
A

A Logical Verification Methodology for Service-Oriented Computing

ALESSANDRO FANTECHI, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
STEFANIA GNESI, Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa
ALESSANDRO LAPADULA, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
FRANCO MAZZANTI, Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa
ROSARIO PUGLIESE, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
FRANCESCO TIEZZI, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems.
Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to
express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and
correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that
they can be independent of service domains and specifications. We show an instantiation of our general methodology that
uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist
the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of
our methodology by means of the specification and the analysis of a case study in the automotive domain.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Formal methods;
Model checking; D.3.1 [Programming Languages]: Formal Definitions and Theory—Syntax; Semantics; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Temporal logic

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Service-oriented computing, Web services, Formal methods, Process calculi, Model
checking, Temporal logic

ACM Reference Format:
Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., and Tiezzi, F. 2010. A Logical Verification Methodology
for Service-Oriented Computing. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January 2010), 44 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

This work is a revised and extended version of [Fantechi et al. 2008], presented at FASE 2008 in Budapest (Hungary), and
has been partially funded by the EU project Sensoria (IST-2005-016004).
Author’s addresses: A. Fantechi, A. Lapadula, R. Pugliese, and F. Tiezzi, Dipartimento di Sistemi
e Informatica, Università degli Studi di Firenze, 65 Viale Morgagni, I-50134 Firenze, Italy (emails:
{fantechi,lapadula,tiezzi}@dsi.unifi.it, rosario.pugliese@unifi.it); S. Gnesi and F. Mazzanti, Is-
tituto di Scienza e Tecnologie dell’Informazione (ISTI) “A. Faedo”, CNR, 1 Via Moruzzi, I-56124 Pisa, Italy (emails:
{stefania.gnesi,franco.mazzanti}@isti.cnr.it)
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1049-331X/2010/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:2 Alessandro Fantechi et al.

Contents

1 Introduction 3

2 The logic SocL 5
2.1 Preliminary definitions . 5
2.2 SocL syntax and semantics . 6
2.3 A few patterns of service properties . 9

3 Model checking for SocL 11

4 COWS: a Calculus for Orchestration of Web Services 17
4.1 Syntax . 17
4.2 Example: a bank service . 18
4.3 Computational steps and LTSs . 19

5 CMC: a verification environment for COWS specifications 22
5.1 From LTS to L2TS . 22
5.2 From concrete L2TS to abstract L2TS . 23
5.3 COWS model checking . 26

6 Case study: an automotive scenario 27
6.1 Scenario description . 27
6.2 COWS specification . 30

7 Analysis of the case study 32
7.1 Analysis of service properties . 33
7.2 Analysis of other services of the automotive scenario 36
7.3 Orchestration and compensation properties . 36

8 Final remarks and related work 38

9 Conclusions 41

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:3

1. INTRODUCTION

Service-oriented computing (SOC) is emerging as an evolutionary paradigm for distributed and
e-business computing. This new paradigm, which finds its origin in object-oriented and component-
based software development, aims at enabling developers to build networks of interoperable and
collaborative applications, regardless of the platform where the applications run and of the pro-
gramming language used to develop them, through the use of independent computational units,
called services. Services are loosely coupled reusable components, that are built with little or no
knowledge about clients and other services involved in their operating environment. In the end,
SOC systems deliver application functionalities as services to either end-user applications or other
services.

There are by now some successful and well-developed instantiations of the general SOC
paradigm, like e.g. Web Services (WSs) and Grid Computing, that exploit the pervasiveness of
Internet and related standards. However, current software engineering technologies for SOC remain
at the descriptive level and lack rigorous formal foundations. In the development of SOC systems we
are still experiencing a gap between practice (design and implementation) and theory (formal meth-
ods and analysis techniques). The challenges come from the necessity of dealing at once with such
issues as asynchronous interactions, concurrent activities, workflow coordination, business transac-
tions, failures, resource usage, and security, in a setting where demands and guarantees can be very
different for the many different components. Many researchers have hence put forward the idea of
using process calculi, a cornerstone of current foundational research on specification and verifica-
tion of concurrent, distributed and mobile systems through mathematical — mainly algebraic and
logical — tools. Indeed, due to their algebraic nature, process calculi convey in a distilled form the
compositional programming style of SOC.

A major benefit of using process calculi is that they enjoy a rich repertoire of elegant meta-
theories, proof techniques and analytical tools that can be likely tailored to the needs of SOC. In
fact, it has been already argued that type systems, observational equivalences, and modal and tem-
poral logics provide adequate tools to address topics relevant to SOC (see, e.g., Meredith and Bjorg
[2003], van Breugel and Koshkina [2006]). In particular, modal and temporal logics have long been
used to represent properties of concurrent and distributed systems owing to their ability of express-
ing notions of necessity, possibility, eventuality, etc. (see, e.g., Clarke et al. [1999], Bradfield and
Stirling [2001], Grumberg and Veith [2008]). These logics have proved to be suitable to reason about
the design of complex computing systems because they provide abstract specifications of these sys-
tems. Indeed, logics permit expressing systems properties, while process calculi permit describing
system behaviours. Moreover, the application of temporal logics to the analysis of systems is often
supported by efficient software tools.

By following this line of research, in this paper we introduce a logical verification methodology
for checking behavioural properties of services. We do not put any specific demand on what a ser-
vice is, rather, for the sake of generality, we take an abstract point of view. We think of services
as computing entities which may have an internal state and can interact with each other and with
user applications by, e.g., sending/accepting requests, delivering corresponding responses and, on-
demand, cancelling requests. By reasoning at this abstraction level, we can single out some signifi-
cant classes of service properties that can be expressed in such a general way which is independent
of service domains and specifications. Thus, we say that a service is:

(1) available: if it is always capable to accept a request;
(2) parallel: if, after accepting a request, before giving a response it can accept further requests;
(3) sequential: if, after accepting a request, it cannot accept further requests before giving a re-

sponse;
(4) one-shot: if, after accepting a request, it cannot accept any further requests;
(5) off-line: if it provides an unsuccessful response to each received request;
(6) cancelable: if, before a response has been provided, it permits to cancel the corresponding

request;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:4 Alessandro Fantechi et al.

(7) revocable: if, after a successful response has been provided, it permits to cancel a previous
request;

(8) responsive: if it guarantees at least a response to each received request;
(9) single-response: if, after accepting a request, it provides no more than one response;

(10) multiple-response: if, after accepting a request, it provides more than one response;
(11) no-response: if it never provides a response to any accepted request;
(12) reliable: if it guarantees a successful response to each received request.

Albeit not exhaustive, the above list contains many desirable properties (see, e.g., van der Aalst
et al. [2003], Alonso et al. [2004], Bocchi et al. [2006]) of the externally observable behaviour of
services.

The previous properties are stated in terms of the visible actions that services may perform. Any
of these actions has a type, e.g. accept a request, provide a response, etc., and is part of a possi-
bly long-running interaction (elsewhere sometimes also called conversation) started when a client
firstly invokes one of the operations exposed by the service. Thus, according to this abstract point
of view, an interaction identifies a collection of actions, each of them corresponding to a single in-
vocation of a service operation. At first sight, then, the service properties could be formulated by
properly tailoring an action-based temporal logic among those already proposed in the literature of
concurrency theory (see, e.g., Hennessy and Milner [1985], De Nicola and Vaandrager [1990], Stir-
ling [2001]). However, these logics are not expressive enough to, e.g., associate a response action to
the request acceptance action that originated the interaction. The possible presence of more request
actions sharing the same type and interaction name may prevent this association to occur. Indeed,
multiple instances of an interaction can be simultaneously active since service operations can be in-
dependently invoked by several clients. Hence, by taking inspiration from SOC emerging standards
like WS-BPEL [OASIS WSBPEL TC 2007] and WS-CDL [Kavantzas et al. 2004], to enable the
previously mentioned association we use correlation data as a third attribute of actions that services
can do.

The first contribution of this paper is the definition of the branching-time temporal logic SocL
that, by relying on the actions described above, is capable of expressing in an effective way dis-
tinctive aspects of services and of formalizing the ‘abstract’ properties previously stated. SocL falls
within a large body of research (see, e.g., Lawford et al. [1996], Chaki et al. [2004; 2005], Baier
et al. [2004], Pecheur and Raimondi [2006], ter Beek et al. [2008]) that aims at supporting the anal-
ysis of action- and state-based properties of systems. Indeed, SocL formulae predicate properties
of systems in terms of states and state changes, of the actions that are enabled in a given state, and
of the actions that are performed when moving from one state to another. Thus, the interpretation
domain of SocL formulae are Doubly Labelled Transition Systems (L2TSs [De Nicola and Vaan-
drager 1995]), namely extensions of Labelled Transition Systems (LTSs) with a labelling function
from states to sets of atomic propositions.

Our second contribution is the introduction of a novel verification methodology of service prop-
erties. The properties are initially formalized as SocL formulae while preserving their independence
from individual service domains and specifications. Afterwards, these formulae can be tailored to a
given specification of a service by means of some abstraction rules that relate actions in the specifi-
cation with actions of the logic. Then, once a way to get a representation of the service specification
in terms of an L2TS has been provided, the verification process can take place. While, in princi-
ple, service behaviour could be directly specified using L2TSs, practical considerations suggest that
it is more convenient to resort to some linguistic formalism. In fact, when used as a specification
formalism, L2TSs are too low level and, above all, suffer for lack of compositionality in the sense
that they offer no means for constructing the L2TS of a composed service in terms of the L2TSs
of its components. On the contrary, linguistic terms are more intuitive and concise notations. Using
them, services are built in a compositional way by using the operators provided by the language
and, furthermore, they are syntactically finite, even when the corresponding semantic model, per-
haps defined in terms of L2TSs, is not. Therefore, in this paper we show an instantiation of our

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:5

methodology that uses COWS (Calculus for Orchestration of Web Services [Lapadula et al. 2007])
as the language to specify and combine services, while modelling their dynamic behaviour.

The third contribution of our work is the software tool CMC, namely a verification environment
for SocL formulae over COWS specifications of services. Input to CMC are a COWS term, the
SocL formula to be checked and a set of abstraction rules that are exploited during the verification
process for generating the L2TS model of the COWS term. The model is generated on-the-fly, hence,
depending on the formula to be checked, only a fragment of the overall state space might need to
be generated and analyzed in order to produce the correct result. Moreover, when the formula is
not satisfied, CMC provides diagnostic information in the form of a computation that makes the
verification fail.

We demonstrate feasibility and effectiveness of our methodology by means of the specification
and the analysis of a case study, namely an automotive scenario studied within the EU project
Sensoria [SENSORIA 2005].

The rest of the paper is organized as follows. Section 2 introduces syntax and semantics of SocL,
while Section 3 presents the model checker engine for SocL. Section 4 presents COWS’s main
features in a step-by-step fashion while modelling a bank service (which is part of the automotive
scenario). Section 5 describes the verification environment CMC whose implementation exploits
the model checker engine for SocL presented in Section 3. Section 6 presents the automotive sce-
nario, firstly through an informal UML-like description, then through a formal specification written
in COWS. The COWS specification is thoroughly analysed in Section 7. Final remarks and compar-
isons with related work are reported in Section 8, while directions for future work are touched upon
in Section 9.

2. THE LOGIC SOCL

SocL is an action- and state-based branching-time logic that makes use of high-level temporal op-
erators drawn from mainstream logics like CTL [Clarke and Emerson 1981], ACTL [De Nicola and
Vaandrager 1990] and ACTLW [Meolic et al. 2008]. In this section, we first introduce some prelim-
inary definitions, then define syntax and semantics of SocL and finally show how the logic can be
used to formalize the service properties we have mentioned in the Introduction.

2.1. Preliminary definitions

In this section we report the definitions of the semantic structures which the logic relies on. They
permit to characterise a service in terms of states and predicates that are true over them, and of state
changes and actions performed when moving from one state to another.

Let Act be a set of elements called observable actions. We will use η to range over 2Act.

Definition 2.1 (Labelled Transition System). A Labelled Transition System (LTS) over the set
of observable actions Act is a quadruple 〈Q, q0,Act,R〉, where:

— Q is a set of states;
— q0 ∈ Q is the initial state;
— R⊆Q × 2Act × Q is the transition relation.

Now, if we extend an LTS with a labelling function from states to sets of atomic propositions we
get a system with also labels over states, namely a Doubly Labelled Transition System.

Definition 2.2 (Doubly Labelled Transition System). A Doubly Labelled Transition System
(L2TS) over the set of observable actions Act and the set of atomic propositions AP is a tuple
〈Q, q0,Act,R,AP, L〉, where:

— Q is a set of states;
— q0 ∈ Q is the initial state;
— R ⊆ Q × 2Act × Q is the transition relation;
— L : Q −→ 2AP is the labelling function.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:6 Alessandro Fantechi et al.

The main difference between the above definitions and the usual ones (as given e.g. by De Nicola
and Vaandrager [1995]) is that transitions are labelled by a set of actions rather than by a single
action. In particular, the empty set, i.e. ∅, that labels transitions during which no observable actions
occur, corresponds to the unobservable internal action in the usual definitions. In the sequel, as a
matter of notation, instead of (q, η, q′) ∈ R we may write q

η−→ q′.
Paths within L2TSs represent service computations and are defined as follows:

Definition 2.3 (Path). Let (Q, q0,Act,R,AP, L) be an L2TS and let q ∈ Q.

— σ is a path from q if σ = q (the empty path from q) or σ is a (possibly infinite) sequence of
transitions (q1, η1, q2)(q2, η2, q3) · · · , with q1 = q and (qi, ηi, qi+1) ∈ R for all i ≥ 1.

— A full-path is a path that cannot be further extended: it is infinite or ends in a state without
outgoing transitions. We write path(q) for the set of all full-paths from q.

— If (qi, ηi, qi+1) is the ith transition in a path σ then we will write σ(i), σ{i} and σ(i + 1) to indicate
qi, ηi and qi+1, respectively.

2.2. SocL syntax and semantics

We start introducing the set of observable actions which SocL is based upon. As we said in the Intro-
duction, the actions of the logic should correspond to the actions performed by service providers and
service consumers, and are characterised by three attributes: type, interaction name, and correlation
data1. Moreover, to enable capturing correlation data used to link together actions executed as part
of the same interaction, they may also contain variables, that we call correlation variables. In the
sequel, we will usually write val to denote a generic correlation value and var to denote a generic
correlation variable. For a given correlation variable var, its binding occurrence will be denoted by
var; all remaining occurrences, that are called free, will be denoted by var.

Definition 2.4 (SocL Actions). SocL actions have the form t(i, c), where t is the type of the
action, i is the name of the interaction which the action is part of, and c is a tuple of correlation
values and variables identifying the interaction (i and c can be omitted whenever they do not play
any role). We assume that variables in the same tuple are pairwise distinct. We will say that an
action is closed if it does not contain variables. We will use Act v to denote the set of all actions, α
as a generic element of Act v (underlying emphasises the fact that the action may contain variable
binders), and α as a generic action without variable binders. We will use Act to denote the subset of
Act v that only contains closed actions (i.e. actions without variables) and η as a generic subset of
Act.

Example 2.5. Action request(charge, 1234, 1) could stand for an action of type request start-
ing an (instance of the) interaction charge which will be identified through the correlation tu-
ple 〈1234, 1〉. A response action corresponding to the request above, for example, could be
written as response(charge, 1234, 1). Moreover, if some correlation value is unknown at de-
sign time, e.g. the identifier 1, a (binder for a) correlation variable id can be used instead,
as in the action request(charge, 1234, id). A corresponding response action could be written as
response(charge, 1234, id), where the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound.

To define the syntax of SocL we rely on an auxiliary logic of actions.

Definition 2.6 (Action formulae). The language of the action formulae on Act v is defined as
follows:

γ ::= α | χ χ ::= tt | α | τ | ¬χ | χ ∧ χ

1Notice that correlation data are simply regarded as literals and, for such data, the logic supports the equality test only. In
fact, we do not need to deal with data types.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:7

As usual, we will use ff to abbreviate ¬tt and χ ∨ χ′ to abbreviate ¬(¬χ ∧ ¬χ′).
The syntax above states that an action formula γ can be either an action α, which may contain

variable binders, or an action formula χ, which is a boolean compositions of unobservable internal
actions τ and observable actions α without variable binders. As we shall also clarify later, the dis-
tinction between action formulae γ and χ is motivated by two reasons: (1) some logical operators
can accept as argument only action formulae without variable binders, and (2) actions containing
variable binders cannot be composed.

Satisfaction of an action formula is determined with respect to a set of closed actions that repre-
sent the observable actions actually executed by the service under analysis. Therefore, since action
formulae may contain variables, to define their semantics we introduce the notion of substitution
and the partial function match that checks matching between an action and a closed action and, if it
is defined, returns a substitution.

Definition 2.7 (Substitutions). Substitutions, ranged over by ρ, are functions mapping correla-
tion variables to values and are written as collections of pairs of the form var/val. The empty
substitution is denoted by ∅. Application of substitution ρ to a formula φ, written φ ρ, has the effect
of replacing every free occurrence of var in φ with val, for each var/val ∈ ρ.

Definition 2.8 (Matching function). The partial function match from Act v × Act to substitutions
is defined by structural induction by means of auxiliary partial functions defined over syntactic
subcategories of Act v through the following rules:

match(t(i, c), t(i, c′)) = matchc(c, c′)
matchc((e1, c1), (e2, c2)) = matche(e1, e2) ∪ matchc(c1, c2)
matchc(〈〉, 〈〉) = ∅
matche(var, val) = {var/val}
matche(val, val) = ∅

where (e, c) stands for a tuple with first element e, and 〈〉 stands for the empty tuple. Notably, an
action containing free variable occurrences cannot match any closed action.

Example 2.9. Let us consider again the actions introduced in Example 2.5.
Then, we have match(response(charge, 1234, 1), response(charge, 1234, 1)) = ∅
and also match(request(charge, 1234, id), request(charge, 1234, 1)) = {id/1}. Instead
match(request(charge, 1234, id), response(charge, 1234, 1)) is not defined since the actions
have different types.

Definition 2.10 (Action formulae semantics). The satisfaction relation for action formulae is
defined over a set of closed actions and a substitution.

— η |= α I ρ iff ∃α′ ∈ η such that match(α, α′) = ρ;
— η |= χ I ∅ iff η |= χ, where the relation η |= χ is defined as follows:

— η |= tt holds always;
— η |= α iff α ∈ η;
— η |= τ iff η = ∅;
— η |= ¬χ iff not η |= χ;
— η |= χ ∧ χ′ iff η |= χ and η |= χ′.

Notation η |= γ I ρ means: the formula γ is satisfied over the set of closed actions η under sub-
stitution ρ. Since function match (i.e. matche) is undefined when its first argument contains free
variables, the semantics of actions containing free occurrences of correlation variables is undefined
as well.

Notice also that satisfiability of a formula under a non-empty substitution may be required only
in the first case of the definition above, because the remaining cases deal with formulae that do not
contain variable binders. Finally, the action formula τ is satisfied over the empty set of actions.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:8 Alessandro Fantechi et al.

Table I. Some sample formulae and their interpretations

¬ EXtt true : no transition can be performed.

EXrequest(charge,1234,id) AXresponse(charge,1234,id) true : after a request for the interaction charge has
been accepted, a correlated response must be immediately performed.

A(true ¬response(check,1234) U request(check,1234) true) : the request for the interaction (check,1234),
which must always occur, is never proceeded by a response for the same interaction.

A(true ¬response(check,1234) W request(check,1234) true) : the request for the interaction (check,1234), if it
ever occurs, is never proceeded by a response for the same interaction.

To define the syntax of the logic, the last ingredient we need is the set of atomic propositions.
They correspond to the properties that can be true over the states of services.

Definition 2.11 (Atomic propositions). SocL atomic propositions have the form p(i, c), where
p is the name, i is an interaction name, and c is a tuple of correlation values and free variables
identifying i (i and c can be omitted whenever they do not play any role). We will use AP to denote
the set of all atomic propositions and π as generic element of AP.

Notably, atomic propositions cannot contain variable binders.

Example 2.12. Proposition accepting request(charge) indicates that a state can accept requests
for interaction charge, while proposition accepting cancel(charge, 1234, 1) indicates that a state
permits to cancel those requests for interaction charge identified by the correlation tuple 〈1234, 1〉.

Definition 2.13 (SocL syntax). The syntax of SocL formulae is defined as follows:

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ
(path formulae) Ψ ::= Xγφ | φ χUγ φ

′ | φ χWγ φ
′

E and A are existential and universal (resp.) path quantifiers. X, U and W are the next, (strong)
until and weak until operators drawn from those firstly introduced by De Nicola and Vaandrager
[1990] and subsequently elaborated by Meolic et al. [2008]. Intuitively, the formula Xγφ says that
in the next state of the path, reached by an action satisfying γ, the formula φ holds. The formula
φχUγφ

′ says that φ′ holds at some future state of the path reached by a last action satisfying γ, while
φ holds from the current state until that state is reached and all the actions executed in the meanwhile
along the path satisfy χ. The formula φχWγφ

′ holds on a path either if the corresponding strong until
operator holds or if for all the states of the path the formula φ holds and all the actions of the path
satisfy χ. Notice that the weak until operator (also called unless) is not derivable from the strong
until operator since disjunction or conjunction of path formulae is not expressible in the syntax of
SocL, similarly to any other pure branching-time temporal logic. Some examples of SocL formulae
together with their intuitive meaning are reported in Table I.

The semantics of SocL formulae is only defined for closed formulae, namely those formulae
where any free occurrence of a correlation variable is syntactically preceded by its binding occur-
rence. Given the formulae Xγφ

′, φχUγφ
′ and φχWγφ

′, variables occurring in γ syntactically precede
the variables occurring in φ′. The interpretation domain of SocL formulae are L2TSs over the set
of actions Act and the set of atomic propositions AP. To define the semantics of SocL we use the
notion of full-path and the notations σ(i) and σ{i} introduced in Definition 2.3.

Definition 2.14 (SocL semantics). Let 〈Q, q0, Act,R,AP, L〉 be an L2TS, q ∈ Q and σ ∈
path(q). The satisfaction relation of closed SocL formulae is defined as follows:

— q |= true holds always;
— q |= π iff π ∈ L(q);
— q |= ¬φ iff not q |= φ;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:9

— q |= φ ∧ φ′ iff q |= φ and q |= φ′;
— q |= EΨ iff ∃σ ∈ path(q) : σ |= Ψ;
— q |= AΨ iff ∀σ ∈ path(q) : σ |= Ψ;
— σ |= Xγφ iff ∃ ρ : σ{1} |= γ I ρ and σ(2) |= φ ρ;
— σ |= φ χUγφ

′ iff ∃ j ≥ 1
σ(j) |= φ, and ∃ ρ : σ{ j} |= γ I ρ and σ(j + 1) |= φ′ρ,
and ∀ 1 ≤ i < j : σ(i) |= φ and σ{i} |= χ;

— σ |= φ χWγφ
′ iff either σ |= φ χUγφ

′ or ∀ i ≥ 1 : σ(i) |= φ and σ{i} |= χ.

A distinctive feature of SocL is that the satisfaction relation of the next and until operators
may define substitutions which are propagated to subformulae. Notably, in the left hand side of
the until operators we use χ (i.e., closed actions), instead of γ, to prevent writing such formulae as
φ request(i,var)Uγ φ

′ whose semantics would require request(i, var) to be performed zero or more times
before γ, which could produce undefined or multiple defined bindings on var. This motivates the
syntactical constraints on the definition of action formulae (Definition 2.6).

Other useful logic operators can be derived as usual. In particular, the ones that we use in the
sequel are:

— false stands for ¬ true.
— <γ>φ stands for EXγ φ; this is the diamond operator introduced by Hennessy and Milner [1985]

and, intuitively, states that it is possible to perform an action satisfying γ and thereby reaching a
state that satisfies formula φ.

— [γ] φ stands for ¬<γ>¬ φ; this is the box operator introduced by Hennessy and Milner [1985]
and states that no matter how a process performs an action satisfying γ, the state it reaches in
doing so will necessarily satisfy the formula φ.

— Variants of until operators, which do not specify the last action leading to the state at which the
formula on the right hand side holds, can be defined as follows:
— E(φ χU φ′) stands for φ′ ∨ E(φχUχ φ

′);
— A(φ χU φ′) stands for φ′ ∨ A(φχUχ φ

′);
— E(φ χW φ′) stands for φ′ ∨ E(φχWχ φ

′);
— A(φ χW φ′) stands for φ′ ∨ A(φχWχ φ

′).
— EFφ stands for E(true tt Uφ) and means that there is some path that leads to a state at which φ

holds; that is, φ eventually holds on some path.
— EFγ φ stands for E(true tt Uγ φ) and means that there is some path that, by a last action satisfying
γ, leads to a state at which φ holds; if φ is true, we say that an action satisfying γ will eventually
be performed on some path.

— AFγ φ stands for A(true tt Uγ φ) and means that an action satisfying γ will be performed in the
future along every path and at the reached states φ holds; if φ is true, we say that an action
satisfying γ will always eventually be performed.

— AG φ stands for ¬ EF ¬ φ and states that φ holds at every state on every path; that is, φ holds
globally.

2.3. A few patterns of service properties

We now present how the service properties listed in the Introduction can be expressed as formulae
in SocL. To do this, we characterise the set of actions Act v and the set of atomic propositions AP
which the logic is based upon as follows.

— Act v contains (at least) the following five types of actions: request, responseOk, responseFail,
cancel and undo. The intended meaning of the actions is: request(i, c) indicates that the action
performed by the service starts the interaction i which is identified by the correlation tuple c;
similarly, responseOk(i, c), responseFail(i, c), and cancel(i, c) correspond to actions that provide
a successful response, an unsuccessful response, a cancellation, respectively, of the interaction i
identified by c; undo(i, c) corresponds to an action that undoes the effects of a previous request.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:10 Alessandro Fantechi et al.

— AP contains (at least) the following three atomic propositions accepting request(i, c),
accepting cancel(i, c) and accepting undo(i, c), whose meaning is obvious.

For the sake of readability, in the formalization of the properties we consider correlation tuples
composed of only one element.

(1) Available service:
AG (accepting request(i)).

This formula means that in every state the service may accept a request. A weaker interpretation
of service availability, meaning that the service accepts a request infinitely often, is given by the
formula AG AF (accepting request(i)).

(2) Parallel service:
AG [request(i, var)] E(true¬ (responseOk(i,var)∨responseFail(i,var))U accepting request(i)).

This formula means that the service can accept several requests simultaneously. Indeed, in every
state, if a request is accepted then, in some future state, further requests for the same interaction
can be accepted before giving a response to the first accepted request. Notably, the responses
belongs to the same interaction i of the accepted request and they are correlated by the variable
var.
This is a clear example of the usefulness of the combined approach based on both
actions and propositions. In fact, as we shall further clarify in Section 5, the action
request(i, var) corresponds to the acceptance of a request sent by a client, while the proposition
accepting request(i) indicates that in the current state the service is able to accept a request
from some client (but it has not received such request yet). In this way, SocL can easily deal
with both performed and potential actions.

(3) Sequential service:
AG [request(i, var)] A(¬ accepting request(i) tt UresponseOk(i,var)∨responseFail(i,var)true).

In this case, the service can accept at most one request at a time. Indeed, after accepting a
request, it cannot accept further requests for the same interaction before replying to the accepted
request.

(4) One-shot service:
AG [request(i)] AG ¬ accepting request(i).

This formula states that the service is not persistent because, after accepting a request, in all
future states, it cannot accept any further request.

(5) Off-line service:
AG [request(i, var)] AFresponseFail(i,var) true.

This formula states that whenever the service accepts a request, it always eventually provides
an unsuccessful response.

(6) Cancelable service:
AG [request(i, var)] A(accepting cancel(i, var) ttWresponseOk(i,var)∨responseFail(i,var)true).

This formula means that the service is ready to accept a cancellation required by the client
(fairness towards the client) before possibly providing a response to the accepted request. A
different formulation is given by:

AG [responseOk(i, var)]¬EF <cancel(i, var)>true
meaning that the service cannot accept a cancellation after responding to a request (fairness
towards the service).

(7) Revocable service:
EFresponseOk(i,var) EF(accepting undo(i, var))

Again, we can have two interpretations. While the previous formula expresses a sort of weak re-
vocability (i.e., after a successful response has been provided, the service can eventually accept
an undo of the corresponding request), the following one corresponds to a stronger interpreta-
tion

AG [responseOk(i, var)] A(accepting undo(i, var) ttWundo(i,var)true)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:11

since it guarantees that the service can always accept an undo of the request after providing the
response.

(8) Responsive service:
AG [request(i, var)] AFresponseOk(i,var)∨responseFail(i,var) true.

The formula states that whenever the service accepts a request, it always eventually provides at
least a (successful or unsuccessful) response.

(9) Single-response service:
AG [request(i, var)]¬EFresponseOk(i,var)∨responseFail(i,var) EFresponseOk(i,var)∨responseFail(i,var) true.

The formula means that whenever the service accepts a request, it cannot provide two or more
correlated (successful or unsuccessful) responses, i.e. it can only provide at most a single re-
sponse.

(10) Multiple-response service:
AG [request(i, var)] AFresponseOk(i,var)∨responseFail(i,var) AFresponseOk(i,var)∨responseFail(i,var) true.

Differently from the previous formula, here the service always eventually provides two or more
responses.

(11) No-response service:
AG [request(i, var)] ¬EFresponseOk(i,var)∨responseFail(i,var) true.

This formula means that the service never provides a (successful or unsuccessful) response to
any accepted request.

(12) Reliable service:
AG [request(i, var)] AFresponseOk(i,var) true.

This formula guarantees that the service always eventually provides a successful response to
each accepted request.

The SocL formulation of the above properties is instructive in that it witnesses that the natural
language descriptions of the properties can sometimes be interpreted in different ways: therefore,
formalization within the logic enforces a choice among different interpretations. Notably, the formu-
lation is given in terms of abstract actions and state predicates thus, rather than specific properties,
the properties we have considered so far represent sorts of generic patterns or classes of properties.
From time to time, type/name, interaction and correlation tuple of actions and propositions have
to be projected on the actual actions performed by the specific service to be analysed. They, how-
ever, can be easily instantiated, as shown in Section 7.1, and such instantiation can be in principle
automated.

3. MODEL CHECKING FOR SOCL

To assist the verification process of SocL formulae over L2TSs we have developed a bounded, on-
the-fly model checking engine. Figure 1 illustrates the input expected by the SocL model checker
and the output it produces. In this section, we illustrate the principles upon which the model check-
ing engine is based.

The first principle regards the ‘bounded’ approach. The evaluation of a formula is achieved it-
eratively: each iteration is allowed to explore the model up to a certain depth until a final boolean
answer can be given. The schema of the procedure is shown in Figure 2. At each iteration, the value
of the user defined parameter MaxDepth (representing the maximal evaluation depth for the current
iteration) is doubled. The procedure terminates only whenever the variable Result (line O6), as
modified by the last call of Eval, obtains a True or False value. An important point is that the
restarting of an evaluation is not a completely new evaluation process, but is a process that takes
advantage of the recorded results of subcomputations already performed in previous iterations to
speed up the current evaluation. Of course, if the formula to be evaluated requires to potentially
explore the whole state space (as it is the case for formulae of the form AG φ, unless a state is found
that does not satisfy φ), the procedure would never terminate if the model has infinite states.

This approach, initially introduced to overcome the problem of infinite state spaces, turns out to be
quite useful also in the case of finite state systems since it allows to generate smaller explanations for

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:12 Alessandro Fantechi et al.

Fig. 1. Input/output behaviour of the SocL model checker.

01 function Evaluate(φ, L2TS) return EvaluationResult is
02 Result: EvaluationResult;
03 MaxDepth: Natural := default_initial_value;
04 begin
05 Eval(φ, L2TS.InitialState,0,Result);
06 while Result = Aborted loop
07 MaxDepth := MaxDepth*2;
08 Eval(φ, L2TS.InitialState,0,MaxDepth,Result);
09 end loop;
10 return Result;
11 end Evaluate;

Fig. 2. Bounded evaluation schema.

the result than the corresponding classical unbounded depth-first version. For example, if we are just
looking for a deadlock state, a plain unbounded approach will return as proof the first deadlock state
encountered according to a plain depth-first exploration of the model, while the bounded approach
will return a deadlock state close to the initial state of the model (because all alternative paths up to
the current MaxDepth are explored before proceeding more deeply in the exploration).

The second principle regards the ‘on-the-fly’ approach: the evaluation of a formula, starting from
the initial state of the L2TS, proceeds in a top-down way with respect to the formula structure, and
in a depth-first way with respect to the model structure, in agreement with the current maximal
evaluation depth limit. The relevant fact of this top-down/depth-first traversal of the formula/model
is that only the truly necessary substates and subformulae are analyzed, limiting in this way the ‘on
demand’ generations to a subset of the subformulae instantiations and to a subset of the model state
space. Depending on the type of logical operator, a specific evaluation routine is invoked, as shown
in Figure 3. Notably, while EDepth (the current evaluation depth) and MaxDepth are passed to all
the specific evaluation subroutines, the local variable RecDepth (initialized with the value O and
representing the recursion depth upon which the current Result depends) is passed as parameter
only to the subroutines evaluating recursive operators.

Figure 4 shows the detailed schema of the evaluation algorithm for the universally quantified
‘next’ operator. When the evaluation of a formula of the form AXγφ begins, it is firstly checked
(line O5) if the maximum evaluation depth has been already reached, in which case an Aborted
value is returned. The second check is performed (lines O6-O9) to see whether the computation has
already been done, in which case the previously saved result is returned. After these checks, the
analysis of the possible outgoing transitions from the current state begins. If no outgoing transitions
exist (i.e. the state is a ‘final’ state) then the formula is evaluated False; this final computation
result is saved and this boolean value returned (lines 11-13). If the current state has some outgoing

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:13

01 procedure Eval(φ,CurrentState,EDepth,MaxDepth,out Result) is
02 RecDepth: Natural :=0;
03 begin
04 case φ is
05 when true -> Result := True;
06 when π -> EvalPredicate(φ, CurrentState,EDepth,MaxDepth,Result);
07 when ¬ φ' -> EvalNegation(φ, CurrentState,EDepth,MaxDepth,Result);
08 when φ1 ⋀ φ2 -> EvalConjunction(φ, CurrentState,EDepth,MaxDepth,Result);
09 when EX γ φ' -> EvalExistNext(φ, CurrentState,EDepth,MaxDepth,Result);
10 when AX γ φ' -> EvalForallNext(φ, CurrentState,EDepth,MaxDepth,Result);
11 when E φ1 χ U γ φ2 ->
12 EvalExistsUntil(φ, CurrentState,EDepth,MaxDepth,RecDepth,Result);
13 when A φ1 χ U γ φ2 ->
14 EvalForallUntil(φ, CurrentState,EDepth,MaxDepth,RecDepth,Result);
15 when E φ1 χ W γ φ2 ->
16 EvalExistsWUntil(φ, CurrentState,EDepth,MaxDepth,RecDepth,Result);
17 when A φ1 χ W γ φ2 ->
18 EvalForallWUntil(φ, CurrentState,EDepth,MaxDepth,RecDepth,Result);
19 end case;
20 end Eval;

Fig. 3. From generic to operator specific evaluation mapping.

transitions then all of them (line 16) must satisfy the action formula γ (line 17). To check this, all
the transitions are analysed in sequence. For each outgoing transition from the current state:

— A set of substitutions Θ is calculated (line 19) by matching the actual transition label with the
(possibly parametric) action formula γ; if γ does not contain variables then Θ only contains the
empty substitution.

— It is then checked (lines 21-33) that the application of at least one substitution in Θ to φ gen-
erates a formula which holds in the current state of the transition; the application of the empty
substitution returns the formula unchanged.

If a transition is found which does not satisfy γ then we can immediately conclude that the formula
AXγφ is false, in which case the cause of the failure is recorded (line 45) and the result is set to
False (line 46).

The recording of the cause of the failure is necessary for the generation of the full explanation
of the final evaluation result, if requested by the user. Whenever the application of a substitution
generates a subformula that holds in the target state of the transition, then the information of this
partial successful subcomputation is recorded (lines 24-27) and the analysis of further substitutions
for this transition is stopped (line 28). We cannot however yet return True until all the transitions
have been analyzed. If, on the contrary, the application of all substitutions generates subformulae
that do not hold in the target state of the transition (line 34) then all the already recorded information
about successful subcomputations are replaced with the information relative to the failed transition
and the result of evaluation of the original formula is set to False (lines 35-38). There is a last case
to be considered: if

— the application of at least one of the substitutions generates a subformula whose evaluation with
the current EDepth limit returns Aborted, and

— the application of all the other substitutions generates subformulae whose evaluation returns
Aborted or False

then it will be no longer possible to return True as evaluation result, but we go on analysing the
remaining transitions in case a definitive negative answer can still be provided (lines 4O-43).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:14 Alessandro Fantechi et al.

01 procedure EvalForallNext
02 (AXγ φ, CurrentState, EDepth,MaxDepth,out Result) is
03 TmpResult,LastResult: EvaluationResult;
04 begin
05 if EDepth = MaxDepth then Result := Aborted; return; end if;
06 if <AXγ φ, CurrentState> → SavedResult exists then
07 Result := SavedResult;
08 return;
09 end if;
10 if OutgoingTransitions(CurrentState) is empty then
11 save <AXγ φ, CurrentState> → False;
12 Result := False;
13 return;
14 end if;
15 Result := True;
16 foreach Transition in OutgoingTransitions(CurrentState) do
17 if Satisfies(Transition.Label, γ) then
18 TargetState := Transition.TargetState;
19 Θ := TransitionSubstitutions(Transition.Label, γ);
20 TmpResult := False;
21 foreach substitution ρ in Θ do
22 φ' := ApplySubstitution(φ , ρ);
23 Eval(φ', TargetState, EDepth+1,LastResult);
24 if LastResult = True then
25 add_explanation <AXγ φ, CurrentState> →
26 (Transition.Label,<φ', TargetState>);
27 TmpResult := True;
28 exit; -- do not continue the analysis of the other substitutions
29 elsif LastResult = Aborted then
30 -- continue the analysis of the other substitutions
31 TmpResult := Aborted;
32 end if;
33 end loop;
34 if TmpResult = False then
35 set_explanation <AXγ φ, CurrentState> →
36 (Transition.Label,<φ', TargetState>);
37 Result := False;
38 exit; -- do not continue the analysis of the other transitions
39 end if;
40 if TmpResult = Aborted then
41 Result := Aborted;
42 -- continue the analysis in case we can still prove a failure
43 end if;
44 else
45 set_explanation <AXγ φ, CurrentState> → (Transition.Label,<>);
46 Result := False;
47 exit;
48 end if;
49 end loop;
50 save <AXγ φ, CurrentState> → Result;
51 return;
52 end EvalForallNext;

Fig. 4. Universally quantified ‘next’ operator evaluation schema.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:15

If for each transition we find a successful substitution we return True, otherwise, if for some
transition we are not able to verify its success, we return Aborted. In any case, the evaluation result
is saved and then returned (lines 5O-51).

The ‘next’ operator of the logic is quite simple and for this reason it has been chosen to show
the complexities introduced by the incremental bounded evaluation, by the support of parametric
formulae, and by the need to collect data for the final explanation of the evaluation result. The main
complexity of the logical verification algorithm, however, is encountered when we need to eval-
uate a recursive operator, like the ‘until’. To show how to manage this additional complexity we
present in Figure 5 the simplified schema of the evaluation algorithm for the existentially quantified
‘until’ operator. To keep the schema understandable, we abstract away from already seen details
about existence of evaluation depth limits, dynamic instantiation of parametric subformulae, and
explanation-oriented data collection. Also, parameters EDepth and MaxDepth are left for compat-
ibility with the schema in Figure 3, although they are not actually used since all the ‘bounded’
aspects of the evaluation have been omitted for simplicity.

When the evaluation of a formula of the form E(φ1 χUγ φ2) begins, it is firstly checked if a
‘definitive’ or ‘temporary’ result is already available (lines O5-17). If a ‘temporary’ result for this
evaluation already exists, then it means that the evaluation of this formula in this state has already
been previously started at a more external recursion level (precisely at the recursion depth given
by somedepth). In this case, we return not only the found temporary result, but also an updated
recursion depth which identifies the original (still in progress) computation on which this temporary
result actually depends. If no such result exists, then this evaluation has been encountered for the
first time and the analysis of the formula continues.

If the current state is a final state, the formula is definitely False, therefore this value is saved
and returned (lines 18-22). Otherwise, we check if the current state satisfies the subformula φ1. In
case of failure, False is immediately saved and returned (lines 24-27). Otherwise, we check if a
transition from the current state exists whose label satisfies the action formula γ (line 31) and whose
target state satisfies the formula φ2 (line 33). If such a transition exists, then the evaluation of the
original formula is definitely True, thus the result is saved and returned (lines 34-35). Otherwise,
we check if a transition satisfying the action formula χ exists such that its target state recursively
satisfies the whole formula E(φ1 χUγ φ2).

Before doing that, to avoid looping in presence of cycles in the model, the fact that this compu-
tation is now in progress must be saved together with its default (temporary) value False (accord-
ing to the least fixed point semantics of the operator) and together with a reference to the current
recursion depth of the evaluation of the formula (line 4O). Then, the search of transitions over
which to apply recursion (lines 41-53) can begin. Notice that the new recursive calls of procedure
EvalExistUntil (lines 44-45) are issued with an incremented RecDepth parameter (the value is
stored in LastDepth) which allows to keep track of the current recursion depth.

If a successful application of recursion is found, then a definitive True result for the evaluation
can be established and such value is immediately saved and returned (lines 47-48). If no successful
transition (or application of recursion) is found, there are two possibilities: either all the False
results returned by the various recursive calls are ‘definitive’ values, in which case the evaluation
definitely returns False, or some of the returned False results are just temporary values actually
depending from outer level recursive evaluations which are still in progress. These temporary values
can be identified because they are associated to the value stored in LastDepth that is lower than the
current value of RecDepth. In this case, just a temporary False value is returned, together with a
MinDepth value corresponding to the outmost level of recursion on which the result depends (lines
55-57).

There are some important aspects, related to the behavior of the update operation that are not
explicitly expressed by the shown algorithm. When a ‘definitive’ False/True value is saved for the
current evaluation at a certain level of recursion depth (e.g. line 59) each other previously saved
temporary value (related to the result of deeper nested recursions) which happens to depend on
the current recursion depth is replaced by the current definitive result. Moreover, at the end of the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:16 Alessandro Fantechi et al.

01 procedure EvalExistUntil(E φ1 χ U γ φ2, CurrentState,EDepth,MaxDepth,
02 in out RecDepth, out Result) is
03 MinDepth, LastDepth: Natural := RecDepth;
04 begin
05 if <E φ1 χ U γ φ2, CurrentState> → True exists then
06 Result := True; -- found definitive True value
07 return;
08 end if;
09 if <E φ1 χ U γ φ2, CurrentState> → False exists then
10 Result := False; -- found definitive False value
11 return;
12 end if;
13 if <E φ1 χ U γ φ2, CurrentState> → <False,somedepth> exists then
14 Result := False; -- found temporary False value
15 RecDepth := somedepth;
16 return;
17 end if;
18 if OutgoingTransitions(CurrentState) is empty then
19 save <E φ1 χ U γ φ2, CurrentState> → False; -- save definitive
20 Result := False;
21 return;
22 end if;
23 Eval(φ1 , CurrentState,EDepth,MaxDepth,Result);
24 if Result = False then
25 save <E φ1 χ U γ φ2, CurrentState> → False; -- save definitive
26 return;
27 end if;
28 -- check the termination condition
29 Result := False;
30 foreach Transition in OutgoingTransitions(CurrentState) do
31 if Satisfies(Transition.Label, γ) then
32 Eval(φ2, Transition.TargetState,EDepth+1,MaxDepth,Result);
33 if Result = True then
34 save <E φ1 χ U γ φ2, CurrentState> → True; -- save definitive
35 return;
36 end if;
37 end if;
38 end loop;
39 -- check for possible continuation of recursion
40 save <E φ1 χ U γ φ2, CurrentState>→ <False,RecDepth>; -- save temporary
41 foreach Transition in OutgoingTransitions(CurrentState) do
42 if Satisfies(Transition.Label, χ) then
43 LastDepth := RecDepth+1;
44 EvalExistUntil(E φ1 χ U γ φ2,
45 Transition.TargetState,EDepth+1,MaxDepth,LastDepth,Result);
46 if Result = True then
47 save <E φ1 χ U γ φ2, CurrentState> → True; -- save definitive
48 return;
49 elsif Result = False and LastDepth < MinDepth then
50 MinDepth := LastDepth;
51 end if;
52 end if;
53 end loop;
54 if MinDepth < RecDepth then
55 update <E φ1 χ U γ φ2,CurrentState>→ <False,MinDepth>; -- temporary
56 RecDepth := MinDepth;
57 return;
58 else
59 update <E φ1 χ U γ φ2, CurrentState> → False; -- save definitive
60 return;
61 end if;
62 end EvalExistUntil;

Fig. 5. Existentially quantified ‘until’ operator evaluation schema.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:17

Table II. COWS syntax

Killer labels: k, k′, . . . Elements (Killer labels/Variables/Names): e, e′, . . .
Expressions: ε, ε′, . . . Variables/Names: u, u′, . . .

Variables: x, y, . . . Variables/Values: w, w′, . . .
Values: v, v′, . . .

Names: n, m, . . . Endpoints:
Partners: p, p′, . . . without variables: p • o, . . .
Operations: o, o′, . . . may contain variables: u • u′, . . .

Services: Receive-guarded choice:
s ::= g ::=

kill(k) (kill) 0 (nil)
| u • u′!ε̄ (invoke) | p • o?w̄ . s (receive)
| g (receive-guarded choice) | g + g (choice)
| s | s (parallel composition)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

loop, whenever an updated, but still temporary, value replaces (line 55) the initial temporary value
(line 4O) for the current computation (hence the initially saved RecDepth is replaced with a smaller
MinDepth), also all the other already saved temporary results which refer to the original value of
RecDepth must be updated by replacing this value with the value of MinDepth.

When input models are finite states, the overall complexity of the SocL model-checking algo-
rithm, in case of non-parametric formulae, is comparable to that of the best on-the-fly model check-
ing algorithms [Stirling and Walker 1989; Bhat et al. 1995; Fernandez et al. 1996]: it is then linear
with respect to the size of the state space and the number of operators in the formula. Of course, in
case of parametric formulae, it will also depend on the number of instantiations of all parametric
subformulae.

4. COWS: A CALCULUS FOR ORCHESTRATION OF WEB SERVICES

COWS is a process calculus for specifying and combining services that has been recently developed
inside the EU project Sensoria. Its design has been influenced by some principles underlying the
OASIS standard WS-BPEL for orchestration of web services. In fact, COWS allows concurrent ser-
vice instances to share (part of) the state, permits programming stateful interactions by correlating
different actions, and enables management of long-running transactions.

In this section, we report the syntax of COWS and explain its semantics in a step-by-step fashion
while modelling a bank service which is part of the automotive scenario of Section 6. We refer
the interested reader to Tiezzi [2009] for an in-depth formal account of COWS’s semantics, for
many examples illustrating peculiarities and expressiveness of the calculus, and for comparisons
with other process-based and orchestration formalisms.

4.1. Syntax

The syntax of COWS is presented in Table II. It is parameterized by three countable and pairwise
disjoint sets: the set of (killer) labels, the set of values and the set of variables. The set of values is
left unspecified; however, we assume that it includes the set of names, mainly used to represent part-
ners and operations. The language is also parameterized by a set of expressions, whose exact syntax
is deliberately omitted. We just assume that expressions contain, at least, values and variables, but
do not include killer labels (that, hence, cannot be communicated). Partner names and operation
names can be combined to designate endpoints, written p • o, and can be communicated, but dynam-
ically received names can only be used for service invocation. Indeed, endpoints of receive activities
are identified statically because their syntax only permits using names and not variables.

Notation ·̄ stands for tuples of homogeneous elements, e.g. x̄ is a compact notation for denoting
the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). As in the logic, we assume that variables in the same

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:18 Alessandro Fantechi et al.

tuple are pairwise distinct. We adopt the following conventions about the operators precedence:
monadic operators bind more tightly than parallel composition, and prefixing more tightly than
choice. We will omit trailing occurrences of 0, writing e.g. p • o?w̄ instead of p • o?w̄.0, and write
[e1, . . . , en] s in place of [e1] . . . [en] s. We will write I , s to assign a name I to the term s.

The delimitation operator permits to define and restrict the scope of an element: [e] s binds the
element e in the scope s. It is the only binding construct. In fact, to enable concurrent threads within
each service instance to share (part of) the state, receive activities in COWS bind neither names
nor variables, which is different from most process calculi. Instead, the range of application of the
substitutions (of variables with values) generated by communication is regulated by the delimitation
operator, that additionally permits to generate ‘fresh’ names (as the restriction operator of the π-
calculus) and to delimit the field of action of kill activities. Thus, the occurrence of an element is
free if it is not under the scope of a delimitation for it. Two terms are alpha-equivalent if one can be
obtained from the other by consistently renaming bound elements. As usual, we identify terms up
to alpha-equivalence.

4.2. Example: a bank service

To informally explain the semantics of COWS we now model the bank service that is part of the
case study described in Section 6. The COWS specification of the bank service is composed of two
persistent subservices: BankInterface, that is publicly invocable by customers, and CreditRating,
that instead is an ‘internal’ service that can only interact with BankInterface. To show the behaviour
of the bank service we also consider the terms Client1 and Client2 that model a pair of mutually de-
pendent requests for charging a customer’s credit card with some amount. This mutual dependence
is given by the requirement that both clients must agree to charge the credit card in order for the
operation to successfully complete: if one of the charge requests by Client1 and Client2 fails, no
effect is produced, with a sort of ‘transactional’ behaviour.

Thus, the COWS term representing the considered scenario is

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating) | [k] (Client1 | Client2)

The main operator is the parallel composition | that allows the different components to be con-
currently executed and to interact with each other. The first occurrence of the delimitation operator
[] is used to declare that ocheck, ocheckOK and ocheckFail are (operation) names known to the bank
subservices, and only to them. The replication operator ∗ , that spawns in parallel as many copies of
its argument term as necessary, is exploited to model the fact that BankInterface and CreditRating
can create multiple instances to serve several requests simultaneously. The second delimitation de-
clares the killer label k: it is shared by both clients and is used to coordinate them for ensuring the
transactional behaviour we mentioned above.

BankInterface and CreditRating are defined as follows:

BankInterface , [xcust, xcc, xamount, xid]
pbank • ocharge?〈xcust, xcc, xamount, xid〉.
(pbank • ocheck!〈xid, xcc, xamount〉
| pbank • ocheckFail?〈xid〉. xcust • ochargeFail!〈xid〉
+ pbank • ocheckOK?〈xid〉.

[k′] (xcust • ochargeOK!〈xid〉 | pbank • orevoke?〈xid〉.kill(k′)))

CreditRating , [xid, xcc, xa]
pbank • ocheck?〈xid, xcc, xa〉.
[p, o] (p • o!〈〉 | p • o?〈〉. pbank • ocheckOK!〈xid〉

+ p • o?〈〉. pbank • ocheckFail!〈xid〉)
Let us start commenting on BankInterface. The leading receive-guarded prefix operator pbank •

ocharge?〈xcust, xcc, xamount, xid〉. means that each interaction with the bank starts with a receive activ-
ity of the form pbank • ocharge?〈xcust, xcc, xamount, xid〉 corresponding to reception of a request emitted

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:19

by one of the clients. Receives, together with invokes, written as p • o!〈ε1, . . . , εm〉, are the basic com-
munication activities provided by COWS. Besides input parameters and sent values, they indicate an
endpoint, i.e. a pair composed of a partner name p and an operation name o, through which commu-
nication should occur. p • o can be interpreted as a specific implementation of operation o provided
by the service identified by the logic name p. An inter-service communication takes place when the
arguments of a receive and of a concurrent invoke along the same endpoint do match, and causes
substitution of the variables arguments of the receive with the corresponding values arguments of
the invoke (within the scope of variables declarations). For example, the receive along the endpoint
pbank • ocharge initializes the variables xcust, xcc, xamount and xid, declared local to BankInterface by
the delimitation operator, with data provided by one of the clients.

Whenever prompted by a client request, BankInterface creates an instance to serve that specific
request and is immediately ready to concurrently serve other requests. Each instance forwards the
request to CreditRating, by invoking the ‘internal’ operation ocheck through the invoke activity pbank •

ocheck!〈xid, xcc, xamount〉, then waits for a reply on one of the other two internal operations ocheckOK
and ocheckFail, by exploiting the receive-guarded choice operator + , and finally sends the reply back
to the client by means of a final invoke activity using the partner name of the client stored in the
variable xcust. In case of a positive answer, the possibility of revoking the request through invocation
of operation orevoke is enabled (in fact, should the other request fail, the customer charge operation
should be cancelled in order to implement the wanted transactional behaviour). Revocation causes
deletion of the reply to the client, if this has still to be performed. Indeed, execution of kill activities
like kill(k′) causes termination of all parallel terms inside the enclosing [k′] operator, that stops
the killing effect. Notably, if an invocation along the endpoints pbank • ocheckOk, pbank • ocheckFail or
pbank • orevoke takes place after a certain number of service instances have been created, then it could
be received by any of these instances. Hence, to synchronise with the proper instance, an appropriate
customer datum stored in the variable xid is exploited as a correlation value.

Service CreditRating takes care of checking clients’ requests and decides if they can be autho-
rized or not. For the sake of simplicity, the choice between approving or not a request is left here
completely non-deterministic.

The customer processes are defined as follows:

Client1 , pbank • ocharge!〈pC , 1234, 100, id1〉
| pC • ochargeOK?〈id1〉. s1 + pC • ochargeFail?〈id1〉 .({|pbank • orevoke!〈id2〉|} | kill(k))

Client2 , pbank • ocharge!〈pC , 1234, 200, id2〉
| pC • ochargeOK?〈id2〉. s2 + pC • ochargeFail?〈id2〉 .({|pbank • orevoke!〈id1〉|} | kill(k))

The two processes perform two requests in parallel for charging the credit card 1234 with the
amounts 100 and 200. Two different values, id1 and id2, are used to correlate the response mes-
sages to the corresponding requests, and to coordinate compensation behaviours for revoking credit
card payments if one of the two requests fails. Note that to this purpose Client1 knows id2 and vicev-
ersa, and this implements the required mutual dependence. Clienti’s continuation, for i ∈ {1, 2}, is
si in case the operation is authorized, otherwise it consists of invoking the revocation operation of
the bank instance corresponding to the other client’s request and killing the other client’s remaining
behaviour by executing a kill activity. As we said before, execution of kill(k) forces termination of
all parallel terms inside the enclosing [k] . It is also worth noticing that kill(k) runs eagerly with
respect to the other parallel activities within the enclosing [k] . However, critical activities, such as
e.g. the compensation activities pbank • orevoke!〈id1〉 and pbank • orevoke!〈id2〉, can be protected from
the effect of a forced termination by application of the protection operator {| |}.
4.3. Computational steps and LTSs

The operational semantics of the language assigns an LTS to each COWS term (without free vari-
ables/labels). To define such LTSs, a set of inference rules is used that explain how terms can interact
with their execution environment and which computational activities, i.e. forced termination or in-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:20 Alessandro Fantechi et al.

ternal communication, their subterms can be engaged in. The LTS of a term has hence the term
itself as initial state, the states reachable from the initial state through sequences of computational
steps as set of states, and the set of such computational steps as transition relation (therefore, the
operational semantics follows a ‘reduction’ style). As an important consequence of only consider-
ing actual computational steps instead of all potential steps, we have that in many cases the LTS
associated to a service is finite-state, even when the replication operator is used to define persis-
tent services (in particular, all LTSs considered in this paper are finite-state). Indeed, while service
providers are often persistent, their clients usually have finite behaviours and make a finite number
of requests, hence their interactions produce a finite number of service instances and all such terms
are involved in a finite number of finite length computations.

An excerpt of the LTS associated by the operational semantics to the COWS term modelling
the scenario illustrated in Section 4.2 is shown in Figure 6. In particular, transitions correspond to
computational steps and are hence labelled by actions of the form †, in case of forced terminations,
or of the form p •o v̄, in case of communication of values v̄ along the endpoint p • o. In this figure,
as well as in the Figures 7–10, arrows of the form −→ denote individual computational steps and
arrows of the form denote further unspecified computational steps.

As an example, consider the computation where Client1’s request succeeds while Client2’s re-
quest fails (the states it involves are highlighted in the figure by a dark gray background). Af-
ter the instances of CreditRating communicate these decisions to the corresponding instances of
BankInterface, the term describing the scenario is

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating
| [k′] (pC • ochargeOK!〈id1〉 | pbank • orevoke?〈id1〉.kill(k′))
| pC • ochargeFail!〈id2〉)

| [k] (pC • ochargeOK?〈id1〉. s1 + pC • ochargeFail?〈id1〉 .({|pbank • orevoke!〈id2〉|} | kill(k))
| pC • ochargeOK?〈id2〉. s2 + pC • ochargeFail?〈id2〉 .({|pbank • orevoke!〈id1〉|} | kill(k)))

and corresponds to state q18. After pC • ochargeOK!〈id1〉 has been processed by Client1, we are in state
q19 and the above term becomes

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating
| [k′] (pbank • orevoke?〈id1〉.kill(k′))
| pC • ochargeFail!〈id2〉)

| [k] (s1
| pC • ochargeOK?〈id2〉. s2 + pC • ochargeFail?〈id2〉 .({|pbank • orevoke!〈id1〉|} | kill(k)))

After Client2 consumes the invocation pC • ochargeFail!〈id2〉, we are in state q23 and the term becomes:

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating
| [k′] (pbank • orevoke?〈id1〉.kill(k′)))

| [k] (s1
| {|pbank • orevoke!〈id1〉|} | kill(k))

Now, since kill activities must be executed eagerly, the enabled kill(k) is executed leading to state
q24 and the term becomes:

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating
| [k′] (pbank • orevoke?〈id1〉.kill(k′)))

| [k] {|pbank • orevoke!〈id1〉|}
Notably, the invoke activity pbank • orevoke!〈id1〉 is protected and, hence, can still be performed for
compensating the effect of the Client1’s (succeeded) request also after the kill has been executed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:21

q0

pbank •ocharge 〈pC , 1234, 100, id1〉pbank •ocharge 〈pC , 1234, 200, id2〉

q1 q2

pbank •ocheck 〈id1, 1234, 100〉

pbank •ocharge 〈pC , 1234, 200, id2〉 q3

q4

pbank •ocheck 〈id2, 1234, 200〉
pbank •ocheck 〈id1, 1234, 100〉

q5
p •o 〈〉

q6

pbank •ocheck 〈id2, 1234, 200〉

q8

q9

pbank •ocheck 〈id1, 1234, 100〉

q10

p •o 〈〉

q13

pbank •ocheckFail 〈id2〉

q15

pbank •ocheckOk 〈id1〉

q18

pC •ochargeOK 〈id1〉

q19

pC •ochargeFail 〈id2〉

q23
†

q24
pbank •orevoke 〈id1〉

q25
†

q26

Fig. 6. LTS for the bank scenario.

Therefore, the term evolves to

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating
| [k′] kill(k′))

| [k] 0

which corresponds to state q25. Finally, after execution of kill(k′) we reach state q26 and get the
stuck term

[ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:22 Alessandro Fantechi et al.

5. CMC: A VERIFICATION ENVIRONMENT FOR COWS SPECIFICATIONS

CMC is a verification environment for SocL formulae over COWS specifications of services. In this
section we illustrate the principles underlying its design and its use.

5.1. From LTS to L2TS

To implement CMC by fully exploiting the model checker engine for SocL, we enrich the LTS
modelling the semantics of a term with a function labelling each state with the set of communication
activities that any active subterm of the COWS term corresponding to that state can potentially
perform immediately. These information, indeed, are not present in the LTSs’ transition relations
which only take into account actual computational steps, but can be easily retrieved from the syntax
of terms. They are important to effectively describe/verify service properties since they correspond
to atomic propositions, in as much as computational steps correspond to actions of the logic. Of
course, the transformation of LTSs into L2TSs preserves the structure (i.e. set of states, initial state
and transition relation) of the original LTS. In particular, for both transition systems, transitions
correspond to computational steps and are hence labelled by actions of the form † or of the form
p •o v̄.

To transform an LTSs into an L2TS we rely on the auxiliary functionL(s), which returns the set of
communication activities that the term s can potentially perform immediately, i.e. not syntactically
preceded by other activities and not preempted by parallel kill activities. Formally, it is inductively
defined as follows:

L(p • o!ε̄) = { p • o!ε̄ } L(p • o?w̄ . s) = { p • o?w̄ } L(g + g′) = L(g) ∪ L(g′)

L(0) = L(kill(k)) = ∅ L({|s|}) = L(∗ s) = L(s) L(s | s′) = L(s) ∪ L(s′)

L([e] s) = L(s) if e , k L([k] s) =

{ L(s) if noKill(s, k)
∅ otherwise

where predicate noKill(s, k) (also exploited by the rules of the COWS’s operational semantics
[Tiezzi 2009]), which holds true if s cannot immediately perform an activity kill(k), is inductively
defined as follows:

noKill(kill(k), k) = false noKill(s | s′, k) = noKill(s, k) ∧ noKill(s′, k)

noKill(kill(k′), k) = true if k , k′ noKill([e] s, k) = noKill(s, k) if e , k

noKill(u • u′!ε̄, k) = true noKill([k] s, k) = true

noKill(g, k) = true noKill({|s|}, k) = noKill(∗ s, k) = noKill(s, k)

All cases of the above definitions are quite straightforward. We only remark that L([k] s) returns ∅
when noKill(s, k) is false because, due to the prioritised semantics of kill activities, the execution of
the communication activities within s is blocked, regardless of such activities are protected or not.

The next example shows how the function L() is exploited during the transformation process to
retrieve from syntactical terms state information to be added to an LTS.

Example 5.1. Consider the following COWS term:

s , p • o!〈v〉 | [x] (p • o?〈x〉 | p • o′?〈x〉. [y] p • o′′?〈x, y〉)

The corresponding LTS and L2TS are as in Figure 7. The LTS on the left hand side says that the
term s can actually perform only the computational step corresponding to the communication of the
value v along the endpoint p • o. However, besides the activities p • o!〈v〉 and p • o?〈x〉, the COWS
term can potentially perform also the receive activity p • o′?〈x〉. Thus, to record this information,
the state q0, corresponding to the term s, of the L2TS on the right hand side is labelled by a set
containing all the three potential activities (since L(s) = { p • o!〈v〉, p • o?〈x〉, p • o′?〈x〉 }). Similarly,
the state q1, corresponding to the term s′ , p • o′?〈v〉. [y] p • o′′?〈v, y〉, is labelled by the merely

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:23

q0

q1

p •o 〈v〉

q0

{ p • o!〈v〉, p • o?〈x〉, p • o′?〈x〉 }

q1

{ p • o′?〈v〉 }

p •o 〈v〉

Fig. 7. From LTS to L2TS.

potential receive activity p • o′?〈v〉 (since L(s′) = { p • o′?〈v〉 }). Notably, the receive p • o′′?〈v, y〉 is
missing in the L2TS because it cannot be immediately performed by the COWS term, neither before
nor after the computation identified by the transition labelled by p •o 〈v〉.

It is worth remarking that, according to the on-the-fly verification approach described in Section 3,
both the LTS and the corresponding L2TS associated to a COWS term are generated on-the-fly, on
demand of the model checking engine. Therefore, depending on the formula to be evaluated, only a
fragment of the overall state space of such models might need to be generated.

5.2. From concrete L2TS to abstract L2TS

Now, consider again the bank service presented in the previous section. Its LTS is shown in Fig-
ure 8, while the associated L2TS is shown in Figure 9. In the Figures 8–10, arrows of the form

denote multi-step computations. Transitions of both systems are labelled by ‘concrete’ in-
formation generated by the operational rules of the calculus. Since we are interested in verify-
ing abstract properties of services, such as those shown in Section 2, we need to abstract away
unnecessary details from the L2TS model of a service. This is done by using a set of suitable
abstraction rules that permit to replace concrete actions on the transitions with ‘abstract’ actions
of SocL, i.e. request(i, c), responseOk(i, c), responseFail(i, c), cancel(i, c) and undo(i, c). Sim-
ilar rules permit to replace the concrete activities labelling the states with predicates of SocL,
e.g. accepting request(i), accepting cancel(i, c), and accepting undo(i, c). Of course, in doing
these further transformations, different concrete actions can be mapped into the same SocL action.
Moreover, the transformations may involve only those concrete actions/activities that are considered
worthwhile to be observed to carry on the analysis of interest. Those that are not replaced by their
abstract counterparts may not be observed.

The abstraction procedure must however preserve those names and values occurring within con-
crete actions/activities of COWS specifications that are important to express properties of service
behaviour. To capture such names and values, transformation rules can make use of ‘metavariables’,
written as names starting with the character “$”; otherwise, they can use the wildcard “ ∗ ”. To
minimise the introduction of new notations, we write v. to indicate that v can be either a value, or
a metavariable, or the wildcard (this notation also applies to tuples, actions and predicates with a
similar meaning). Take also into account that the wildcard can only occur in the left hand side of
the abstraction rules. Formally, abstraction rules follow the templates:

Action p. • o. v̄. → α. (1)
State p. • o. ?w̄. → π. (2)
State p. • o. !v̄. → π. (3)

where α. is a closed action and π. is a closed atomic proposition of the logic SocL (except for,
possibly, the occurrence of some of the metavariables introduced in the left hand side of the same

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:24 Alessandro Fantechi et al.

q0

pbank •ocharge 〈pC , 1234, 100, id1〉pbank •ocharge 〈pC , 1234, 200, id2〉

q1 q2

pbank •ocheck 〈id1, 1234, 100〉 pbank •ocharge 〈pC , 1234, 200, id2〉

q3 q4

pbank •ocheck 〈id2, 1234, 200〉

q5

pC •ochargeOK 〈id1〉 pC •ochargeFail 〈id2〉

q53 q57

Fig. 8. Excerpt of the LTS for the bank scenario.

rule). Rules following the template (1) apply to concrete actions of transitions, while the remaining
ones apply to concrete activities labelling states.

To define the effect of the application of abstraction rules to an L2TS, we exploit an auxiliary,
partial function matcht(,) that checks the matching between tuples of the form (p. , o. , v̄.), drawn
from the left hand sides of abstraction rules, and tuples of the form (p, o, w̄), drawn from concrete
actions/activities, and, in case of success, returns a substitution. This function is defined by the
following rules:

matcht(v, v) = ∅ matcht(∗, v) = ∅ matcht($n, v) = {$n/v}

matcht(∗, x) = ∅
matcht(v.1,w1) = ρ1 matcht(v̄.2, w̄2) = ρ2

matcht((v.1, v̄.2), (w1, w̄2)) = ρ1] ρ2

When using the left hand side of a rule to build the tuple 〈p. , o. , v̄.〉, if any of p. or o. is missing, it is
replaced by the wildcard, while if v̄. is missing, it is replaced by one or more tuples of wildcards of
appropriate length (as drawn from the COWS specification according to the tuples of values that can
be exchanged along the endpoints matching p. • o.). In practice, each abstraction rule applies to the
largest possible set of concrete actions/activities according to function matcht(,). Omitting any of
the elements in the left hand side of the rule corresponds then to enlarging its application domain.

For example, the abstract L2TS of the bank scenario shown in Figure 10 is obtained by applying
to the concrete L2TS of Figure 9 the following abstraction rules:

Action pbank • ocharge, 〈∗, ∗, ∗, $id〉 → request(charge, $id)
Action ∗ • ochargeOK , 〈$id〉 → responseOk(charge, $id)
Action ∗ • ochargeFail, 〈$id〉 → responseFail(charge, $id)

State pbank • ocharge? → accepting request(charge)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:25

q0

{ pbank • ocharge!〈pC , 1234, 100, id1〉,
pbank • ocharge!〈pC , 1234, 200, id2〉,
pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

pbank •ocharge 〈pC , 1234, 100, id1〉pbank •ocharge 〈pC , 1234, 200, id2〉

q1

{ pbank • ocharge!〈pC , 1234, 100, id1〉,
pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

q2

{ pbank • ocharge!〈pC , 1234, 200, id2〉,
pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

pbank •ocheck 〈id1, 1234, 100〉 pbank •ocharge 〈pC , 1234, 200, id2〉

q3

{ pbank • ocharge!〈pC , 1234, 200, id2〉,
pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

q4

{ pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

pbank •ocheck 〈id2, 1234, 200〉

q5

{ pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . .}

pC •ochargeOK 〈id1〉 pC •ochargeFail 〈id2〉

q53

{ pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }
q57

{ pbank • ocharge?〈xcust , xcc, xamount , xid〉, . . . }

Fig. 9. Excerpt of the L2TS for the bank scenario with concrete labels.

Thus, as a consequence of the application of the first rule, the concrete action pbank •

ocharge 〈pC , 1234, 200, id2〉 that matches the left hand side of the rule and produces the substitu-
tion {$id/id2}, is replaced by the SocL abstract action request(charge, id2) that is obtained by
applying the produced substitution to the right hand side of the rule. Similarly, as a consequence
of the application of the last rule, the concrete action pbank • ocharge?〈xcust, xcc, xamount, xid〉 labelling
state q0 and matching the left hand side of the rule is replaced by the SocL atomic proposition
accepting request(charge). Notably, concrete actions corresponding to (internal) communications
between the bank subservices are not transformed and, thus, become unobservable (the correspond-
ing action in the abstract L2TS is ∅).

Of course, the sets of transformation rules are not defined once and for all, but are application-
dependent and, thus, must be defined from time to time. Indeed, they embed information, like the
intended semantics of each action and the predicates on the states, that are not coded into the COWS
specification. Therefore, to verify abstract properties of a service-oriented system, one has to pro-
vide a specification of the system consisting of a COWS term and a set of abstraction rules; then,
the construction of the associated L2TS can be automatically performed. One advantage of keep-
ing the specification separated in two parts is that, once the concrete part (i.e. the COWS term) is

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:26 Alessandro Fantechi et al.

q0

{ accepting request(charge) }

{ request(charge, id1) }{ request(charge, id2) }

q1

{ accepting request(charge) }
q2

{ accepting request(charge) }

∅ { request(charge, id2) }

q3

{ accepting request(charge) }
q4

{ accepting request(charge) }

∅

q5

{ accepting request(charge) }

{ responseOk(charge, id1) } { responseFail(charge, id2) }

q53

{ accepting request(charge) }
q57

{ accepting request(charge) }

Fig. 10. Excerpt of the L2TS for the bank scenario with abstract labels.

given, many different abstractions could be considered in order to analyse the system with respect to
different views (possibly, at different levels of abstraction). Notably, our notion of abstraction only
aims at making the specification and analysis of service-oriented systems simpler and more flexible,
differently from homonymous approaches (see, e.g., Clarke et al. [1994], Dams et al. [1997]) that
instead aim at reducing the state space of models. Indeed, as we said before, our abstraction pre-
serves the structure of the model under analysis, i.e. the concrete LTS and its corresponding abstract
L2TS have the same numbers of states and edges.

5.3. COWS model checking

In the end, CMC embeds the SocL model checker presented in Section 3 below a layer that auto-
mates the (on-the-fly) generation of abstract L2TSs from services described in COWS, thus enabling
the verification of SocL formulae over COWS terms (see Figure 11). By the way, CMC can also be
used as an interpreter for COWS: it takes a COWS term as an input and analyses it syntactically;
if the analysis succeeds, the tool allows the user to interactively explore the computations arising
from the term. Figure 12 shows a screenshot of the CMC’s interface, where a COWS term, a set of
abstraction rules and a SocL formula are represented.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:27

Fig. 11. An high-level overview of CMC.

A prototypical version2 of the tool can be experimented via the web interface at address
http://fmt.isti.cnr.it/cmc/, or by downloading from the same address a binary distribu-
tion (for Linux, Solaris, Windows or Mac OS X platforms).

The CMC core consists of a command-line-oriented version of the model checker, which is a
stand-alone program written in Ada. This executable core is wrapped with a set of CGI scripts
handled by a web server to provide it with an HTML-oriented GUI. The core has also been wrapped
into an appropriate set of Java classes, thus obtaining a Java stand-alone application equipped with
an handy graphical interface and a plugin for the Eclipse environment.

The current version of CMC is not targeted to the verification of extremely large systems, al-
though our tool can perform an exhaustive state analysis of systems with several tens of thousands
of states. Notably, due to the on-the-fly nature of its model checking procedure, CMC does not
necessarily need to generate and explore the whole state space. This feature improves CMC perfor-
mance and makes it able to also deal with infinite state systems.

6. CASE STUDY: AN AUTOMOTIVE SCENARIO

In this section, we introduce the case study that will be used to illustrate our verification methodol-
ogy. We start by providing an informal description of the scenario by also making use of UML-like
diagrams, then we present a formal specification in COWS.

6.1. Scenario description

The scenario is inspired to one of the case studies in the area of automotive systems defined and
analysed within the EU project Sensoria [Koch 2007] and describes some functionalities that will
be likely available in the near future. A brief description follows.

While a driver is on the road with her/his car, the vehicle’s sensors monitor reports
a severe failure, which results in the car being no longer driveable. At this point, the
failure handler installed in the in-vehicle computer system invokes an assistance service

2At the moment of writing, the current version of CMC is v0.7q.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:28 Alessandro Fantechi et al.

Fig. 12. A screenshot of CMC web interface.

that, in its turn, contacts some garage, car rental and towing truck services, and tries to
order them. To be authorised to order services, the assistance service has to deposit on
behalf of the owner of the car a security payment, which will be given back if ordering
the services fails.

A UML-like activity diagram of the assistance service using UML4SOA, an UML profile for
service-oriented systems [Mayer et al. 2008], is shown in Figure 13. As usual, bars denote fork and
join nodes, while diamonds denote decision and merge nodes. The assistance service is instantiated
by a request from an in-vehicle computer system, received through the UML action SevereFail-
ureAssistance, and consequently orchestrates the other services to reach its goal. The request is
uniquely identified by the value of the input parameter id, which is subsequently used for correla-
tion purposes. Then, the created instance invokes the bank to charge the driver’s credit card with the
security deposit amount. This is modelled by the action CardCharge for charging the credit card
whose number is provided as an output parameter of the action call. If the credit card charge fails
(because, e.g., there are not enough funds in the driver’s bank account), the driver is informed by
means of the FailureNotification action.

Services ordering is modelled by the UML actions OrderGarage, OrderTowTruck and RentCar.
When the assistance service makes an appointment with the garage, the diagnostic data are auto-
matically transferred to the garage, which could then be able, e.g., to identify the spare parts needed

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:29

Fig. 13. The assistance service.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:30 Alessandro Fantechi et al.

to perform the repair. If the order of the garage fails, the assistance service tries to make an appoint-
ment with the rental car service, by indicating the location of the stranded vehicle, where the car has
to be handed over to the driver. Instead, if the order of the garage succeeds, the service concurrently
tries to make an appointment with the rental service, by indicating the garage location as destination
for the rental car, and with the towing service, providing the locations of the stranded vehicle and of
the garage in order to tow the vehicle to the garage.

Besides interactions among services, the workflow described in Figure 13 also includes activi-
ties using concepts developed for long running business transactions (in e.g. OASIS WSBPEL TC
[2007]). These activities entail fault and compensation handling, sort of specific activities attempt-
ing to reverse the effects of previously committed activities, which are an important aspect of SOC
applications. According to the UML4SOA profile, the installation of a compensation handler (repre-
sented by a dashed box) is modelled by a dashed edge labelled by the stereotype�compensation�,
and its activation by an activity labelled by �compensate�. Specifically, in the considered sce-
nario:

— the security deposit payment charged to the driver’s credit card must be revoked if ordering the
services completely fails, i.e. both garage/tow truck and car rental services reject the requests;

— the garage appointment has to be cancelled, if ordering a tow truck fails;
— the rental car delivery has to be redirected to the stranded car’s actual location, if ordering a

garage fails or a garage order cancellation is requested;
— instead, if ordering the car rental fails, it should not affect the tow truck and garage orders.

6.2. COWS specification

The automotive scenario can be modelled by the following COWS term:

Car1 | Car2 | Assistance | Bank | OnRoadRepairServices

where, to better illustrate the use of correlation, we consider two cars reporting a severe failure. No-
tably, Bank is the COWS term [ocheck, ocheckOK , ocheckFail] (∗BankInterface | ∗CreditRating) defined
in Section 4.2.

The COWS term Cari representing an in-vehicle computer system is defined as follows:

SensorsMonitori | GpsSystemi | FailureHandleri

When a severe failure (e.g. an engine failure) occurs, a signal (raised by SensorsMonitori) trig-
gers the execution of the FailureHandleri and activates the corresponding ‘recovery’ service.
FailureHandleri, the most important component of the in-vehicle platform, is

∗ [k, xdiagnosticData] (pcar i • oengineFailure?〈xdiagnosticData〉. sengfail
+ pcar i • olowOilFailure?〈xdiagnosticData〉. slowoil + . . .)

This term picks one of those alternative recovery behaviours whose execution can start immediately.
The recovery behaviour sengfail executed when an engine failure occurs is

pgps i • oreqLocation!〈idi〉
| [xcarLocation] pcar i • orespLocation?〈idi, xcarLocation〉.

(passistance • osevereFailure!〈pcar i, idi, xcarLocation, xdiagnosticData, ccNumi〉
| [x f ailure] pcar i • ofailureNotification?〈xfailure, idi〉.kill(k)
| [xgarageAndTowTruckResponse, xgarageInfo, xtowTruckInfo]

pcar i • ogarageAndTowTruckNotification?〈xgarageAndTowTruckResponse, xgarageInfo, xtowTruckInfo, idi〉.
passistance • ogarageAndTowTruckNotificationAck!〈idi〉

| [xrentalCarResponse, xrentalCarInfo]
pcar i • orentCarNotification?〈xrentalCarResponse, xrentalCarInfo, idi〉.

(passistance • orentCarNotificationAck!〈idi〉 | pcar i • orentalCarRedirected?〈idi〉))

Basically, the recovery service contacts GpsSystemi, to get the car’s location, invokes the Assistance
service, by providing its partner name pcar i, a correlation identifier idi, the car’s location (stored in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:31

xcarLocation), the diagnostic data (stored in xdiagnosticData) and the driver’s credit card number ccNumi,
and, finally, waits for the messages notifying the positive or negative outcomes of the request pro-
cessing. For the sake of presentation, we relegate the specification of the remaining components of
the in-vehicle platform, i.e. SensorsMonitori and GpsSystemi, to Fantechi et al. [2010].

The COWS term Assistance, modelling the assistance service, is defined as follows:

∗ [xcar, xid, xcarLocation, xdiagnosticData, xccNum]
passistance • osevereFailure?〈xcar, xid, xcarLocation, xdiagnosticData, xccNum〉.

(pbank • ocharge!〈passistance, xccNum, amount, xid〉
| passistance • ochargeFail?〈xid〉.

xcar • ofailureNotification!〈noFunds, xid〉
+ passistance • ochargeOK?〈xid〉.

(Ordering | passistance • oundo?〈cardCharge, xid〉. pbank • orevoke!〈xid〉))

The replication operator is used here for specifying that the assistance service is persistent, i.e. it is
capable of creating multiple instances to serve several requests simultaneously. Once instantiated,
the service contacts the service Bank to charge the driver’s credit card with a security amount.
Whenever charging the credit card fails, the service sends a notification message to the invoking
car and terminates. Otherwise, it installs a compensation handler that takes care of revoking the
credit card charge, and proceeds with the ordering phase. Activation of the compensation activity
requires a signal cardCharge (i.e. an internal message identified by xid to guarantee uniqueness)
along passistance • oundo and, as we will see soon, takes place whenever both garage and car rental
orders fail.

Ordering tries to order three suitable on road services (i.e. Garagei, TowTruckj and RentalCark),
by first contacting the garage and, then, the car rental and (possibly) the tow truck. It is defined as
follows:

[xgarageLocation, xgarageInfo]
(pgarage i • oorderGarage!〈passistance, xdiagnosticData, xid〉
| passistance • oorderGarageFail?〈xgarageInfo, xid〉.

(xcar • ogarageAndTowTruckNotification!〈fail, xgarageInfo, null, xid〉
| passistance • ogarageAndTowTruckNotificationAck?〈xid〉.

(RentalCarOrderingatStrandedCar
| passistance • oorderRentCarFail?〈xid〉. passistance • oundo!〈cardCharge, xid〉))

+ passistance • oorderGarageOK?〈xgarageLocation, xgarageInfo, xid〉.
(passistance • oundo?〈orderGarage, xid〉.

(pgarage i • ocancel!〈xid〉 | passistance • oundo!〈rentCar, xid〉)
| TowTruckOrdering | RentalCarOrderingatGarage
| passistance • oend?〈xid〉. passistance • oend?〈xid〉.

passistance • oorderTowTruckFail?〈xid〉.
(passistance • oundo!〈orderGarage, xid〉
| passistance • oorderRentCarFail?〈xid〉.

passistance • oundo!〈cardCharge, xid〉)))

If ordering the garage fails, the rental car service is invoked by indicating that the rental car has to
be handed over to the driver at the stranded vehicle location (term RentalCarOrderingatStrandedCar).
Whenever also ordering the rental car fails (indicated by the receipt of a signal along the end-
point passistance • oorderRentCarFail), the compensation of the credit card charge is invoked by send-
ing a signal cardCharge along the endpoint passistance • oundo. Otherwise, in case of success of
the garage ordering, the tow truck and rental car (to be handed over at the garage location, term
RentalCarOrderingatGarage) orderings concurrently start. Moreover, a compensation handler is in-
stalled; it will be activated whenever tow truck ordering fails and, in that case, attempts to cancel
the garage order (by invoking operation ocancel) and to compensate the rental car order (by sending a
signal rentCar along the endpoint passistance • oundo). Finally, when both ordering activities terminate

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:32 Alessandro Fantechi et al.

(the endpoint passistance • oend is used to appropriately synchronise their terminations), if ordering the
tow truck failed, the compensation of the garage order is invoked, and whenever also ordering the
rental car failed, also the compensation of the credit card charge is activated.

TowTruckOrdering is simply defined as follows:

[xtowTruckInfo]
(ptowTruck j • oorderTowTruck!〈passistance, xcarLocation, xgarageLocation, xid〉
| passistance • oorderTowTruckFail?〈xtowTruckInfo, xid〉.

(xcar • ogarageAndTowTruckNotification!〈fail, xgarageInfo, xtowTruckInfo, xid〉
| passistance • ogarageAndTowTruckNotificationAck?〈xid〉.

(passistance • oorderTowTruckFail!〈xid〉 | passistance • oend!〈xid〉))
+ passistance • oorderTowTruckOK?〈xtowTruckInfo, xid〉.

(xcar • ogarageAndTowTruckNotification!〈ok, xgarageInfo, xtowTruckInfo, xid〉
| passistance • ogarageAndTowTruckNotificationAck?〈xid〉. passistance • oend!〈xid〉))

while RentalCarOrderingatGarage is:

[xrentalCarInfo]
(prentalCar k • orentCar!〈passistance, xgarageLocation, xid〉
| passistance • orentCarFail?〈xrentalCarInfo, xid〉.

(xcar • orentCarNotification!〈fail, xrentalCarInfo, xid〉
| passistance • orentCarNotificationAck?〈xid〉.

(passistance • oorderRentCarFail!〈xid〉 | passistance • oend!〈xid〉))
+ passistance • orentCarOK?〈xrentalCarInfo, xid〉.

(passistance • oundo?〈rentCar, xid〉.
(prentalCar k • oredirect!〈xcarLocation, xid〉 | xcar • orentalCarRedirected!〈xid〉)

| xcar • orentCarNotification!〈ok, xrentalCarInfo, xid〉
| passistance • orentCarNotificationAck?〈xid〉. passistance • oend!〈xid〉))

The term RentalCarOrderingatStrandedCar is defined similarly; the major difference is that the rental
car is requested to be handed over at the stranded vehicle location rather than at the garage one.

OnRoadRepairServices results from the composition of various on road services and is

Garage1 | Garage2 | TowTruck1 | TowTruck2 | RentalCar1 | RentalCar2

Garage services can be defined as follows

Garagei , ∗ [xcust, xdata, xid]
pgarage i • oorderGarage?〈xcust, xdata, xid〉.

(pgarage i • ocheckOK!〈xid〉 | pgarage i • ocheckFail!〈xid〉
| pgarage i • ocheckFail?〈xid〉. xcust • oorderGarageFail!〈garageFailureInfoi, xid〉
+ pgarage i • ocheckOK?〈xid〉.

[k] (xcust • oorderGarageOK!〈garageLocationi, garageInfoi, xid〉
| pgarage i • ocancel?〈xid〉.kill(k)))

where, for simplicity, success or failure of garage orders is modelled by means of a non-deterministic
choice. The other on road services can be modelled in a similar way.

The complete specification, written in the ‘machine readable’ syntax accepted by CMC and in-
cluding the services not explicitly shown in this section, can be found in Fantechi et al. [2010]. The
corresponding LTS, analysed in the next section, has about 50000 states.

7. ANALYSIS OF THE CASE STUDY

In this section, we demonstrate feasibility and effectiveness of our methodology by using it to anal-
yse the automotive scenario specified in the previous section. Firstly, we verify over the COWS
specification of the scenario the abstract properties of services introduced in Section 1 and formal-
ized as SocL formulae in Section 2. Then, by applying a different set of abstraction rules, we target

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:33

Table III. Assistance service verification results

Property Validity States Execution Time
(1) Available true 48627 4m 41s
(2) Parallel true 48627 4m 39s
(3) Sequential false 11 0m 00.05s
(4) One-shot false 11 0m 00.05s
(5) Off-Line false 9860 0m 03s
(6) Cancelable false 11 0m 00.05s
(7) Revocable false 48627 4m 39s
(8) Responsive true 48627 4m 39s
(9) Single-response false 441 0m 00.2s
(10) Multiple-response false 6829 0m 32s
(11) No-response false 77 0m 00.05s
(12) Reliable false 5911 0m 26s
All formulae (1)..(12) in a single session - 48627 4m 51s

our analysis to specific services of the scenario (e.g. the bank service). Finally, by changing again
the abstraction rules, we focus on low-level service behaviours, such as compensation handling.

7.1. Analysis of service properties

We start the analysis of the automotive scenario by verifying if its main service, i.e. the Assistance
service, enjoys the abstract properties expressed as SocL formulae in Section 2.3. To this aim, we
focus our observations on the assistance service by providing to CMC the following abstraction
rules:

Action passistance • osevereFailure, 〈∗, $id, ∗, ∗, ∗〉 → request(road assistance, $id)
Action ∗ • ogarageAndTowTruckNotification, 〈ok, ∗, ∗, $id〉 → responseOk(road assistance, $id)
Action ∗ • orentCarNotification, 〈ok, ∗, $id〉 → responseOk(road assistance, $id)
Action ∗ • ofailureNotification, 〈∗, $id〉 → responseFail(road assistance, $id)
Action ∗ • ogarageAndTowTruckNotification, 〈fail, ∗, ∗, $id〉→ responseFail(road assistance, $id)
Action ∗ • orentCarNotification, 〈fail, ∗, $id〉 → responseFail(road assistance, $id)

State passistance • osevereFailure? → accepting request(road assistance)

According to this abstraction, the service accepts a request for the interaction road assistance
when it receives an assistance request message from a car computer system, and replies
with a positive response when an order (of garage/tow truck or of rental car) suc-
ceeds. Indeed, in this case, the driver may continue its journey. If during the request
processing some operation fails (e.g. the bank does not accept the request of charg-
ing the driver’s credit card), the service replies with a negative response. More specifi-
cally, in case of complete success, two actions responseOk(road assistance, $car) are per-
formed and no action responseFail(road assistance, $car) is observed, while, in case of com-
plete failure, some actions responseFail(road assistance, $car) are performed and no action
responseOk(road assistance, $car) is observed. By means of the last abstraction rule, each state
that can accept requests for interaction road assistance is labelled by the atomic proposition
accepting request(road assistance).

Now, by using CMC, we automatically check the SocL formulae (1)..(12) of Section 2.3 over the
obtained abstract L2TS; to do this, we instantiate those generic formulae over the recovery service
by simply replacing any occurrence of the generic interaction name i with road assistance. The
results of the verification of these properties with CMC are summarized in Table III, where we also
report the number of states considered during the evaluation and the execution time taken by CMC
for the evaluation of a formula (as a single formula per CMC session). Time measures appearing in
Tables III-VI have been collected using the command line version of CMC on an Apple MacMini
computer (2 GHz Intel Core 2 Duo and 4 GB of memory).

The results show that the assistance service is available (indeed several instances of the service
can be created at any moment) and, hence, parallel, non sequential and non one-shot. Since there

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:34 Alessandro Fantechi et al.

exist some execution paths that lead to a complete success, i.e. no negative responses are pro-
vided, the service is not off-line. Moreover, since it does not permit cancelling requests and does
not accept undo calls (i.e. the atomic propositions accepting cancel(road assistance, var) and
accepting undo(road assistance, var) do not hold in any state), it is trivially non cancelable and
non revocable. The service also exhibits the desired characteristic to be responsive, i.e. it provides
at least a response, but it is not reliable because it may produce no positive responses to a request.
Finally, the fact that the service is neither single-response nor multiple-response means that in some
cases it provides two responses (e.g. in case of complete success) and in other cases it provides
only one response (e.g. when the credit card charge is denied by the bank).

Due to the on-the-fly nature of the model checker, the verification times depend directly on the
number of generated states: for the presented case study, such times range from a fraction of second
to the order of few minutes. Actually, most of the execution time (about 97%) is being spent by
the activity of generating the abstract L2TS of the model, and only a fraction of the execution time
is directly related to the complexity of the evaluation of the formula. This fact is clearly put in
evidence when all 12 formulae are evaluated inside the same CMC session. In this case, the L2TS is
generated once and used several times for the evaluation of the various formulae. The result of this
experiment is shown in the last line of Table III; we can observe that only 4 minutes and 51 seconds
are needed to evaluate all 12 formulae, versus the 4 minutes and 41 seconds needed to evaluate just
the first formula.

An important role of model checkers is the ability to provide a small fragment of the system state
space as a witness or as a counterexample for a checked property. During the design phase, when
it is likely that the specification still contains errors and precise guidance in identifying them is
essential, the possibility of using the model checker in a way similar to a debugger turns out to be
very useful. In particular, while at validation time a “success” result from the model checker would
be a sufficient response, during development, in case of a “failure” result, the user usually needs
not only a counterexample in term of abstract occurred actions (the labels of our L2TS) but also a
precise view of how the COWS term actually evolved, with an indication of the concrete actions
which were executed at each computational step of the counterexample.

Once a SocL formula has been checked, CMC can provide, if requested, all the details related
to the specific witness/counterexample which explains in depth the result of the evaluation of the
formula. In Figure 14 we show the counterexample generated by CMC for the formula checking
the One-shot property for the assistance service. This formula asserts that in each state reached
after accepting a road assistance request the service is not able to accept further requests. The
counterexample indeed shows how the evaluation of the formula proceeds along the system path
C1 −→ C2 −→ C4 −→ C6 −→ C8, which is a full path, along which a request is accepted (transition
C6 −→ C8), leading to a state (C8) where a further request can be indeed accepted (proposition
accepting request(road assistance) holds). At each evolution step both the abstract and concrete
actions are reported.

We can also investigate in more detail the request-response relation for the assistance service. To
do this, firstly we define a different abstraction of the scenario by providing CMC with the following
rules:

Action passistance • osevereFailure, 〈∗, $id, ∗, ∗, ∗〉
→ request(road assistance, $id)

Action ∗ • ogarageAndTowTruckNotification, 〈ok, ∗, ∗, $id〉
→ responseOk(road assistance, $id, truckGarage)

Action ∗ • orentCarNotification, 〈ok, ∗, $id〉
→ responseOk(road assistance, $id, rentalCar)

Action ∗ • ofailureNotification, 〈∗, $id〉
→ responseFail(road assistance, $id, truckGarage)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:35

The formula:
AG [request(road_assistance,$var)] AG not accepting_request(road_assistance)
is FOUND_FALSE in State C1
This happens because:
C1 --> C2 /* car1.engineFailure!<diagnosticData1>,car1.engineFailure?<DiagnosticData> */
C2 --> C4 /* gpsCar1.reqLocation!<id1>,gpsCar1.reqLocation?<Id> */
C4 --> C6 /* car1.respLocation!<id1, carLocation1>,car1.respLocation?<id1,CarLocation> */
and the formula:
[request(road_assistance,$var)] AG not accepting_request(road_assistance)
is FOUND_FALSE in State C6

This happens because:
C6 --> C8 { request(road_assistance,id1) }

/* assistance.severeFailure!<car1,id1,carLocation1,diagnosticData1,ccNum1>,
assistance.severeFailure?<Car,Id,CarLocation,DiagnosticData,CcNum> */

and the formula:
AG not accepting_request(road_assistance)
is FOUND_FALSE in State C8

because the formula:
not accepting_request(road_assistance)
is FOUND_FALSE in State C8
because the formula:
accepting_request(road_assistance)
is FOUND_TRUE in State C8

Fig. 14. Counterexample for the One-shot property of the assistance service.

Action ∗ • ofailureNotification, 〈∗, $id〉
→ responseFail(road assistance, $id, rentalCar)

Action ∗ • ogarageAndTowTruckNotification, 〈fail, ∗, ∗, $id〉
→ responseFail(road assistance, $id, truckGarage)

Action ∗ • orentCarNotification, 〈fail, ∗, $id〉
→ responseFail(road assistance, $id, rentalCar)

The obtained L2TS differs from that previously introduced for the presence of an additional
argument (that can be either the value truckGarage or the value rentalCar, and indicates which
order succeeds or fails) in the correlation tuple of the response actions. Now, we can verify for
example if, once requested, the service always provides at least one response about the status of the
garage/tow truck ordering and at least one response about the status of the car renting:

(F1) AG [request(road assistance, var)]
AFresponseOk(road assistance,var,truckGarage) ∨ responseFail(road assistance,var,truckGarage) true

(F2) AG [request(road assistance, var)]
AFresponseOk(road assistance,var,rentalCar) ∨ responseFail(road assistance,var,rentalCar) true

Similarly, we can verify that a positive response is never followed by a negative one (and vice
versa) for the same order:

(F3) AG [responseOk(road assistance, var, order)]¬ EFresponseFail(road assistance,var,order) true

(F4) AG [responseFail(road assistance, var, order)]¬ EFresponseOk(road assistance,var,order) true

All these last four properties are indeed satisfied by the second abstraction of the service, as
shown in Table IV.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:36 Alessandro Fantechi et al.

Table IV. Assistance service (detailed view) verification results

Property Validity States Execution Time
(F1) Responsive about garage/tow truck order status true 48627 4m 39s
(F2) Responsive about rental car order status true 48627 4m 41s
(F3) A positive response is never followed by a negative one true 48627 4m 36s
(F4) A negative response is never followed by a positive one true 48627 4m 41s
All formulae (F1)..(F5) in a single session - 48627 4m 58s

7.2. Analysis of other services of the automotive scenario

By changing again the abstraction rules applied to the concrete L2TS modelling the automotive
scenario, we can verify the abstract properties of services introduced in Section 1 (and possibly
some specific variants of them) also over other services appearing in the scenario. For example, we
consider here GpsSystem1, Bank and RentalCar1, and apply the following rules:

Action pgps 1 • oreqLocation, 〈$id〉 → request(gps1, $id)
Action ∗ • orespLocation, 〈$id, ∗〉 → responseOk(gps1, $id)

State pgps 1 • oreqLocation? → accepting request(gps1)

Action pbank • ocharge, 〈∗, ∗, ∗, $id〉 → request(charge, $id)
Action ∗ • ochargeOK , 〈$id〉 → responseOk(charge, $id)
Action ∗ • ochargeFail, 〈$id〉 → responseFail(charge, $id)
Action pbank • orevoke, 〈$id〉 → undo(charge, $id)

State pbank • ocharge? → accepting request(charge)
State pbank • orevoke?〈$id〉 → accepting undo(charge, $id)

Action prentalCar 1 • orentCar, 〈∗, ∗, $id〉 → request(rental car1, $id)
Action ∗ • orentCarOK , 〈∗, $id〉 → responseOk(rental car1, $id)
Action ∗ • orentCarFail, 〈∗, $id〉 → responseFail(rental car1, $id)

State prentalCar 1 • orentCar? → accepting request(rental car1)

For the obtained abstraction of the case study, by using CMC, we verify that the service
GpsSystem1 is available and reliable (properties (F5) and (F6) in Table V, which are expressed as
instantiations of the generic formulae (1) and (12) of Section 2.3 where i has been replaced by
the interaction name gps1). Similarly, we check that services Bank and RentalCar1 are available
(properties (F7) and (F10), instantiations of formula (1) with i replaced by charge and rental car1,
respectively), and that Bank is strong revocable, i.e. after a successful response to a credit card
charge request, the bank accepts undo requests for the successfully completed transaction (property
(F9), instantiation of the strong variant of formula (7) with i replaced by charge). Finally, we
prove that Bank and RentalCar1 satisfy the following formulae stating that, after the services have
accepted a request, they always provide a single (either positive or negative) response:

(F8) AG [request(charge, id)]
AFresponseOk(charge,id) ∨ responseFail(charge,id) ¬ EFresponseOk(charge,id) ∨ responseFail(charge,id) true

(F11) AG [request(rental car1, customer)]
AFresponseOk(rental car1,customer) ∨ responseFail(rental car1,customer)
¬ EFresponseOk(rental car1,customer) ∨ responseFail(rental car1,customer) true

The results of the verification of these properties with CMC are summarized in Table V.

7.3. Orchestration and compensation properties

The properties we have introduced and checked so far imply a sort of black-box view of the indi-
vidual services. In fact, their statements are general and given in terms of the externally observable
behaviour of services. Of course, whenever details on the internal architecture of a given service,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:37

Table V. GpsSystem, Bank and RentalCar1 verification results

Property Validity States Execution Time
(F5) GpsSystem is always available true 48627 4m 42s
(F6) GpsSystem always replies with successful responses true 48627 4m 39s
(F7) Bank is always available true 48627 4m 41s
(F8) Bank is ‘single responsive’ true 48627 4m 42s
(F9) Bank is a strong revocable service true 48627 4m 44s

(F10) RentalCar1 is always available true 48627 4m 41s
(F11) RentalCar1 is ‘single responsive’ true 48627 4m 42s
All formulae (F5)..(F11) in a single session - 48627 5m 21s

in terms of its subcomponents, are known, i.e. when the service is a sort of white-box, further be-
havioural properties can be stated in terms of the behaviours of these subcomponents. In general,
these properties can express desirable orchestration or compensation behaviours. In the following,
we show some examples of formalization of this kind of properties in SocL in the context of our
automotive scenario.

In this analysis of the case study the abstraction is obtained by applying the following rules:

Action $car • oengineFailure → request(road assistance, $car)
Action $car • otowTruckOK → responseOk(road assistance, $car, truckGarage)
Action $car • orentalCarOK → responseOk(road assistance, $car, rentalCar)
Action $car • ochargeFail → responseFail(road assistance, $car, truckGarage)
Action $car • ochargeFail → responseFail(road assistance, $car, rentalCar)
Action $car • onotFound → responseFail(road assistance, $car, truckGarage)
Action $car • onotFound → responseFail(road assistance, $car, rentalCar)
Action $car • ogarageFail → responseFail(road assistance, $car, truckGarage)
Action $car • orentalCarFail → responseFail(road assistance, $car, rentalCar)
Action $car • otowTruckFail → responseFail(road assistance, $car, truckGarage)

Action pbank • ocharge, 〈∗, ∗, ∗, $id〉 → request(charge, $id)
Action ∗ • ochargeOK , 〈$id〉 → responseOk(charge, $id)
Action ∗ • ochargeFail, 〈$id〉 → responseFail(charge, $id)
Action pbank • orevoke, 〈$id〉 → undo(charge, $id)

Action $car • ogarageOK → responseOk(garage, $car)
Action ∗ • ocancel, 〈$car〉 → undo(garage, $car)
Action $car • otowTruckFail → responseFail(towtruck, $car)

The above set of rules is obtained by putting together some of the rules previously introduced with
some new rules for capturing interactions with garage, tow truck and rental car services.

Now, we can check the following properties for the automotive scenario.

— After a successful credit card charge, the rental car will be booked, or the garage and tow truck
will be ordered, or the credit chard charge will be revoked.

(F12) AG [responseOk(charge, id)]
AFresponseOk(road assistance,id,rentalCar) ∨

responseOk(road assistance,id,truckGarage) ∨ undo(charge,id) true

— It cannot happen that, after the driver’s credit card has been charged and some service ordered,
the credit card charge is revoked.

(F13) ¬ EFresponseOk(charge,id)
EFresponseOk(road assistance,id,rentalCar) ∨ responseOk(road assistance,id,truckGarage)

EFundo(charge,id) true

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:38 Alessandro Fantechi et al.

Table VI. Orchestration and compensation properties verification results

Property Validity States Execution Time
(F12) After a successful credit card charge, the rental car will be true 48627 4m 38s

booked, or the garage and tow truck will be ordered, or
the credit chard charge will be revoked

(F13) It cannot happen that, after the driver’s credit card has been true 48627 4m 45s
charged and some service ordered, the credit card charge
is revoked

(F14) It cannot happen that, after the credit card has been charged true 48627 4m 43s
and then revoked, some order succeeds

(F15) After the garage has been booked, if the tow truck service true 48627 4m 44s
is not available then the garage is revoked

All formulae (F12)..(F15) in a single session - 48627 5m 08s

— It cannot happen that, after the credit card has been charged and then revoked, some order
succeeds.

(F14) ¬ EFresponseOk(charge,id) EFundo(charge,id)
EFresponseOk(road assistance,id,rentalCar) ∨ responseOk(road assistance,id,truckGarage) true

— After the garage has been booked, if the tow truck service is not available then the garage is
revoked.

(F15) AG [responseOk(garage, var)]
AG ([responseFail(towtruck, var)] AFundo(garage,var) true)

The results of this verification are summarized in Table VI.

8. FINAL REMARKS AND RELATED WORK

In this section, we review and compare related work, and point out several distinctive aspects of our
approach to the verification of SOC systems.

We use a class of rich L2TSs as semantic model of the behavior of SOC systems. Our L2TSs have
both labelled transitions, typical of LTSs, and labelled states, as in Kripke structures. Usefulness of
such a kind of models has been by now recognized in many contexts. For example, P/T systems
[Kindler and Vesper 1998] have been introduced for Petri Nets modelling, State-Event LTSs [Law-
ford et al. 1996] for real time modeling, Action-and-State Labelled Markov Chains [Baier et al.
2004] for stochastic modeling, Multilabelled Transition Systems [De Nicola and Loreti 2007] for
nominal calculi, Labelled Kripke Structures [Müller-Olm et al. 1999; Chaki et al. 2004; Chaki et al.
2005] for software verification. However, almost all the efforts towards the formal verification of
SOC designs through model checking (a wide survey of the approaches based on WS-BPEL is pre-
sented by van Breugel and Koshkina [2006]), rely on either LTSs or Kripke structures. In this way,
a direct representation of the state/event duality which naturally belongs to SOC systems is lost.
Moreover, our L2TSs are rich because their states are labelled by sets of structured predicates and
their transitions are labelled by sets of structured events. Both events and predicates have the form
of tuples of data values (static labels, integers, boolean, strings, names), which can either result
from the evaluation of statically encoded literals or from the dynamic evaluation of the result of a
computation (as e.g. the dynamic creation of a unique new name).

Our methodology shows a novel use of temporal logics and model checkers. The properties to
be checked are expressed in the logic SocL in a way that can be independent from the model of
the system under analysis; then, through an abstraction process, the model is tailored to be checked
against the properties of interest. In fact, the approach usually followed in concurrency theory (see,
e.g., Moller and Stevens [1999], Victor and Moller [1994], Bouali et al. [1994]) is quite different:
typically the properties are formalized in the logic after the system under consideration has been
specified and in terms of the actions occurring in it, which implicitly requires the effort of identify-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:39

ing the ‘intended meaning’ of the actions occurring in the specification. Instead, we make this effort
explicit by means of the definition of appropriate abstraction rules. This has some important advan-
tages that make our approach largely applicable. On the one hand, the formulae predicating, e.g.,
availability or responsiveness of a service are the same irrespective of the domain of the service,
which may be a bank, a booking service, a shipping service or any other kind of service. On the
other hand, they are also independent of the precise syntax of actions in the service specification.

Another point in favour of our approach is that, since the logic interpretation model (i.e. L2TSs) is
independent from the service specification language (i.e. COWS), it can be easily tailored to be used
in conjunction with other SOC specification languages. To this aim, one has to define first an L2TS-
based operational semantics for the language of interest and then a suitable set of abstraction rules
mapping the concrete actions of the language into the abstract actions of SocL. Therefore, the choice
made in the presented case study, of starting from a UML4SOA description of the architecture
and later proceeding with a COWS formalization, is not a key of our approach, since after the
abstraction step the origin of the concrete model becomes rather irrelevant. For example, ter Beek
et al. [2008] have formalized a similar automotive case study as a set of UML state machines but,
after an appropriate abstraction step, that formalization could undergo the same verifications shown
here.

We have chosen to tailor our methodology to COWS, rather than to a different service specifi-
cation language, for two main reasons. As regards higher level specification languages, equipping
them directly with a semantics in terms of L2TSs would be a very challenging task. Instead, we
could apply our methodology also to some of them, e.g. WS-BPEL, SRML [Fiadeiro et al. 2006]
and UML4SOA [Mayer et al. 2008], by profitably exploiting their encodings into COWS [Lapadula
et al. 2007; Bocchi et al. 2009; Banti et al. 2010]. As regards the many other process calculi for
SOC that have been proposed in the literature (see e.g. [Carbone et al. 2007; Lanese et al. 2007;
Boreale et al. 2008; Bruni et al. 2008; Vieira et al. 2008; Guidi et al. 2006; Busi et al. 2006]), our
favour towards COWS, besides the existence of the above mentioned encodings, is motivated by
its mechanisms and primitives that have proven to be particularly expressive for modelling the be-
haviour of service-oriented applications (see e.g. the scenarios modelled by Lapadula et al. [2008]).
In fact, kill activities are effective for representing ordinary and exceptional process terminations,
while protection permits to naturally represent exception and compensation handlers that are sup-
posed to run after normal computations terminate. Even more crucially, the correlation mechanism
permits to automatically correlate messages belonging to the same interaction, hence avoiding to
mix up messages from different service instances.

Other innovative aspects of our approach are related to SocL. To take advantage of the richness of
the underlying semantic model, that is L2TS, SocL integrates the action paradigm with propositions
that are true over states. This facilitates the task of formalizing properties of service-oriented systems
that in pure action-based or pure state-based logics can be quite cumbersome to write down, since it
is often necessary to specify both state information and evolution in time by actions. SocL has many
commonalities with UCTL [ter Beek et al. 2008], a logic recently designed to express properties of
UML statecharts. In fact, they share the same logical operators, combine the action paradigm with
predicates that are true over states, and are both interpreted on L2TSs by exploiting the same on-the-
fly model checking engine. The main difference with UCTL is that SocL formulae are parameterized
by data values, which make them suitable for effectively expressing service properties that are based
on correlation data. As we mentioned in the Introduction, in the loosely coupled context of SOC
systems, correlation is emerging as a powerful mechanism for linking together actions executed
by a component as part of the same interaction. This simple concept has many instantiations. For
example, in WS-Addressing [Gudgin et al. 2006] correlation data are implicitly dealt with (by the
underlying communication protocols) thus resulting in a less flexible mechanism with respect to that
provided by WS-BPEL, where instead correlation data must be explicitly dealt with by the developer
and must be included among the data used for invoking service operations. These different levels
of abstraction are somehow reflected by the process calculi for SOC proposed so far which may
be roughly classified in session-based, like those proposed by Carbone et al. [2007], Lanese et al.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:40 Alessandro Fantechi et al.

[2007], Boreale et al. [2008], Bruni et al. [2008], Vieira et al. [2008], and correlation-based, like
those proposed by Lapadula et al. [2006], Guidi et al. [2006], Busi et al. [2006], Lapadula et al.
[2007], respectively.

Other relevant proposals of action- and state-based logics are SE-LTL [Chaki et al. 2004] and
SE-AΩ [Chaki et al. 2005]. The former logic is basically an extension of LTL that permits referring
both to states and events of Labelled Kripke Structures. Thus, it mainly differs from SocL because
it is linear-time and is not structured in terms of state, path and action formulae. The authors show
that the problem of verifying SE-LTL formulae over Labelled Kripke Structures can be reduced to
that of verifying LTL formulae over Kripke Structures. Instead, SE-AΩ is a universal branching-
time temporal logic for which an efficient model checking algorithm directly handling both states
and events has been provided. Differently from SocL, negation can be only applied to atomic propo-
sitions, and the set of logic operators is not fixed in advance, since any ω-regular language can serve
as a (universally quantified) temporal operator. Above all, both SE-LTL and SE-AΩ do not permit
specifying parametric formulae.

Actually, most of the technical complexity of our logic comes from its parametricity, which how-
ever has proved to be fundamental to capture correlation data during the evaluation of formulae and,
hence, to link together actions belonging to the same interaction. Anyway, logics with paramet-
ric formulae have already been proposed in the literature. Many logics for expressing properties of
value-passing processes (e.g. Lin [1993], Hennessy and Liu [1995], Dam [1996; 2003], Ferrari et al.
[2003], Yang et al. [2004], Tiu [2005], Mateescu and Thivolle [2008]) permit the instantiation of
subformulae with dynamically generated values. Most of them deal with systems capable of commu-
nicating with their execution context and use parametric formulae that can only express properties
of such communications, i.e. they cannot state properties depending on the messages exchanged
in communications between components of the system under analysis. Moreover, communication
does not exploit pattern-matching which is instead quite useful to check actions correlation in the
service-oriented setting. Differently, in the use of the logic SocL typical of the verifications made
with CMC, properties of internal communications can be stated and verified since the labels of the
corresponding transitions carry sufficient information; instead, potential communications with the
context are not even taken into account because the operational semantics of COWS does not allow
them to take place. We consider this as a major limitation of our approach and plan to overcome it
in the near future (see the next section). Parametric formulae have been also used in the logic for ex-
pressing properties of calculi with process distribution and remote actions introduced by De Nicola
and Loreti [2004], and in its extension with stochastic features [De Nicola et al. 2007]. However,
the parameters are only used in a limited way for capturing source and/or target localities of actions
and making the properties depend on their identities. As far as we know, ours is the first ‘general
purpose’ framework which is able to deal with formulae parametrization and general, dynamic,
on-the-fly, possibly multiple, formulae instantiation.

Two other related logic-based approaches to the specification and verification of service-oriented
systems have been proposed by Fu et al. [2005] and by Abreu et al. [2007]. The first one presents
the static analysis tool WSAT that takes as an input service specifications written in e.g. WS-BPEL
and WSDL, and, after a few translation steps, produces a Promela specification. This specification
is then used as a model to verify the desired system properties, written in LTL, through the model
checker SPIN. While this approach satisfactorily captures the control flows of static web services,
differently from ours it does not handle many important behavioral aspects as e.g. dynamic estab-
lishment of communication channels (to dynamically determine the peer to talk to), dynamic service
instantiation and correlation sets. The second approach employs SRML [Fiadeiro et al. 2006] to
specify service-oriented architectures and introduces a logic to express the properties of interaction
protocols. The approach is quite different from ours because while the SRML logic is targeted to
the description of the properties of a single client-server long-running interaction, we focus on the
analysis of service-oriented systems possibly involving many client-server interactions. Moreover,
the SRML logic is based on a fixed, standardized set of interaction and communication mechanisms
while in our case the user is free to define its own set of communication and interaction patterns.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:41

In fact, SocL permits expressing properties about any kind of interaction pattern, such as one–way,
request–response, one request–multiple responses, one request-one of two possible responses, etc.
Indeed, properties of complex interaction patterns can be expressed by correlating SocL observable
actions using interaction names and correlation values.

9. CONCLUSIONS

We have tackled the problem of analysing the functional behaviour of formal specifications of
service-oriented computing systems. To this aim, we have defined SocL, a temporal logic capable of
representing distinctive aspects of services and have used it to express a set of desirable functional
properties of services. We have also developed a bounded, on-the-fly model checker engine for this
logic and, on top of it, we have built CMC to check satisfaction of SocL formulae by COWS terms.
By means of a case study we have illustrated an application of our logical verification methodol-
ogy: first, single out a set of abstract properties describing desirable specific features of the service
under analysis; then, express such properties as SocL formulae; finally, exploit CMC for verifying
satisfaction of the formulae by the COWS specification of the service.

The approach presented here has been fully implemented as a freely available multi-platform in-
terpreter and model-checker designed around efficient verification procedures, which exploits the
on-the-fly evaluation approach to minimize the need of state space generation. Our goal was to de-
velop an in-house model-checking engine which can serve as a test bed to experiment with different
temporal logics for service-oriented systems, with efficient (hence, scalable) on-the-fly verification
procedures (even if the verification of extremely large systems was not considered among the short
term goals), and with different kinds of user interfaces. For example, CMC web-based interface
nicely integrates model exploration, verification and minimization in an interactive context, inde-
pendent of the client platform (it just needs a browser) and does not require installation of any piece
of software. Instead, CMC core command-line-oriented binaries permit an easy integration of the
tool within other frameworks (like Eclipse plugins or graphical Java interfaces).

Our approach is not intended to be applied as it is to the development of industrial service-
oriented applications; nevertheless, the usage of COWS, a formalism for which mappings have
been already provided for different industry level SOC modelling languages (WS-BPEL [Lapadula
et al. 2007], UML4SOA [Banti et al. 2010], SRML [Bocchi et al. 2009]), paves the way for such
development. Furthermore, the patterns of service properties defined in Section 2.3 give an abstract
view, independent from actual service descriptions, and the usage of such patterns can be in principle
automated so that a user need not to delve into the technical details of SocL. The approach and the
tool presented can hence serve as the (formally sound) basis on which an industrial strength SOC
development and verification environment could be built.

Finally, we leave for future work the extension of our environment to support a more composi-
tional verification methodology. In fact, systems of services can currently be analysed only ‘as a
whole’, since computations requiring communication with external (i.e. not explicitly modelled)
components are not taken into account. This is related to the original semantics of COWS that
follows a ‘reduction’ style (albeit the transition labels are rather informative); the ‘symbolic’ op-
erational semantics of COWS introduced by Pugliese et al. [2009] should permit to overcome this
limitation and we intend to rely on it for implementing future versions of CMC.

REFERENCES

Abreu, J., Bocchi, L., Fiadeiro, J., and Lopes, A. 2007. Specifying and composing interaction protocols for service-oriented
system modelling. In FORTE. LNCS Series, vol. 4574. Springer, 358–373.

Alonso, G., Casati, F., Kuno, H. A., and Machiraju, V. 2004. Web Services - Concepts, Architectures and Applications.
Data-Centric Systems and Applications. Springer.

Baier, C., Cloth, L., Haverkort, B. R., Kuntz, M., and Siegle, M. 2004. Model Checking Action- and State-Labelled
Markov Chains. In International Conference on Dependable Systems and Networks. IEEE Computer Society, 701–710.

Banti, F., Pugliese, R., and Tiezzi, F. 2010. An accessible verification environment for UML models of services. Journal of
Symbolic Computation. To appear.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:42 Alessandro Fantechi et al.

Bhat, G., Cleaveland, R., and Grumberg, O. 1995. Efficient on-the-fly model checking for CTL*. In LICS. IEEE Computer
Society, 388–397.

Bocchi, L., Fantechi, A., Gönczy, L., and Koch, N. 2006. Prototype language for service modelling: SOA ontology in struc-
tured natural language. Sensoria deliverable D1.1a.

Bocchi, L., Fiadeiro, J., Lapadula, A., Pugliese, R., and Tiezzi, F. 2009. From Architectural to Behavioural Specification of
Services. In FESCA. ENTCS Series, vol. 253/1. Elsevier, 3–21.

Boreale, M., Bruni, R., De Nicola, R., and Loreti, M. 2008. Sessions and Pipelines for Structured Service Programming.
In FMOODS. LNCS Series, vol. 5051. Springer, 19–38.

Bouali, A., Gnesi, S., and Larosa, S. 1994. JACK: Just Another Concurrency Kit. The integration Project. Bulletin of the
EATCS 54, 207–223.

Bradfield, J. and Stirling, C. 2001. Handbook of Process Algebra (Bergstra, J. A. and Ponse, A. and Smolka, Scott A. Eds.).
North-Holland, Chapter Modal logics and mu-calculi: an introduction, 293–330.

Bruni, R., Lanese, I., Melgratti, H., and Tuosto, E. 2008. Multiparty sessions in SOC. In COORDINATION, D. Lea and
G. Zavattaro, Eds. LNCS Series, vol. 5052. Springer, 67–82.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., and Zavattaro, G. 2006. Choreography and orchestration conformance for
system design. In COORDINATION. LNCS Series, vol. 4038. Springer, 63–81.

Carbone, M., Honda, K., andYoshida, N. 2007. Structured communication-centred programming for web services. In ESOP.
LNCS Series, vol. 4421. Springer, 2–17.

Chaki, S., Clarke, E., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T., and Veith, H. 2005. State/event software
verification for branching-time specifications. In IFM. LNCS Series, vol. 3771. Springer, 53–69.

Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., and Sinha, N. 2004. State/event-based software model checking. In IFM.
LNCS Series, vol. 2999. Springer, 128–147.

Clarke, E. and Emerson, E. 1981. Design and synthesis of synchronization skeletons using branching-time temporal logic.
In Logic of Programs. LNCS Series, vol. 131. Springer, 52–71.

Clarke, E., Grumberg, O., and Long, D. 1994. Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16, 5,
1512–1542.

Clarke, E. M., Grumberg, O., and Peled, D. 1999. Model Checking. MIT Press.
Dam, M. 1996. Model checking mobile processes. Inf. Comput. 129, 1, 35–51.
Dam, M. 2003. Proof Systems for Pi-Calculus Logics. In Logic for Concurrency and Synchronisation. Trends in Logic, Studia

Logica Library. Kluwer, 145–212.
Dams, D., Gerth, R., and Grumberg, O. 1997. Abstract interpretation of reactive systems. ACM Trans. Program. Lang.

Syst. 19, 2, 253–291.
De Nicola, R., Katoen, J., Latella, D., Loreti, M., and Massink, M. 2007. Model checking mobile stochastic logic. Theor.

Comput. Sci. 382, 1, 42–70.
De Nicola, R. and Loreti, M. 2004. A modal logic for mobile agents. ACM Trans. Comput. Log. 5, 1, 79–128.
De Nicola, R. and Loreti, M. 2007. Multi Labelled Transition Systems: A Semantic Framework for Nominal Calculi. In

LMCS. ENTCS Series, vol. 169. Elsevier, 133–146.
De Nicola, R. and Vaandrager, F. 1990. Action versus state based logics for transition systems. In Proceedings of the Ecole

de Printemps on Semantics of Concurrency. LNCS Series, vol. 469. Springer, 407–419.
De Nicola, R. and Vaandrager, F. 1995. Three logics for branching bisimulation. J. ACM 42, 2, 458–487.
Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., and Tiezzi, F. 2008. A model checking approach for

verifying COWS specifications. In FASE. LNCS Series, vol. 4961. Springer, 230–245.
Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., and Tiezzi, F. 2010. Specification and Analysis

of an Automotive Scenario. Tech. rep., DSI, Università di Firenze. http://rap.dsi.unifi.it/cows/papers/
automotiveScenario_in_cows.pdf.

Fernandez, J., Jard, C., Jéron, T., andViho, C. 1996. Using on-the-fly verification techniques for the generation of test suites.
In CAV. LNCS Series, vol. 1102. Springer, 348–359.

Ferrari, G. L., Gnesi, S., Montanari, U., and Pistore, M. 2003. A model-checking verification environment for mobile
processes. ACM Trans. Softw. Eng. Methodol. 12, 4, 440–473.

Fiadeiro, J., Lopes, A., and Bocchi, L. 2006. A formal approach to service component architecture. In WS-FM. LNCS Series,
vol. 4184. Springer, 193–213.

Fu, X., Bultan, T., and Su, J. 2005. Synchronizability of conversations among web services. IEEE Trans. Software
Eng. 31, 12, 1042–1055.

Grumberg, O. and Veith, H., Eds. 2008. 25 Years of Model Checking - History, Achievements, Perspectives. LNCS Series,
vol. 5000. Springer.

Gudgin, M., Hadley, M., and Rogers, T. 2006. Web Services Addressing 1.0 - Core. Tech. rep., W3C. May. W3C Recom-
mendation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A Logical Verification Methodology for Service-Oriented Computing A:43

Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., and Zavattaro, G. 2006. SOCK: a calculus for service oriented computing. In
ICSOC. LNCS Series, vol. 4294. Springer, 327–338.

Hennessy, M. and Liu, X. 1995. A modal logic for message passing processes. Acta Informatica 32, 4, 375–393.
Hennessy, M. andMilner, R. 1985. Algebraic laws for nondeterminism and concurrency. J. ACM 32, 1, 137–161.
Kavantzas, N., Burdett, D., and Ritzinger, G. 2004. Web Services Choreography Description Language version 1.0. Tech.

rep., W3C. http://www.w3.org/TR/ws-cdl-10/.
Kindler, E. and Vesper, T. 1998. ESTL: A Temporal Logic for Events and States. In Application and Theory of Petri Nets.

LNCS Series, vol. 1420. Springer, 365–384.
Koch, N. 2007. Automotive case study: UML specification of on road assistance scenario. Sensoria report, http://rap.

dsi.unifi.it/sensoria/files/FAST_report_1_2007_ACS_UML.pdf.
Lanese, I., Vasconcelos, V., Martins, F., andRavara, A. 2007. Disciplining orchestration and conversation in service-oriented

computing. In SEFM. IEEE Computer Society, 305–314.
Lapadula, A., Pugliese, R., and Tiezzi, F. 2006. A WSDL-based type system for WS-BPEL. In COORDINATION. LNCS

Series, vol. 4038. Springer, 145–163.
Lapadula, A., Pugliese, R., and Tiezzi, F. 2007. A Calculus for Orchestration of Web Services. In ESOP. LNCS Series, vol.

4421. Springer, 33–47. Full version available at http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.
pdf.

Lapadula, A., Pugliese, R., and Tiezzi, F. 2008. Specifying and Analysing SOC Applications with COWS. In Concurrency,
Graphs and Models. LNCS Series, vol. 5065. Springer, 701–720.

Lawford, M., Ostroff, J., andWonham, W. 1996. Model Reduction of Modules for State-Even Temporal Logics. In FORTE.
IFIP Conference Proceedings Series, vol. 69. Chapman & Hall, 263–278.

Lin, H. 1993. A verification tool for value-passing processes. In Symposium on Protocol Specification, Testing and Verifica-
tion. North-Holland, 79–92.

Mateescu, R. and Thivolle, D. 2008. A model checking language for concurrent value-passing systems. In Formal Methods.
LNCS Series, vol. 5014. Springer, 148–164.

Mayer, P., Schroeder, A., and Koch, N. 2008. Mdd4soa: Model-driven service orchestration. In EDOC. IEEE Computer
Society Press, 203–212.

Meolic, R., Kapus, T., and Brezocnik, Z. 2008. ACTLW - an action-based computation tree logic with unless operator.
Elsevier Information Sciences 178, 6, 1542–1557.

Meredith, L. and Bjorg, S. 2003. Contracts and types. Commun. ACM 46, 10, 41–47.
Moller, F. and Stevens, P. 1999. Edinburgh Concurrency Workbench user manual.

http://homepages.inf.ed.ac.uk/perdita/cwb/.
Müller-Olm, M., Schmidt, D., and Steffen, B. 1999. Model-checking: A tutorial introduction. In SAS. LNCS Series, vol.

1694. Springer, 330–354.
OASIS WSBPEL TC. 2007. Web Services Business Process Execution Language Version 2.0. Tech. rep., OASIS. April.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
Pecheur, C. and Raimondi, F. 2006. Symbolic Model Checking of Logics with Actions. In MoChArt. LNCS Series, vol.

4428. Springer, 113–128.
Pugliese, R., Tiezzi, F., and Yoshida, N. 2009. A Symbolic Semantics for a Calculus for Service-Oriented Computing. In

PLACES. ENTCS Series, vol. 241. Elsevier, 135–164.
SENSORIA. 2005. Software engineering for service-oriented overlay computers. http://sensoria.fast.de.
Stirling, C. 2001. Modal and Temporal Properties of Processes. Springer.
Stirling, C. and Walker, D. 1989. Local model checking in the modal µ-calculus. In TAPSOFT. LNCS Series, vol. 354.

Springer, 369–383.
ter Beek, M., Fantechi, A., Gnesi, S., andMazzanti, F. 2008. An action/state-based model-checking approach for the anal-

ysis of communication protocols for Service-Oriented Applications. In FMICS. LNCS Series, vol. 4916. Springer,
133–148.

ter Beek, M., Gnesi, S., Koch, N., andMazzanti, F. 2008. Formal verification of an automotive scenario in service-oriented
computing. In ICSE. ACM, 613–622.

Tiezzi, F. 2009. Specification and analysis of service-oriented applications. Ph.D. thesis, Dipartimento di Sistemi e Informat-
ica, Università degli Studi di Firenze. http://rap.dsi.unifi.it/cows.

Tiu, A. 2005. Model Checking for pi-Calculus Using Proof Search. In CONCUR. LNCS Series, vol. 3653. Springer, 36–50.
van Breugel, F. and Koshkina, M. 2006. Models and verification of BPEL. Tech. rep., Department of Computer Science and

Engineering, York University. http://www.cse.yorku.ca/˜franck/research/drafts/tutorial.pdf.
van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and Barros, A. 2003. Workflow patterns. Distributed and Parallel

Databases 14, 1, 5–51.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

A:44 Alessandro Fantechi et al.

Victor, B. and Moller, F. 1994. The Mobility Workbench — a tool for the π-calculus. In CAV. LNCS Series, vol. 818.
Springer, 428–440.

Vieira, H., Caires, L., and Seco, J. C. 2008. The conversation calculus: A model of service-oriented computation. In ESOP.
LNCS Series, vol. 4960. Springer, 269–283.

Yang, P., Ramakrishnan, C. R., and Smolka, S. A. 2004. A logical encoding of the π-calculus: model checking mobile
processes using tabled resolution. International Journal on Software Tools for Technology Transfer 6, 1, 38–66.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January 2010.

