of interpreter. In other cases rules can act upon the rules of the
managed component, modifying them: since such rules are control data, the rules
modifying them are adaptation rules according to our conceptual framework (see
§3).

4.2.2. Inter-layer architecture

Layers are organized hierarchically: each one contains its knowledge, effects,
rules and, in addition, the managed underlying layer. An example with three
layers is depicted in the leftmost diagram of Fig. 4. Of course, the architecture
does not impose any number of layers. The outermost layer interacts with
the environment: its knowledge represents the perception that the adaptive
component has of the environment, while its effects represent the actions actually
performed by the component. Each layer elaborates its knowledge and propagates
it to the lower one, if any. In general, while descending the hierarchy, the
knowledge becomes simpler, and the generated effects more elementary. Similarly
to layered operating systems, each layer builds on simpler functionalities of the
lower one to compute more complex operations.

The diagram in the middle of Fig. 4 shows the control and data flow of
ordinary behaviors (without adaptations). Knowledge is propagated down to
the core (layer 0) and the effects are collected up to the surface (layer 2). This
flow of information is governed by the rules of each layer. Knowledge and effects
are subject to modifications before each propagation. For example, layer 2 may
decide to propagate to layer 1 only part of the knowledge perceived from the
environment, possibly after pre-processing it. Symmetrically, layer 1 may decide
to filter part of the effects generated by layer 0 before the propagation to layer
2, for example discarding all those violating some given constraints.

The rightmost diagram of Fig. 4 corresponds to a phase of adaptation. Here
the outermost layer triggers an adaptation at layer 1. This can be due to some
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Figure 4: Inter-layer architecture (left), ordinary flow (center), adaptation flow (right).

conditions on the knowledge of layer 2 or to the status of the managed component
(layer 1). The result is that the rules of layer 2 change (among other things) the
rules of layer 1 (as shown by the arrow crossing the corresponding R attribute).

4.3. Generic Architecture and Adaptation Frameworks

Let us relate the generic multi-layered architecture just presented with some
general frameworks used for modelling adaptive systems. As suggested in §3,
we identified explicitly the control data of each layer, namely, its set of rules:
this will allow us to distinguish the adaptation behaviours from the standard
computations of the system.

Our architecture is a simplified version of the RRD of [17] where each layer
is a single object rather than a collection of objects. The interaction between
a layer and its managed component is realized both with logical reflection
and with access to shared data (knowledge and effects). Further, there is a
clear correspondence between the reflective tower of the RRD model and the
adaptation tower discussed in §3, as depicted in Fig. 5, showing that the rules of
each layer implement the MAPE-K control loop on the lower layer.

The generic architecture imposes the encapsulation of all components of the
tower. This offers several advantages: (i) management is hierarchical (e.g. self-
or mutually-managing layers are excluded); and (ii) at each level in the hierarchy
the adaptation logic of the underlying layer is designed separately from the
execution of basic functionalities, that are delegated to lower layers. In the next
section we discuss in particular how we exploited this last point to facilitate the
development of self-assembly strategies by resorting to predefined behaviours to
be (re)used as building blocks.

5. Concrete Architecture and Case Study Implementation

This section instantiates in Maude the generic architecture shown in §4.2 to
scenarios involving s-bots (§5.1), presenting also some significant implementative
details (§5.2). We consider here as running case study the basic self-assembly
response strategy discussed in §2 (see Fig. 1), while in §6 we see how other
scenarios and strategies can be easily designed and implemented.
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Figure 5: Architecture as an instance of the framework.

5.1. Instantiation of the Methodology to the Robotic Case Study

The concrete architecture of our case study has three layers (see. Fig. 5,
top-right). Indeed, even if the informal description of [5] does not explicitly
mention those layers, the way the s-bot behavior and strategies are described
suggests the following three layers.

Layer 0 (kernel). This layer models the core functionalities of an s-bot (see [5,
§3]). The rules implement basic movements and actioning of the gripper, and are
hence given once, independently on the modelled strategy or scenario. Layer 0
corresponds to what some authors call hardware abstraction layer (see e.g. [28]).

Layer 1 (basic control). This layer represents the basic controller managing the
core functionalities of the s-bot, according to the context. The controller may
allow to move only in some directions (e.g. towards a light source) or to search
for an s-bot to grab. This layer corresponds to the individual states of state
machines modelling the self-assembly strategies, like the one of Fig. 1 (see [5, §5
and §7]).

Layer 2 (adaptation). This is the layer of the adaptation manager, which reacts to
changes in the environment by activating a suitable basic controller. Intuitively,
this layer corresponds to an entire state machine modelling a self-assembly
strategy (e.g. Fig. 1), and it takes care of the transitions between its states. This
is done by constantly monitoring the environment and the managed component
M (layer 1), and by executing adaptation phases when needed, which means
changing the rules of M . More details are provided in §5.2. Other strategies can
be implemented by modifying this layer only, as we will show in §6 for variants
of the basic self-assembly response strategy, and for strategies to handle other
scenarios.
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Name Brief description
IDLE An idle s-bot: it neither moves, nor grabs.

MOVE TOWARDS LIGHT The s-bot moves towards the light source if possible,
otherwise it stays idle if hindered.

MOVE PREFERABLY The s-bot moves towards the light source if possible,
TOWARDS LIGHT otherwise it moves in one of the directions without

obstacles (e.g. walls, s-bots)

MOVE AWAY FROM LIGHT The s-bot retreats away from the light by randomly
choosing one of the free directions opposite to light.

MOVE IN ANY DIRECTION The s-bot navigates in any randomly chosen free
direction.

GRAB ADMISSIBLE LED The s-bot does not move, but grabs a LED with a
grippable color as specified in its knowledge if near
enough. If more than one grippable LED is perceived,
then the one to be grabbed is randomly chosen.

OUTFLANK EFFECT The s-bot navigates, if possible, in a randomly chosen
free direction not opposite to the ones from where
it perceives a given effect, as specified in its knowledge.

Table 1: Some predefined basic controllers for layer 1

The three layers differ in their sets of rules and, of course, in the managed
component, but they share part of the signature for knowledge and effects. In
particular, knowledge includes predicates about properties of the ground (wall,
hole, free), the presence of s-bots in the surrounding (their LED emissions), and
the direction of the light source (the goal). Generable effects include requests
of movements or grabbing of s-bots in adjacent cells (handled by the execution
environment), as well as color emissions towards a direction (i.e. the color emitted
by a LED).

Knowledge and effects are currently implemented as plain sets of predicates.
More sophisticated forms of knowledge representation based on some inference
mechanism (like prolog specifications, epistemic logics, ontologies or constraints)
may be possible but are not necessary in the presented case study.

Of course, other layers could be added to the s-bot architecture. For example,
a third layer could be encharged of a meta-adaptation logic, which triggers an
adaptation of layer 2 by changing the adaptation strategy.

Predefined basic controllers for layer 1. We provide a library of predefined basic
controllers, implementing basic behaviours for layer 1, summarized in Table 1.
They will be used as building blocks in the definition of the strategies. The IDLE

controller implements the trivial behaviour of “idle” s-bots, which do not perform
any action, and is typical of waiting states. Controller MOVE TOWARDS LIGHT

implements the behaviour “move towards a goal light source”, where an s-bot
navigates (if not hindered) towards the direction of the light source. The third
basic controller (MOVE PREFERABLY TOWARDS LIGHT) is similar to the previous one,
but if the directions towards the light source contain obstacles, then movements in
other directions are allowed to try to avoid such obstacles. The fourth controller
(MOVE AWAY FROM LIGHT) allows to retract away from the light source (i.e. to
move in directions opposite to the ones from which the light source is perceived),
while MOVE IN ANY DIRECTION allows to randomly move in any direction not
containing obstacles. The behaviour “grip a LED of a given color” (controller
GRAB ADMISSIBLE LED) prohibits movements but allows to grip other s-bots (or
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Figure 6: Basic self-assembly response strategy implemented with predefined controllers.

other sources of color emissions) if near enough, in order to form ensembles.
The set of grippable colors has to be explicitly specified in the knowledge of the
s-bot (e.g. by providing grippableLeds(red) we allow s-bots to grip red LED
emissions).

The last controller OUTFLANK EFFECT implements a behaviour that allows
to outflank a given color emission, i.e. to move without departing from the
perceived effect. It can be used in scenarios where constraints are imposed on the
morphology of the ensemble, like for two of the strategies presented in §6, where
we are interested in creating line-shaped ensembles. In these cases, a suitable
color can be used to inform an s-bot that it is near to the ensemble, but it has
to reach the tail of the line before connecting to it. Hence this controller can be
used to drive an s-bot towards a given part of an ensemble. As for the case of
the grippable colors, the set of effects to be outflanked has to be specified in the
knowledge of the s-bot (e.g. by providing outflank(magenta) we allow s-bots
to outflank magenta LED emissions).

The controllers just described were used to implement the states of the
state machines modelling the self-assembly strategies. For example, the state
IP (Independent Phototaxis) of Fig. 1 is governed by the basic controller
MOVE PREFERABLY TOWARDS LIGHT, while state SA (Self Assemble) is governed
by GRAB ADMISSIBLE LED. More in detail, the correspondence between the states
of the basic self-assembly response strategy of Fig. 1 and our basic controllers
(Table 1) is depicted in Fig. 6. Further details are provided in §5.2.

In §6 we will show how the available controllers facilitate the implementation
of other strategies, both for the same hole-crossing scenario and for others. In
fact it will be sufficient to specify the transitions among states according to the
strategy’s logic.

14



Execution environment. The execution environment of the s-bots is realized by
a discrete-event simulator which consists of three parts: the orchestrator, the
scheduler and the arena.

The orchestrator takes care of the actual execution of the actions required to
manage the effects generated by an s-bot. For instance, it decides if an s-bot
can actually move towards the direction it is willing to move (indicated by the
effects emitted by the outermost layer of a component).

The scheduler, implemented as an ordinary discrete-event scheduler, activates
the scheduled events, allowing an s-bot or the orchestrator to perform its next
action. Intuitively, the emission of an effect e by the outermost layer of a
component c causes the scheduling of the event “execute effect e on c at time
t” for the orchestrator. Symmetrically, the handling by the orchestrator of an
effect previously generated by a component c induces the scheduling of an event
“generate next effect at time t′” for c.

Finally, the arena defines the scenario where s-bots run. We abstracted arenas
in discrete grids, very much like a chessboard. Each grid’s cell has different
attributes regarding for example the presence of holes or light sources. A cell
may also contain in its attributes (at most) one s-bot, meaning that the s-bot
is in that position of the arena. Each s-bot can move to an adjacent cell, or
perform an action (i.e. grip) in eight possible directions (up, down, left, right
and the four diagonals).

5.2. Implementation Details

In this section we detail the implementation of MESSI (Maude Ensemble
Strategies Simulator and Inquirer) [18], a Maude instantiation of our methodology
which allows: (i) to model self-assembly strategies, (ii) to debug them via
animations produced from discrete-event simulations, and (iii) to statistically
estimate their quantitative properties relying on the parallel statistical model
checker PVeStA.

5.2.1. On the structure of adaptive components

Our implementation, similarly to the systems described in [17], relies on
Maude’s object-like signature (see [2, Chapter 8]). Such signature allows to
model concurrent systems as configurations (collections) of objects, where each
object has an identifier, a class and a set of attributes. Intuitively, < oid : cid

| attr1, attr2 > is an object with identifier oid, class cid and two attributes
attr1, attr2.

Each layer is implemented as an object with attributes for knowledge (K),
effects (E), rules (R) and managed component (M): the first two are plain sets
of predicates, the third one is a meta-representation of a Maude module, and
the fourth one is an object. Three classes are introduced for the different layers,
namely AC0, AC1 and AC2. For design choice, the objects implementing the layers
of an s-bot have the same identifier: in terms of [17] we use homunculus objects.

Therefore, a sample s-bot can have the overall structure of Listing 1.
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Listing 1: A sample s-bot specification

1 < c(0) : AC2 | K: gripper(open) on(right ,none) towards(right ,light) ...,
2 E: emitt(up ,Green) go(right) ...,
3 R: mod_is_sorts_._____endm ,
4 M: < c(0) : AC1 | K: ..., E: ..., R: ...,
5 M: < c(0) : AC0 | K:..., E:..., R:... >
6 >
7 >

5.2.2. On the structure of the simulator

The arena is implemented as a multi-set of objects of class Cell, each of
which may contain in the attributes (at most) one object of class AC2 representing
an s-bot. The orchestrator implements the movement of an s-bot by passing it
from the cell in which it is stored to one of the eight adjacent cells. This way
the s-bots have no information about the global environment or their current
position, but only about the contiguous cells and the direction to take to reach
the goal.

Intuitively, the cell encapsulating an s-bot may be seen as a layer wrapping
objects of class AC2. In fact, it is responsible of updating its knowledge, of taking
care of its effects (e.g. the cell must expose the status of s-bot’s LEDs), and of
handling the interactions between the s-bot and the scheduler.

5.2.3. Rules of adaptive components

The behaviour of each layer is specified by the rules contained in its R

attribute, which is a term of sort Module consisting of a meta-representation of a
Maude module. This solution facilitates the implementation of the behaviour of
components as ordinary Maude specifications and their treatment for execution
(by resorting to meta-level rewriting features), monitoring and adaptation (by
examining and modifying the meta-representation of modules). In fact, on one
hand a basic controlling strategy can be implemented by a single generic meta-
rule to self-execute an object: the object with rules R proceeds by executing
R in its meta-representation. On the other hand, more sophisticated control
strategies can be realized: since rules are exposed to the outer component,
these can execute or manipulate them, and analyse the outcome. This way, the
wrapping component can act as a planner or decision-taker.

In order to give an idea on how the flows of execution and information of
Fig. 4 are actually implemented, we present one sample rule for each of the three
layers. For the sake of presentation we abstract from irrelevant details.

Layer 0. This layer implements the core functionalities of s-bots. For example,
the rule of Listing 2 computes the set of directions towards which an s-bot can
move.

A rule, like admissibleMovements, can be applied to a Maude term t if its
left-hand side (LHS) (here the object < oid : AC0 | ... > preceding =>)
matches a subterm of t with some matching substitution σ, and in this case the
application consists of replacing the matched sub-term with the term obtained
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Listing 2: A rule of layer 0 to compute the set of free directions

1 rl [admissibleMovements] :
2 < oid : AC0 | K: 1Step k0, E: e0 , A0 >
3 => < oid : AC0 | K: k0, E: e0 canMoveTo(freeDirs(k0)), A0 > .

Listing 3: A rule of layer 1 to compute a direction towards which to move

1 crl [MovePreferablyTowardsLight ]:
2 < oid : AC1 | K: 1Step k1, E: e1 ,
3 M: < oid : AC0 | K: k0 , E: e0 , R: m0 , A0 >, A1 >
4 => < oid : AC1 | K: k1, E: e1 go(dir),
5 M: < oid : AC0 | K: k0b , E: e0, R: m0, A0b >, A1 >
6 if < oid : AC0 | K: k0b , E: e0 canMoveTo(freeDirs), A0b > := execute(
7 < oid : AC0 | K: 1Step update1To0(k1,k0), E: e0, A0 >, m0)
8 /\ preferredDirs := intersection(freeDirs , dirsToLight(k1))
9 /\ dir := uniformlyChooseDir(preferredDirs , freeDirs) .

by applying σ to the right-hand side, i.e. the object following =>. We shall also
use Maude equations: they have higher priority than rules, meaning that rules
are applied only to terms in normal form with respect to the equations.

Rule admissibleMovements allows to rewrite an object of class AC0 to itself,
enriching its effects with the equational evaluation of canMoveTo(freeDirs(k0)).
Notice that the constant 1Step is consumed by the application of the rule:
intuitively, it is a token used to inhibit further applications of the rule, obtaining
a one-step reduction. The equations will reduce freeDirs(k0) to the set of
directions containing each dir appearing in a fact on(dir,content) of k0 such
that content does not contain obstacles. Hence, freeDirs is reduced to the
set of directions towards which the s-bot can move, i.e. those not containing
obstacles. Operator canMoveTo instead is a constructor, hence it cannot be
reduced.

Layer 1. Objects of class AC1 correspond to components of layer 1, implementing
the basic controllers of Table 1 which correspond to the individual states of the
state machine of Fig. 1. Rules of this layer can execute the component of the
lower level (an object of class AC0) providing additional knowledge to it, and
then elaborating the resulting effects. The rule of Listing 3 implements (part of)
the logic of state IP, computing the desired direction towards which to move.

Listing 3 shows a conditional rule, as evident from the keyword crl and the
if clause following the RHS in line 6. Thus, it can be applied to a matched
sub-term only if its (firing) condition is satisfied under the matching. In this case
the condition is the conjunction (/\) of three sub-conditions, each consisting
of a sort of assignment. The sub-conditions are evaluated sequentially, and the
LHS of symbol := will be bound in the rest of the rule to the term obtained by
reducing its RHS.

The operator execute(obj,m) makes use of Maude’s meta-level functionali-
ties to execute object obj via the rules meta-represented in m. More precisely, in
rule MovePreferablyTowardsLight, the operator execute will apply a single
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Listing 4: A rule of layer 2 to compute adaptation and execution phases of layer 1

1 crl [adaptAndExecute ]:
2 < oid : AC2 | K: nextEffect k2 , E: e2 ,
3 M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 >
4 => < oid : AC2 | K: k2A , E: e2A schedule(event(oid ,effect)),
5 M: < oid : AC1 | K: k1b , E: e1A , R: m1A , A1b >, A2A >
6 if < oid : AC2 | K: k2A , E: e2A ,
7 M: < oid : AC1 | K: k1A , E: e1A , R: m1A , A1A >, A2A > := adapt(
8 < oid : AC2 | K: k2 , E: e2 ,
9 M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 > )

10 /\ < oid : AC1 | K: k1b , E: e1A effect , A1b > := execute(
11 < oid : AC1 | K: 1Step update2To1(k2A ,k1A), E: e1A , A1A >, m1A ) .

rule of module m0 to the managed component < oid : AC0 ... >, after having
updated its knowledge. In fact the operation update1To0(k1,k0) implements
a (controlled) propagation of the knowledge from layer 1 to layer 0, filtering
k1 before updating k0 (for example, information about the surrounding cells is
propagated, but information about the goal is discarded).

The assignment of the first sub-condition also binds freeDirs to the directions
towards which the managed component can move. This is used in the second
sub-condition to compute the intersection between the directions in freeDirs

and those towards the light, evaluated reducing dirsToLight(k1). The resulting
set of directions is bound to preferredDirs. Finally, in the third sub-condition,
dir is bound to a direction randomly chosen from preferredDirs, or from
freeDirs if the first set is empty. Comparing the LHS and the RHS, one sees
that the overall effect of rule MovePreferablyTowardsLight is the production
of a new effect at layer 1, go(dir), and the update of the knowledge of the
managed component of layer 0.

Notice that the rules stored in the attributes of layer 0 (m0) are not affected by
the rule: in fact in our implementation rules of layer 1 never trigger an adaptation
phase on layer 0. This is just a design choice, as clearly our architecture does
not forbid it. The idea is that the hardware abstraction layer remains constant
since in the considered scenarios the hardware of the s-bots does not change.

Layer 2. A component of this layer corresponds to an entire state machine
of a self-assembly strategy (e.g. Fig. 1). It monitors the environment, and
triggers single transitions of the managed component (layer 1), like movements
and gripper actions. Transitions of the managed component are performed by
executing it with the rules stored in its attribute R.

If necessary, this layer also enforces adaptation phases, that is transitions
from the current state of the (finite state machine of the) self-assembly strategy
to a new one, by changing the rules of the managed component, and the colors of
the LEDs. As discussed later, by changing the rules of the managed component
we mean that the layer 2 substitutes the attribute R of layer 1 with a new one.

Listing 4 contains the main rule governing this layer. The rule is triggered
by the token nextEffect (line 2), generated by the scheduler and propagated
to the s-bot by the cell containing it. The execution of the rule consists of

18



Listing 5: One of the equations implementing the strategy of Fig. 6 (AGG → SA)

1 ceq [AggToSA ]:
2 adapt(< oid2 : AC2 | K: state(AGG) k2 , E: e2 ,
3 M: < oid1 : AC1 | R: m1 , E: e1 , A1 > , A2 >)
4 = adapt(< oid2 : AC2 | K: state(SA) k2, E: setAllLEDs(green),
5 M: < oid1 : AC1 | R: m1b , E: none , A1 > , A2 >)
6 if seeEffect(led(red),k2)
7 /\ m1b := upModule(’GRAB_ADMISSIBLE_LED ,false) .

Listing 6: The reduction of adapt in case no adaptation is needed

1 eq [noAdaptationNeeded ]: adapt(obj) = obj [ owise ] .

an adaptation phase (lines 6-9) followed by an execution phase (lines 10-11),
both on the managed component. The two phases are triggered by the two
sub-conditions of the rule.

The adaptation phase is computed by the operation adapt, using the knowl-
edge of layer 2 (k2) to enact a transition to a new state of the strategy, if
necessary. Among the ones defining the operation, the equation exemplified
in Listing 5 encodes the transition of Fig. 1 from state Aggregate to state
Self Assemble, labeled with Close to red.

The conditional equation states that if an s-bot in state Aggregate sees
in its neighborhood an s-bot with red LEDs on, then it must pass to state
Self Assemble and turn on its green LEDs. Also the rules of the managed compo-
nent are changed: the new module m1b is obtained with the operation upModule,
producing the meta-representation of the Maude module whose name is passed as
first parameter. In this case the relevant module is called GRAB ADMISSIBLE LED,
and it contains the rules defining the controller for layer 1 with the same name,
which is used in state Self Assemble as shown in Fig. 6. Notice also how, in
line 4, we intentionally keep the operation adapt. This allows to consecutively
compute more than one adaptation phase if necessary. Termination is of course
guaranteed.

It is now easy to understand that in order to implement a self-assembly
strategy we only have to specify an equation like the one in Listing 5 for every
transition in the corresponding state machine, plus the one in Listing 6 for the
case in which no adaptation is required, where owise is a special attribute that
tells the Maude interpreter to apply the equation only if none of the others can
be applied.

It is worth to remark that this solution works for those strategies that are
free of non-determinism. In fact the absence of non-determinism allows us
to implement adaptation strategy as a function (adapt), defined by a set of
confluent and terminating equations. The general case of non-deterministic
strategies can be easily handled by lifting the function adapt to sets of possible
future states and then implementing a function that takes the decision by solving
the non-determinism on the basis of suitable criteria (e.g. randomly or using

19



Listing 7: Some of the predefined basic controllers of Table 1

1 mod IDLE is
2 pr AC1 .
3 endm
4
5 mod MOVE_PREFERABLY_TOWARDS_LIGHT is
6 pr AC1 .
7
8 var k1 k0 k0b e1 e0 e0b : Config . var m0 : Module .
9 vars A0 A0b A1 : AttributeSet . var oid : Oid .

10 var freeDirs preferredDirs : Set{Direction} . var dir : Direction .
11
12 crl [MovePreferablyTowardsLight ]:
13 < oid : AC1 | K: 1Step k1, E: e1 ,
14 M: < oid : AC0 | K: k0 , E: e0 , R: m0 , A0 >, A1 >
15 => < oid : AC1 | K: k1, E: e1 go(dir),
16 M: < oid : AC0 | K: k0b , E: e0, R: m0, A0b >, A1 >
17 if < oid : AC0 | K: k0b , E: e0 canMoveTo(freeDirs), A0b > := execute(
18 < oid : AC0 | K: 1Step update1To0(k1,k0), E: e0, A0 >, m0)
19 /\ preferredDirs := intersection(freeDirs , dirsToLight(k1))
20 /\ dir := uniformlyChooseDir(preferredDirs , freeDirs) .
21 endm
22
23 mod GRAB_ADMISSIBLE_LED is
24 pr AC1 .
25
26 var k1 k0 k0b e1 e0 e0b : Config . var m0 : Module .
27 vars A0 A0b A1 : AttributeSet . var oid : Oid .
28 var dirsWithEmiss : Set{Direction} . var dir : Direction .
29
30 crl [gripColorEmission] :
31 < oid : AC1 | K: 1Step k1 , E: e1,
32 M: < oid : AC0 | K: k0 , E: e0 , R: m0, A0 > , A1 >
33 => < oid : AC1 | K: k1, E: insertEffect(attach(dir),e1),
34 M: < oid : AC0 | K: k0b , E: e0b , R: m0 , A0b > , A1 >
35 if < oid : AC0 | K: k0b , E: e0b canAttachTo(dirsWithEmiss), A0b > :=

execute(< oid0 : AC0 | K: 1Step update1To0(k1,k0), E: e0, A0 > , m0)
36 /\ dirsWithEmiss =/= empty
37 /\ dir := uniformlyChooseDir(dirsWithEmiss , | dirsWithEmiss |) .
38 endm

preference functions).

Coming back to the rule of Listing 4, once the adaptation phase is concluded,
the second sub-condition of rule adaptAndExecute takes care of the one-step ex-
ecution of the (possibly adapted) managed component, using operation execute.
Finally, the effects generated by layer 1 are wrapped in the constructors event

and schedule, and are added to the effects of layer 2, so that the cell containing
the s-bot will propagate it to the scheduler.

5.2.4. Implementation of the predefined basic controllers for layer 1

In this section we discuss in more detail the implementation of our predefined
basic controllers summarized in Table 1. Each of these controllers has been
defined in its own Maude module (e.g. the controller GRAB ADMISSIBLE LED is
defined in a module mod GRAB ADMISSIBLE LED is ... endm).

Listing 7 exemplifies the implementation of some of the controllers. In lines
1-3 we find the simplest one, IDLE, which as expected has a trivial code. Lines 5
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Figure 7: An assembly strategy to form ensembles shaped as lines.

to 21 show the code of controller MOVE PREFERABLY TOWARDS LIGHT: we already
discussed its rule (also shown in Listing 3), but the code shows the syntax of
Maude modules and the needed variable declarations. Finally, lines 23 to 37

show the code of the controller GRAB ADMISSIBLE LED. This controller is typical
of states in which the s-bot does not perform movements, but tries to grip
other s-bots. In particular, in line 35 we first execute the component of layer 0,
providing to it the 1Step token, and updating its knowledge with the (filtered
part of the) one of layer 1. In this way we obtain dirsWithEmiss, that is the set
of directions corresponding to the surrounding cells from which it is possible to
sense a given color emission (in this case red, which is specified in the knowledge
of layer 0). Then, if this set is not empty (line 36), in line 37 we randomly select
one of the directions. Finally, in line 33 this direction is inserted in the effects of
layer 1, effect which will be propagated up to the scheduler by layer 2 and the
cell containing the s-bot.

6. Methodology Validation: Design of Self-Assembly Strategies

In this section we demonstrate the wide applicability and accessibility of our
general architecture, and its instantiation MESSI, by providing some examples
of implemented self-assembly strategies for several scenarios. The aim of this
section is not to propose new self-assembly strategies, but rather to show the
versatility of our framework and methodology. In particular, we show how it is
possible to exploit the predefined basic controllers of Table 1 in the definition
of self-assembly strategies: since the basic behaviours are already implemented,
only the state transitions (i.e. adaptations) of the strategies have to be defined.

We will first present the strategy depicted in Fig. 7, having the goal of forming
line-shaped ensembles (a typical example of morphogenesis problems [30]). Next
we will consider two variations of the strategy for the hole-crossing scenario, and
a strategy for collective healing scenarios, where groups of s-bots cooperate to
fix broken ones.
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6.1. A Self-Assembly Strategy for Line-Forming Scenarios

There exists a wide literature regarding morphogenesis (e.g. [30, 31, 32, 33, 34,
35, 36]), i.e. where robots (autonomously) self-assemble in given morphologies
in order to solve specific tasks.

In this section we illustrate a simple self-assembly strategy, depicted in Fig. 7,
to accomplish the task of forming line-shaped ensembles. Intuitively, in this
scenario there are no obstacles around, and three colors are used to guide the
composition of ensembles: the green color stands for “the s-bot wants to grip
another s-bot”, red stands for “the s-bot wants to be grabbed” and magenta stands
for “the s-bot is part of an ensemble, but other s-bots should not connect to this
ensemble here, as they should search for the tail of the line”.

The s-bots are initialized in state Aggregate, randomly moving in any
direction (controller MOVE IN ANY DIRECTION). If a red color emission is sensed,
then the s-bot grabs it by changing its status to Self Assemble with controller
GRAB ADMISSIBLE LED and keeping the LEDs green. If the gripping action
succeeds, the s-bot has to wait for other s-bots to grab it, hence it changes its
status to Wait and sets the IDLE controller. Interestingly, only the LED opposite
to the direction of the gripper is set to red, while the others are set to magenta:
this will force the generation of ensembles shaped as lines. Noteworthy, if an
s-bot in state Aggregate does not see any red color emission, but sees a magenta
one, then it knows that it is near to an ensemble and that it has to search for
the right point to grip it (the tail of the line). This behaviour is offered by
the basic controller OUTFLANK EFFECT: it allows to move in randomly chosen
directions, as long as the movement allows to remain near to the ensemble (i.e.
a magenta color emission). Looking at Fig. 7, the transition outgoing from state
Aggregate, and labeled with “See magenta, and not see red” goes in state
Search Tail, with controller OUTFLANK EFFECT.

If an s-bot in state Self assembly does not perceive any assemblies anymore
(i.e. neither red nor magenta color emissions), then the gripping action cannot
be accomplished, and the robot reverts in state Aggregate. If instead a magenta
color emission is still perceived (but not a red one), then the s-bot moves in
state Search Tail to search for the tail of the assembly.

Finally, the last outgoing transition from Aggregate regards the case in
which the s-bot does not perceive any ensemble (red or magenta color emissions),
while it perceives single s-bots (green color emissions). Then, with probability
Prob(seed) the s-bot becomes the seed of a new ensemble, and waits for other
s-bots to grip it: it changes its state to Assembly Seed with controller IDLE.
Noteworthy, it sets a randomly selected LED to red (which other s-bots are
allowed to grab) while the others are setted to magenta. The strategy has a
last transition from state Assembly Seed to state Aggregate with firing condi-
tion “(timeout or see red or see magenta) and not gripped”. The idea
is that, potentially, any s-bot could become the seed of its own ensemble, a case
which is clearly to be avoided. Then, in order to limit the number of ensembles,
an s-bot in state Assembly Seed can revert to state Aggregate if it understands
that the choice of generating a new ensemble was unfortunate. Namely, this
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Figure 8: A variant of the basic self-assembly response strategy to deal with bizarre behaviours.

transition is allowed when the s-bot has not been connected, and either a fixed
amount of time elapsed (timeout), or another ensemble is perceived (see red

or see magenta).

6.2. Self-Assembly Strategies for Hole-Crossing Scenarios

In this section we discuss two variants of the basic self-assembly response
strategy of Fig. 6. The first one, depicted in Fig. 8, is just a mild variation
where we enrich some of the firing conditions of its transitions, and add a new
transition from state Self Assemble to state Aggregate. The differences with
respect to the original strategy are highlighted with red color and underscore.
Intuitively, this variant solves some bizarre behaviours that we found in the
basic self-assembly response strategy. A brief description of this variant and the
motivations for its proposal are given in §7.1.

The strategy of Fig. 9 is instead a major variation. It is obtained composing
our variant of the basic self-assembly response strategy (Fig. 8) with the one
depicted in Fig. 7 for the line-forming scenario: s-bots self-assemble in lines
to cross the hole. As argued in [5], the idea is that if s-bots compose in lines,
then there are more chances to succeed in crossing obstacles (i.e. holes or hills).
This is a quite intuitive reasoning which we evaluate in §7.2 by comparing
the performances of the three self-assembly strategies (Fig. 6, 8, 9) for the
hole-crossing scenario.

As for the case of the line-forming strategy (Fig. 7), the red color stands for
I want to be gripped, green stands for I want to grip an ensemble, and magenta
stands for I am part of an ensemble, but this is not the right position to grip it.

More in detail, the first two transitions (i.e. from state IP to AP, and from
AP to AGG) are taken from the strategy of Fig. 8, the only difference is that
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Figure 9: A variant of the basic self-assembly response strategy where s-bots assemble in lines.

now a further LED emission is considered (magenta): initially, an s-bot nav-
igates independently towards the goal light source avoiding obstacles (state
Independent Phototaxis, controller MOVE PREFERABLY TOWARDS LIGHT), and
changes to state Anti Phototaxis with controller MOVE AWAY FROM LIGHT if it
perceives a hole or a LED emission of color green, red, or magenta. After the
expiration of a timeout, the s-bot changes its state to Aggregate with controller
MOVE IN ANY DIRECTION to search for grippable s-bots. Three cases can then
arise.

In the first case a red LED emission is perceived, then the s-bot changes to
state Self Assembly with controller GRAB ADMISSIBLE LED to grip the perceived
assembly. Once the gripping action completes, the s-bot changes its state to
Wait with controller IDLE, turning all its LEDs to magenta, except for the one
opposite to the gripper, which represents the new tail of the line, and that is set
to red to allow for other s-bots to grab it.

In the second case a magenta LED emission is perceived, and neither a red
LED nor a hole are perceived. In this case the state of the s-bot is changed
to Search Grippable LED, with controller OUTFLANK EFFECT. Intuitively, the
s-bot has perceived an assembly (i.e. the magenta emission), however it has to
search for the correct point of the assembly to grip it, i.e. a red LED emission
denoting the tail of the assembly. This is exactly the behaviour offered by the
controller OUTFLANK EFFECT. Once a red LED emission is perceived, then, as
in the previous case, the s-bot changes to state Self Assembly. If instead a
hole is perceived, then, in order to avoid to fall in it, the state of the s-bot is
changed back to Anti Phototaxis. Finally, if for some reason the assembly is
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Listing 8: Managing of LEDs in the transition from Aggregate to Assembly Seed of the
line-forming cross hole strategy

1 E: setLEDs(oppositeDirections(dirsToLight(K2)),red)
2 setOtherLEDs(oppositeDirections(dirsToLight(K2)),magenta)

not perceived anymore, then the state of the s-bot is reverted to Aggregate.
In the third case, neither assemblies nor holes are perceived, but only single

s-bots (green color emissions). As for the basic self-assembly response strategy,
with probability Prob(seed) the s-bot becomes the seed of a new assembly (i.e.
the head of the line) by changing its state in Assembly Seed, with controller
IDLE. However, differently from the basic self-assembly response strategy, by
resorting to the color magenta the seed s-bot influences the shape of the future
assembly allowing to be gripped only in the directions opposite to the ones of
the light source. This is depicted in state AS of Fig. 9: the LEDs corresponding
to the directions opposite to the target light source are changed to red, while the
others to magenta. Without giving too many details, the LEDs are setted to red
and magenta with the equation of adapt (similarly to the one given in Listing 5)
corresponding to the transition from state Aggregate to state Assembly Seed

as schematized in Listing 8. Now, after the expiration of a timeout, if the
s-bot has been gripped it changes to state Wait with controller IDLE, and sets
all its LEDs to magenta. Next, if no green emissions are perceived it changes
in state Connected Phototaxis and collectively navigates (with its assembly)
towards the light source (controller MOVE TOWARDS LIGHT). As done in the basic
self-assembly response strategy, in the case in which no s-bot grips an s-bot in
state Assembly Seed before the expiration of a timeout, or if other assemblies
are perceived (a red or magenta emission), then it means that the choice of
becoming the seed of a new assembly was unfortunate, and hence the s-bot
changes back to state Aggregate.

6.3. A Self-Assembly Strategy for Collective Healing Scenarios

We discuss here a collective healing scenario, where groups of agents cooperate
to repair malfunctioning ones. The strategy of Fig. 10 is part of the outcome of the
work done by a group of three students during the International AWARENESS
summer school on Self-Awareness in Autonomic Computing Systems (AWASS
2012) 2, under the supervision of the fifth author. It is worth noticing that
none of the students were expert in robotics, self-assembly behaviours or swarm
computing. This shows the easiness of use of our framework.

The scenario was inspired by one of the invited talks of the summer school [37],
that described how an organism reacts to a tumor cell: it gets surrounded by
many cells, building a sort of shield around it, aimed at healing it. Similarly,
we thought of a scenario where there is a virus (i.e. a malfunctioning battery

2http://www.aware-project.eu/awareness-training/awass-2012/
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Figure 10: A self-assembly strategy for collective healing scenarios.

cell). With a certain probability, an s-bot with a malfunctioning battery may
be unable to have enough energy to move. Then, in order to repair it, eight
s-bots have to surround him and recharge it. As soon as the s-bot is charged,
the s-bots disassemble. However, recharging the malfunctioning battery may
damage other batteries (from the s-bots that performed the recharge operation).

For easiness of presentation, rather than discussing in detail the strategy, we
exemplify it commenting a sample execution. Fig. 11 shows six relevant states of a
discrete-event simulation of eleven s-bots executing the collective healing strategy
of Fig. 10. Namely, top-left depicts a broken s-bot, i.e. the one in the middle
with label BB (BrokenBot) with red LEDs and controller IDLE, while the other
s-bots are randomly moving in the arena (controller MOVE IN ANY DIRECTION)
in state Aggregate. After a while, the s-bots notice the broken s-bot, change
their status to Self Assembly with controller GRAB ADMISSIBLE LED and start
to assembly to it in order to completely surround it (Fig. 11, top-middle).

Like for the line-forming scenario, the color magenta is used to drive the
generation of the assembly: as soon as an s-bot assembles a broken one, it
changes its LEDs to magenta, in order to signal the presence of an ensemble
and sets its controller to IDLE. When an s-bot in status Aggregate perceives a
magenta LED emission, it knows that it is near to a broken s-bot, and hence
changes its status to Search Broken Bot and search the broken s-bot thanks to
the controller OUTFLANK EFFECT.

Notice how, by design choice, an assembled s-bot is either in state GWT

(Generate Wait Token) if it assembled the broken s-bot from the top-right
position, or in state WT (Wait Token). In fact, the idea is that we require to
start healing an s-bot only when the ensemble has been completed, for example
this may be reasonable if the broken s-bot can be healed only when all the
eight s-bots help it, and each s-bot has to minimize the healing time, since it
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Figure 11: Six states of a simulation of the collective healing scenario.

may be highly energy consuming. For this reason we developed a simple token-
based decentralized protocol to know when a broken s-bot has been completely
surrounded: the s-bot in state GWT generates a token (a blue LED), which is
then propagated clockwise (Fig. 11, top-right) by the s-bots in state Wait Token

which change to status Propagate Token (either PT1 or PT2 depending on the
direction from which the token is received). Clearly, once the s-bot in state GWT

receives the token back, it knows that the ensemble is complete, and it can hence
begin to irradiate with yellow light the broken s-bot (status Self Healing). The
irradiation is perceived by its neighbour, which consequently changes to status
Self Healing and turns on its yellow LEDs, and so on (Fig. 11, bottom-left).

As soon as the broken s-bot perceives a yellow light emission from all the eight
directions, it knows it has been charged and changes back to status Aggregate

(Fig. 11, bottom-middle). Finally, the s-bots disassemble from the healed s-bot.
Eventually, the battery of some of these s-bots may be damaged, depicted as an
s-bot with red body (Fig. 11, bottom-right). After a while, the malfunctioning
battery will break the affected s-bot, and the strategy will start again.

The complete video of the described simulation is available in the MESSI
website [18].

7. Methodology Validation: Analysis of Self-Assembly Strategies

In this section we describe the analysis activities that we performed exploiting
our framework MESSI [18]. The analysis of self-assembly strategies were carried
out in two phases: (§7.1) discrete event simulations; and (§7.2) statistical model
checking. The rationale is the following.

Considering our experience in modelling the basic self-assembly response
strategy, in the early development phases we were mainly concentrated on
performing single simulations that were informally analyzed by observing the
behavior of the assemblies in the automatically generated animations. This can
be considered as a sort of debugging phase.
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Figure 12: Three states of a simulation: initial (left), assembly (middle), final (right).

A couple of trial-and-error iterations (where the model was fixed whenever
some anomalous behavior was spotted) were enough for the model to acquire
sufficient maturity to undergo a more rigorous analysis in terms of model
checking. Ordinary model checking is possible in the Maude framework (via
Maude’s reachability analysis capabilities, or LTL model checker) but it suffers
from the state-space explosion problem, and it is limited to small scenarios and to
qualitative properties. To tackle larger scenarios, and to gain more insights into
the probabilistic model by reasoning about probabilities and quantities rather
than possibilities, we resorted to quantitative model checking techniques, and in
particular to statistical model checking.

We now provide the details of these analysis phases, considering some of the
self-assembly strategies discussed in this paper.

7.1. Simulations

Simulations are performed thanks to the discrete-event simulator mentioned
in §5 along the lines reported in [1, 6, 38]. Valuable help has been obtained
implementing an exporter from Maude Configuration terms to DOT graphs [39]
offering the automatic generation of images from states, and of animations from
images: they have greatly facilitated the debugging of our code.

For example, Fig. 12 illustrates three states of a simulation where s-bots
execute the basic self-assembly response strategy. The initial state (left) consists
of three s-bots (grey circles with small dots on their perimeter) in their initial
state (emitting blue light), a wide hole (the black rectangle) and the goal of the
s-bots, i.e. a light source (the orange circle to the right). After some steps, where
the s-bots execute the self-assembly strategy, two s-bots finally get assembled
(middle of Fig. 12). The assembled s-bots can then safely cross the hole and
reach the goal (right of Fig. 12), while the third one remains abandoned in the
left part of the arena.

While performing such simulations with different scenarios, varying the
location of the goal and number and distribution of the s-bots, and with different
parameters for duration of timeouts and actions, we observed several bizarre
behaviors. For instance, in various simulations we observed some not-assembled
s-bots erroneously believing to be part of an assembly, moving into the hole and
disappearing. In other simulations we instead noticed pairs of s-bots grabbing
each other. These observations triggered the following questions: Is there an
error in our implementation? Is there an error in the strategy defined in [5]?
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Examining carefully the description of the strategy, we discovered that the two
behaviors are indeed not explicitly disallowed in [5] and that they are originated
by the two transitions (see Fig. 1) outgoing from the state Assembly Seed

(willing to be grabbed). The first transition leads to state Wait, triggered by
the expiration of a timeout, while the second one leads to state Aggregate

(willing to grab), triggered by the event See red (i.e. another s-bot willing
to be grabbed). But an s-bot can change from state Assembly Seed to state
Wait even if no other s-bot is attached to it; in this case it can evolve to state
Connected Phototaxis and thus move towards the goal without trying to avoid
the hole. Considering the other transition, once an s-bot i grabs an s-bot j, i
becomes itself “willing to be grabbed” (turning on its red LEDs) to allow other
s-bots to connect to the assembly. But now j can pass from state Assembly Seed

to state Aggregate, where it will try to grab i. Interestingly, we noticed that
the two bizarre behaviors strongly depend on the duration of the timeout: a
short one favors the first behaviour, while a long one favors the second one.

Performing simulations we noticed other bizarre behaviors not forbidden
by the basic self-assembly response strategy, like for example when an s-bot
remains stuck in state Self Assemble. This is due to the fact that no recovery
mechanism is provided for the cases in which an s-bot in state Self Assemble

fails to assemble with another s-bot, for example because the s-bot to be gripped
is not perceived anymore (because it moved away).

Are these behaviors actually possible for real s-bots or are they forbidden by
real life constraints (e.g. due to the physical structure of the s-bots or to some
real-time aspects)? Our experience makes it evident that the effectiveness of
the self-assembly strategies described in [5] can also depend on the physical
and mechanical properties of s-bots, and therefore these strategies might not be
adequate in general for self-assembling settings where other constraints apply.
Luckily, the three bizarre behaviors can be fixed easily by adding a new transition
from state Self Assemble to state Aggregate, and further conditions to the
two mentioned transitions of the strategy. In particular, the transition from
Assembly Seed to Wait requires a further condition to ensure that the s-bot
has been gripped, while the transition from Assembly Seed to state Aggregate

requires that the s-bot is not gripped. Finally, a new transition from state
Self Assemble to state Aggregate has to be added in order to solve the third
bizarre behaviour. This variant of the strategy, actually with a few more
arrangements, is depicted in Fig. 8.

7.2. Statistical Model Checking

A qualitative analysis can prove that an assembly strategy can result in
different degrees of success, from full success (e.g. all s-bots reach the goal, a
line is always formed, or all the broken s-bots are fixed) to full failure (e.g. no
s-bot reaches the goal). However, in the kind of scenarios considered, the really
interesting questions are how likely is each possible result? Or what is the expected
number of a given measure? For example the number of s-bots reaching the
goal, or the number of composed lines.
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A quantitative analysis is more appropriate in these cases. We resort to
statistical model checking (see e.g. [40, 38, 6]), where probabilities and quantities
are estimated. Such techniques do not yield the absolute confidence of qualitative
or probabilistic model checking, but allow to analyze (up to some statistical
errors and at different levels of confidence) larger scenarios and to deal with the
stochastic nature of probabilistic systems. In fact, in statistical model checking we
do not explore the whole state-space of a system, but we perform n independent
simulations, with n large enough to statistically estimate quantitative properties.

We exploit PVeStA [6], a parallel statistical model checker. The tool performs
a statistical evaluation (Monte Carlo based) of properties expressed in the
transient fragments of PCTL and CSL, and of quantitative temporal expressions
(QuaTEx) [1], allowing to query about expected values of real-typed expressions
of a probabilistic model. As usual, in order to obtain meaningful estimations, we
made our models totally probabilistic, meaning that we get rid of unquantified
nondeterminism.

In the rest of this section we first describe QuaTEx, the language used to
express quantitative properties evaluated by PVeStA (§7.2.1). Then we provide
some information about the machine where we performed the experiments and
the value of some parameters (§7.2.2), and finally we discuss some of the analysis
results that we obtained, focusing on the hole-crossing scenario (§7.2.3).

7.2.1. A sample QuaTEx expression

Before detailing the analysis of some of the self-assembly strategies treated
in this paper it is worth to introduce QuaTEx [1], the language that we used to
express quantitative properties, and to discuss how PVeStA interprets it.

QuaTEx is a language to query quantitative aspects of probabilistic systems.
Exactly like temporal logics allow to express temporal formulae, QuaTEx allows
to express quantitative temporal expressions.

PVeStA statistically evaluates quantitative temporal expressions with respect
to two parameters: α and δ. Specifically, expected values are computed from
n independent simulations, with n large enough to grant that if a QuaTEx
expression is estimated as x, then, with probability (1 − α), its actual value
belongs to the interval [(1− δ)x, (1 + δ)x].

As an example of quantitative temporal expression, we discuss now expression
Q2, analyzed later in §7.2.3 to estimate the expected number of s-bots reaching
the goal in the hole-crossing scenario. In particular, we show how it has been
defined, and how its value is actually computed for single simulations. We do
not detail how PVeStA performs one-step system executions, since this is out of
the scope of this paper. Details can be found in [1].

Before defining our expression it is necessary to define real-typed Maude
operations representing the state predicates we are interested in. We defined the
state predicate completed : Configuration -> Float, reducing to 1.0 for
terminal states, and to 0.0 otherwise. A terminal state is a state with no more
s-bots, a state with all the s-bots in goal, or the state obtained after a given max-
imum number of steps. We also defined the state predicate countRobotInGoal

: Configuration -> Float, counting the number of successful s-bots.
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Listing 9: The QuaTEx expression to estimated the number of s-bots in goal

1 count_s -bots_in_goal () = if { s.rval (0) == 1.0 } then s.rval (1)
2 else #count_s -bots_in_goal () fi;
3 eval E[ count_s -bots_in_goal () ] ;

Then we defined the equations needed by PVeStA to access such predicates
(where C is a variable with sort Configuration): eq val(0,C) = completed(C),
and eq val(1,C) = countRobotInGoal(C). Actually QuaTEx’s syntax requires
to indicate the term “val(n,s)” with “s.rval(n)”, where n and s are respec-
tively terms with sort Natural and Configuration denoting the number of the
predicate and the state on which to evaluate it.

Finally, the QuaTEx expression to estimate the expected number of s-bots
reaching the goal is easily expressed as in Listing 9.

Informally, a QuaTEx expression consists of a list of definitions of recursive
temporal operators, followed by a query of the expected value of a path expression
obtained combining arithmetically the temporal operators. Our formula defines
the temporal operator count s-bots in goal(), which also corresponds to the
estimated path expression eval E[ count s-bots in goal() ].

The path expression is evaluated by PVeStA in the initial state (s) of the
system (e.g. one of the states depicted in Fig. 13). The tool first evaluates the
guard of the if then else statement, i.e. s.rval(0) == 1.0. The condition
reads as “is the state predicate rval(0) equal to 1.0 if evaluated in the state s?”,
and corresponds to “is the current state a final state?”. If the guard is evaluated
to true, then the path expression is evaluated as s.rval(1), that is in the
number of s-bots that reached the goal in the state s. If the guard is evaluated
to false, then the path expression is evaluated as #count s-bots in goal(),
read “evaluate count s-bots in goal() in the state obtained after one step
of execution”. The symbol #, named “next”, is in fact a primitive one-step
temporal operator.

To conclude, the evaluation of the QuaTEx expression consists of performing
step-wise system simulations, and the result is the mean of the numbers of s-bots
that reached the goal in the terminal states of each simulation.

7.2.2. Assumptions, parameters and hardware specifications.

In this section we provide the specifications of the machine where we per-
formed the experiments, and we discuss some parameters and assumptions that
we used.

All the experiments have been performed on a Linux machine with 64 GB
of memory and 48 cores with clock speed 2.00 GHz. As previously mentioned,
statistical model checkers (as it is the case of PVeStA) estimate quantitative
properties of a probabilistic system modulo a confidence interval, specified by
two parameters: α and δ. Intuitively, there is a trade off between the estimation
accuracy and the time required to compute it: the coarser is the confidence
interval, the less accurate is the estimation, and faster is its estimation. In all
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our experiments we fixed 0.05 for both α and δ, meaning that with probability
95%, the actual value of a property estimated as x belongs to [0.95 ∗ x, 1.05 ∗ x]
(i.e. x± 5%). To reach such level of confidence PVeStA ran about one thousand
simulations in average for an average total run time of about four hours.

We recall from §2 that s-bots have a diameter of 12 cm, and a maximal
speed of 30 cm/s. As discussed in §5, we abstracted arenas to discrete grids
(like chessboards). Each cell can contain at most one s-bot, and it is in fact
dimensioned as the diameter of an s-bot (i.e. 12× 12 cm2). Our representation
of s-bot’s actions and perceptions is influenced by this abstraction: an s-bot
can perform one-step movements to one of the eight cells surrounding it. We
fixed 0.6 seconds as the time necessary to move to an adjacent cell. Similarly, an
s-bot can grip other s-bots in one of the eight cells surrounding it. In particular,
we decided to abstract from the time necessary to rotate the gripper, and we
set to 2 seconds the time necessary to grip an s-bot. In the same way, s-bots
perceptions are limited to the surrounding cells: an s-bot perceives only the
LEDs emissions of the s-bots in the eight surrounding cells. The only global
information perceived by an s-bot is the direction towards the light source.

7.2.3. Analysis of self-assembly strategies for the hole-crossing scenario

We performed some comparative analysis among the self-assembly strategies
discussed in this paper for the hole-crossing scenario, namely the original basic
self-assembly response of Fig. 6, our variant in Fig. 8 to deal with the bizarre
behaviors discussed in §7.1, and the strategy of Fig. 9, where s-bots assemble in
lines to cross the hole.

The aim of these experiments was twofold: on the one hand we wanted
to demonstrate that the strategies of Fig. 8 and 9 don’t generate the bizarre
behaviors which, as discussed in §7.1, arise in (our implementation of) the basic
self-assembly response strategy. In particular, we focused on the behaviour
in which two s-bots grab each other. For this reason we defined the QuaTEx
expression Q0 : “What is the probability that at least two s-bots grab each other
in an execution?”.

On the other hand, we wanted to compare the performances of the three
strategies in terms of success rate, in order to study how the absence of bizarre
behaviours and the kind of shapes of the assemblies influence them. For this
reason we defined the two QuaTEx expressions Q1 : “What is the probability
that at least one s-bot reaches the goal?”, and Q2 : “What is the expected number
of s-bots reaching the goal?”.

For each strategy we estimated the three properties for three configurations:
3 s-bots in a 11× 7 grid, 6 s-bots in a 12× 8 grid, and 9 s-bots in a 14× 10 grid.
The initial states of the three configurations are depicted in Fig.13. Other than
the s-bots, in the initial states there were the goal (a source of yellow light) and
a hole dividing the s-bots from the goal. Moreover, for the case with 3 s-bots we
fixed 200 as maximal number of system steps, while we fixed 400 for the others.
Finally, for all the experiments we fixed Prob(seed) to 0.7 (i.e. the probability
for an s-bot in state Aggregate to become the seed of a new assembly), three
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Figure 13: Three initial states for the hole-crossing scenario with 3 (left), 6 (middle) and 9
(right) s-bots.

Property Scenario BSRS BSRS+ BSRS+LINE BSRS+(NON-VERTICAL) LINE

3-BOTS 0.64 0.00 0.00 0.00
Q0 6-BOTS 0.99 0.00 0.00 0.00

9-BOTS 0.99 0.00 0.00 0.00

3-BOTS 0.57 0.61 0.53 0.87
Q1 6-BOTS 0.87 0.96 0.86 0.98

9-BOTS 0.96 0.96 0.96 1.00

3-BOTS 1.21 1.15 1.07 1.83
Q2 6-BOTS 3.04 3.36 3.12 4.87

9-BOTS 4.91 5.34 4.37 6.78

Table 2: The result of the model checking procedure.

times the time to grip an s-bot as timeout for state AssemblySeed, and the time
necessary to perform a movement as timeout for state Anti Phototaxis.

Summarizing the results presented below, the double gripping behaviour is
absent in our two strategies, while it arises in a significant number of executions
for the basic self-assembly response strategy. Moreover, our variant of the basic
self-assembly strategy (Fig. 8) exhibits the best success rate both in terms of
probability that at least one s-bot reaches the goal, that in terms of expected
number of succeeding s-bots, while the cross hole line-forming strategy of Fig. 9
does not have the expected performances.

Table 2 contains the results of our analysis. For each property (Q0, Q1 and
Q2) and for each initial configuration of Fig. 13, we show the estimation of a
property for each of the three self-assembly strategies:“BSRS” stands for basic
self-assembly response strategy (Fig. 6), “BSRS+” stands for our variant of Fig. 8,
and “BSRS+LINE” is the strategy of Fig. 9. The last column “BSRS+(NON-
VERTICAL)LINE” refers to a variant of the strategy of Fig. 9 which we discuss
later. We first focus on the columns BSRS, BSRS+ and BSRS+LINE.

Considering property Q0, the analysis shows that the bizarre behavior does
not arise in any configuration for our strategies, while it arises almost always in
the original strategy.

Considering property Q1, we see that if the s-bots execute our variant of the
basic self-assembly strategy, then there is a higher probability that at least one
of them reaches the goal for the 3- and 6-BOTS cases. For the 9-BOTS case,
instead, the probabilities are almost the same for any strategy: clearly, as there
are more s-bots, the probabilities that at least one reaches the goal are pushed
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Listing 10: Managing of LEDs in the transition from Aggregate to Assembly Seed to avoid
vertical lines

1 E: setLEDs(oppositeDirections(dirsToLight(K2)) \ up \ down ,red)
2 setOtherLEDs(oppositeDirections(dirsToLight(K2)) \ up \ down ,magenta)

closer to one.
Finally, considering Q2, the strategy BSRS+ has in general the best perfor-

mances, except than for the case with three robots in which it is slightly worse
than the strategy BSRS.

Noteworthy, we expected BSRS+LINE to be the best strategy, while it has
the worst performances. We suspected that the strategy has low performances
due to the fact that often the formed lines are parallel to the hole, so that all
the s-bots of the line successively fall in it. Note that the light is perceived
from one to three directions: for example, if the light is in a position on the
right and below with respect to the s-bot, then it will be perceived from right,
down-right and down. In order to confirm this hypothesis we modified the
strategy to avoid lines parallel to the hole. In the considered configurations we
only have vertical holes, hence it is sufficient to forbid the seed of the line (an
s-bot in state Assembly Seed) to turn red the LEDs in direction up and down.
Intuitively, during the transition from Aggregate to Assembly Seed the LEDs
are not managed as schematized in Listing 8, but as in Listing 10.

The evaluation of the performances of this new strategy, depicted in the
column BSRS+(NON-VERTICAL)LINE of Table 2, confirms our hypothesis,
as they are much better than the ones of BSRS+LINE, and also of the other
two cases. In particular, the probability that at least an s-bot reaches the goal
is 0.87 for the scenario with three s-bots, and almost 1 for the scenarios with
six and nine s-bots. The expected number of s-bots reaching the goal is instead
almost 2, 5 and 7, respectively, for the scenario with three, six and nine s-bots.

As previously stated, our aim is not that of designing new self-assembly
strategies, but rather that of showing how these can be defined and evaluated
following our approach. Interestingly, what we found is that the extra time spent
in forming lines pays back if we manage to obtain lines non parallel to the hole.

8. Related Work

We discuss in this section some works that have influenced and inspired us,
together with further related works. The discussion serves also as an argument for
supporting the suitability of our approach, by covering most of its distinguishing
features. In particular, we consider approaches built around the notion of Russian
Dolls and other computational models of adaptive systems based on hierarchical
structures or on computational reflection, and verification based on statistical
model checking, with a focus on the analysis of probabilistic rewrite theories.
Summarizing, our work is original in its clear and neat representation and role
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of control data in the architecture, and in the fact that this is, as far as we know,
the first analysis of self-assembly strategies based on statistical model checking.

Russian Dolls and other hierarchical models of adaptive systems. Our work is
inspired by early approaches to coordination and adaptation based on distributed
object reflection [17, 3] and research efforts to apply formal analysis onto such
kind of systems (see the discussions below on this topic), with a particular focus
on adaptive systems.

Among those, PAGODA (Policy And GOal based Distributed Autonomy) [28]
is the closest in spirit and shape. PAGODA is a modular architecture for
specifying and prototyping systems of autonomous cooperating agents, and it
builds upon the Russian Dolls model. A difference with respect to our work
is that in PAGODA adaptation (called coordination) is mainly realized by
intercepting and manipulating messages rather than on the meta-programming
mechanisms based on reflection adopted in our approach. In addition, contrary
to our approach, PAGODA imposes a concrete two layered global architecture
(system and nodes). Also the concrete node architecture is different from ours.
In particular, nodes are composed of a knowledge base, a reasoner, a monitor,
a learner, and a hardware abstraction layer. Our generic architecture does not
impose such a structure which could be certainly adopted as a concrete instance.

Another approach similar in spirit to PAGODA is PobSAM (Policy-based
Self-Adaptive Model) [23], a formal framework for modelling and analyzing
self-adaptive systems which relies on policies as high-level mechanism to realize
adaptive behaviors. PobSAM combines the actor model of coordination [41]
with process algebra machinery and shares our white-box spirit of separating
application and adaptation concerns. As in PAGODA the global architecture of
the system has two layers only, composed of managed actors, which implement
the functional behavior of the system, and autonomic manager (meta-)actors,
which control the behavior of managed actors by enforcing policies (rules that
determine under which condition actors must or must not do a certain action).
The configuration of managers is determined by their sets of policies which can
vary (i.e. adapt) dynamically. The currently active set of policies represents the
control data in this approach. Adaptation is indeed the switch between active
policies. So, besides the differences in the architectural aspects (see the above
discussion of PAGODA), PobSAM and our approach share the idea of having
rules as a high-level object of adaptation (i.e. control data in our terminology).

Close to our work is also the composite actor model of [42] which combines
the Russian Dolls and actor models to specify hierarchically composed entities
in a disciplined way by imposing constraints on the contents of some attributes
of actors, and on their interaction.

Besides Russian Dolls, many modelling frameworks for adaptive systems are
based on hierarchical structures. In particular, as in our case study, very often
an adaptive system is seen as a system composed by a base-level system with
a fixed collection of possible behaviors (or behavioral models), and adaptation
consists of passing from one behavior to another. We mention among others
the two-layered Petri nets of [13], Adaptive Featured Transition Systems (A-
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FTS) [43], S[B] systems [44], approaches based on Mode automata [45, 46, 47],
the transitional adaptation lattices of [48], the Synchronous Adaptive Systems
(SAS) of MARS [49, 50], Adaptable Transition Systems (ATSs) [51], n-plex
adaptive programs [52] and the state space zones of [53].

The most relevant difference with respect to our approach is that such models
are typically limited to two layers and, in some cases, the system is seen as
monolithic rather than component-based. Our approach does not impose a two-
layered asymmetric structure: layers can be composed at will, possibly forming
towers of adaptation [4] in the spirit of the MAPE-K reference architecture. In
addition, each component of an adaptive system (be it a manager, a managed
component, or both) is represented with the same mathematical object allowing
us to reuse the same techniques at each layer.

Reflection-based adaptation. Computational reflection is widely accepted as one
of the key instruments to model and build self-adaptive systems [27]. Indeed,
computational paradigms equipped with reflective, meta-level or higher-order
features, allow one to represent programs as first-class citizens. In these cases
adaptivity emerges, according to our conceptual framework, if the program
in execution or part of it is represented in the control data of the system,
and it is modified during execution causing changes of behaviour. Prominent
examples of such formalisms are process calculi with higher-order or meta-level
aspects (e.g. HO π-calculus [54], MetaKlaim [55]), higher-order variants of
Petri nets and Graph Grammars, the logical reflection of rewriting logic, Logic
Programming, and programming languages like LISP, Java, C#, Perl and several
others. Systems implemented in these paradigms can realize adaptation within
themselves (self-adaptivity), but in general the program under execution can be
modified also by a different entity, like an autonomic manager implemented in a
different language, or in the same language but running in a separate thread. Of
course, computational reflection assumes different forms and, despite of being
a very convenient mechanism, it is not strictly necessary: any programming
language can be used to build a self-adaptive system (see e.g. the discussion
of [56]).

As an illustrative example where reflection plays a major role in the de-
velopment of adaptive systems we mention the FOrmal Reference Model for
Self-adaptation (FORMS) [29, 11, 25]. Reflection in FORMS implies the
presence, besides of base-level components and computations, of meta-level sub-
systems and meta-computations that act on a meta-model. Meta-computations
can inspect and modify the meta-model that is causally connected to the base-
level system, so that changes in one are reflected in the other. This implies
some major differences with our approach which lacks of an explicit notion of
meta-model in the FORMS sense, and whose hierarchical architecture would
forbid a base layer to modify directly the upper layer (a hot-linking mechanism
would be needed to keep synchronized both layers).

The authors argue that most methodologies and frameworks proposed for the
design and development of self-adaptive systems rely on some form of reflection,
even if this is not always made explicit. FORMS provides basic modelling
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primitives and relationships among them, suitable for the design of self-adaptive
systems. Such primitives allow one to make explicit the presence of reflective
(meta-level) subsystems, computations and models. The FORMS modelling
primitives can be instantiated and composed in a variety of ways. For example,
the authors of [11] provide one example that conforms to the MAPE-K reference
model and another one that follows an application-specific design. In general, in
any such reflective system the control data can be identified at the boundaries
between the meta-level and the base-level components.

Another illustrative example that is worth mentioning belongs to the field
of process algebras and consists of studying the suitability of the tuple-space
coordination model of KLAIM [57] as a convenient mechanism for modelling
self-adaptive systems [58]. The authors describe how to adopt in KLAIM three
paradigms for adaptation: two that focus on the language-level, namely, context-
oriented programming [59] and dynamic aspect-oriented programming [24], and
one that focuses on the architectural-level (i.e. MAPE-K). The main idea in all
the cases is to rely on the use of process tuples, that is tuples (the equivalent
of messages in the tuple-space paradigm) that denote entire processes. These
process tuples can be sent by manager components (locations in KLAIM) to
managed components, which can then install them via the eval primitive of
KLAIM. In few words, adaptation is achieved by means of code mobility and code
injection. This is a point in common with our approach even if we don’t consider
a particular way of encapsulating code (behavior) such as aspects or variations
(respectively used in the aspect- and context-oriented paradigms). Interestingly
enough, KLAIM and its toolset are used in [60] in order to specify and analyse
collective robotic systems. In particular, and differently from our approach, they
focus on collective transport problems. As in our case, the analysis is based
on statistical model checking. Letting apart the differences, this work shows
the raising interest of the robotics community on the use of high-level, abstract
formal modelling and verification techniques for rapid-prototyping purposes
(see also the use of the probabilistic model checker PRISM in the methodology
of [61]).

Modelling and analysing probabilistic systems with Maude. Moving to the con-
crete setting of Maude, several works (e.g. [42, 62, 63, 64, 65, 66]) can be found
in the literature where probabilistic systems specified by probabilistic rewrite
theories in PMaude [1] are analyzed using probabilistic analysis methods like
statistical model checking. Examples range from hybrid systems to probabilistic
load balancing policies, to service stability protocols. Among others, we highlight
the already mentioned composite actors of [42] and the probabilistic strategy
language of [66]. The authors of [66] face a typical problem that arises when
modelling and analyzing probabilistic systems: one needs to ensure that the
underlying system is free of nondeterminism in order to make it amenable for
statistical model checking. Typical solutions are based on imposing certain
conditions and rule formats, or by resorting to ad-hoc solutions like minimiz-
ing the probability of concurrent events. For example, in the above discussed
composite actor models [42] this problem is solved by a transformation which,
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provided a system specification satisfying some well-formedness requirements,
exploits the idea of using a (top-level) scheduler of messages, to impose an
ordering of consumption of messages, as proposed in [1, 63]. To cope with the
hierarchical structure (the scheduler and the messages to be scheduled do not
necessarily reside in the same level) messages have to be moved across layers
when scheduled and descheduled. Our approach is similar, as we also resort to a
top-level scheduler of messages. However, rather than moving messages across
layers, we let them be consumed by the cells containing robots, which reside
at the same level of the scheduler. Then messages are transformed in tokens
for the outermost layer of a robot, and are used by the outer layers to perform
one-step executions of the managed components (i.e. inner layers). Instead, the
probabilistic strategy language of [66] offers an elegant and flexible solution that
allows to keep the nondeterminism in the system, which is solved at the level
of the strategy. Roughly, the idea is to assign probabilities to nondeterministic
transitions by assigning weights to rule matches (based on the rule name, the
context of application, and the substitution) that are later normalized into values
in the interval [0, 1].

9. Conclusion

Contribution. The main contributions of our paper are: (i) a description (§4–§5)
of how to realize in Maude our recently proposed approach to adaptive systems [4]
in a simple and natural way; and (ii) the validation of our methodology and of
MESSI, its instantiation in Maude, for the early prototyping of adaptive systems
(§6) and for their analysis (§7) exploiting the Maude toolset.

The distinguishing features of our approach are: (i) hierarchical structure
to modularize the design; (ii) high-level, rule-based self-adaptation based on
computational reflection; and (iii) quantitative analysis based on statistical model
checking. The suitability of such features has been discussed throughout the
paper and is witnessed by prominent examples from the literature on self-adaptive
systems (as discussed in §8).

Originality. We have discussed our sources of inspiration in §8, the main ones
being early approaches to coordination and adaptation based on distributed
object reflection [3, 17, 28]. Our work is original in its clear and neat representa-
tion and role of control data in the architecture, and in the fact that this is, as
far as we know, the first analysis of self-assembly strategies based on statistical
model checking.

Validation. The case study of self-assembly strategies for robot swarms [5]
has contributed to assess our approach and framework. Overall, the many
implemented strategies (§6) witness the wide applicability and accessibility of
our approach, thanks to the modularity provided by our hierarchical structuring.
Moreover, the conducted experimentations demonstrate that it is well-suited
for prototyping self-assembly systems in early development stages, and that the
capability of performing and visualizing simulations can be useful to discover
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and resolve small ambiguities and bugs of self-assembly strategies. Furthermore,
statistical model checking allows us to estimate quantitative properties of self-
assembly strategies, enabling to compare them at prototypal development stage.

Future work. We plan to further develop our work by considering other case
studies and more realistic abstractions. However, the key challenging question
we want to tackle is: can we exploit the proposed architecture to facilitate also
the analysis of adaptation strategies other than just their design? We envision
several interesting paths in this regard. First, we are investigating how logical
reflection can be exploited at each layer of the architecture, for instance to equip
components with dynamic planning capabilities based on symbolic reachability
techniques. Second, we plan to develop a compositional reasoning technique
that exploits the hierarchical structure of the layered architecture. For this
purpose we plan to draw our inspiration from some works that focus on the
distinction of particular properties of adaptive systems (see e.g. the local, global
and adaptation properties of [52, 67, 68] and the weak and strong adaptability
of [44]), variants of temporal logics tailored for expressing properties of adaptive
systems (e.g. AdaCTL [43], mLTL [47], and A-LTL [69]), and modular reasoning
techniques (e.g. based on transitional adaptation lattices [48] or n-plex adaptive
programs [52]).
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