
Using formal methods to develop WS-BPEL applicationsI

Alessandro Lapadulaa,, Rosario Pugliesea,∗, Francesco Tiezzia

aDipartimento di Sistemi e Informatica, Università degli Studi di Firenze,
Viale Morgagni 65, I-50134, Firenze, Italy

Abstract

In recent years, WS-BPEL has become a de facto standard language for orchestration of
Web Services. However, there are still some well-known difficulties that make program-
ming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points
of the WS-BPEL specification by means of many examples, some of which are also ex-
ploited to test and compare the behaviour of three of the most known freely available
WS-BPEL engines. We show that, as a matter of fact, these engines implement different
semantics, which undermines portability of WS-BPEL programs over different platforms.
Then we introduce Blite, a prototypical orchestration language equipped with a formal
operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed,
Blite is designed around some of WS-BPEL distinctive features like partner links, process
termination, message correlation, long-running business transactions and compensation
handlers. Finally, we present BliteC, a software tool supporting a rapid and easy devel-
opment of WS-BPEL applications via translation of service orchestrations written in Blite
into executable WS-BPEL programs. We illustrate our approach by means of a running
example borrowed from the official specification of WS-BPEL.

Key words: Service-oriented architectures, Web services, Formal methods, WS-BPEL,
Operational semantics, Compilers

IThis work is partially based on two preliminary papers appeared in [40, 22] and has been partially
supported by the EU project SENSORIA IST-2005-016004.

∗Corresponding author
Email addresses: lapadula@dsi.unifi.it (Alessandro Lapadula), pugliese@dsi.unifi.it

(Rosario Pugliese), tiezzi@dsi.unifi.it (Francesco Tiezzi)

Preprint submitted to Elsevier October 19, 2011

1. Introduction

Information systems are by now at the very foundations of our society, mainly due to
considerable advances in the field of Information Technology (IT) and on-line availabil-
ity of enormous amounts of data. This is having a significant impact especially on the
business sector, where organizations depend more and more on functional and flexible IT
infrastructures, and need to integrate and adapt their existing systems to enable the automa-
tion of complex and distributed business processes as a whole. The challenges posed by
information interchange, software integration, and B2B are addressed by Service-Oriented
Computing (SOC), a paradigm for distributed and e-business computing that aims at en-
abling developers to build networks of integrated and collaborative applications, regardless
of the platform where the applications run and the programming language used to develop
them, through the use of loosely coupled, reusable software components named services.

Web Services (WSs) are currently one of the most successful and well-developed im-
plementations of the SOC general paradigm. WSs make available the functionalities that
a company wants to expose over the World Wide Web, so that they can be discovered
and exploited both by human clients and other services. A key factor for their success is
the exploitation of the Web architecture, that is nowadays an extensively used platform
suitable to connect different companies and customers. Indeed, independently developed
applications can be exposed as services and can be interconnected by exploiting the Web
infrastructure with related standards, e.g. HTTP, XML, SOAP, WSDL and UDDI. These
standards allow proprietary interfaces and data formats to be replaced by a standard Web-
messaging infrastructure based on XML technologies, thus facilitating automated integra-
tion of newly built and legacy applications, both within and across organization bound-
aries. For instance, the W3C standard WSDL (Web Services Description Language, [23])
permits to express WSs public interfaces, i.e. the functionalities they offer and require.
These interfaces can then be exploited by client applications to determine the location of
a remote WS and the operations it implements, as well as how to invoke each operation.

The above standard technologies are usually sufficient for simple applications inte-
gration needs. On the other hand, creation of complex B2B applications and automated
integration of business processes across organizations requires managing such features
as, e.g., asynchronous interactions, concurrency, workflow coordination, business transac-
tions and exceptions. This raises the need for service composition languages, an additional
layer on top of the WSs protocol stack. In this setting, WS-BPEL (Web Services Business
Process Execution Language, [49]) has become a de facto standard as a language for pro-
gramming business processes, i.e. software entities capable of orchestrating available WSs
by invoking them according to given sets of rules to meet business requirements. Notably,
business processes may themselves be exposed as services, making service orchestration
a recursive operation that permits to build complex services out of simpler ones.

2

However, designing and developing WS-BPEL applications is a difficult and error-
prone task. The language has an XML syntax which makes writing WS-BPEL code awk-
ward by using standard editors. Therefore, many companies (among which e.g. Oracle
and Active Endpoints) have equipped their WS-BPEL engines with graphical designers.
Such tools are certainly suitable to develop simple business processes, but might turn out
to be cumbersome and ineffective when programming more complex applications. Further
difficulties derive from the fact that WS-BPEL is equipped with such intricate features as
concurrency, multiple service instances, message correlation, long-running business trans-
actions, fault and compensation handlers. Most of all, WS-BPEL comes without a formal
semantics and its specification document [49], written in ‘natural’ language, contains a
fair number of acknowledged loose points that may give rise to different interpretations
and lead to different implementation choices. Some of these loose points are due to an
extensive use of the keyword “SHOULD”, which indicates recommended requirements
that can be for some reason ignored, and leave the difficult task of understanding the full
implications of the choice to the implementers. For example, the sentence stating that the
“WS-BPEL processor SHOULD throw a conflictingReceive fault” when there exist “in-
distinguishable” conflicting receive activities (see [49, Section 10.4]) certainly cannot help
the implementers, which can be led to implement very different semantics. Similarly, it
seems somewhat inappropriate the choice of deeming some implementation details as “out
of scope” for the WS-BPEL specification. Examples of “out of scope” indications are the
description of the deployment of a WS-BPEL process (see [49, Section 1]) and the han-
dling of an incoming request message that no process instance is able to receive (see [49,
Section 9.2]). Finally, some sentences are ambiguous and sometimes conflicting, which
might produce misinterpretations (see also Section 2.3). For example, the relationship be-
tween WS-BPEL (multiple) start activities and the mechanisms handling race conditions
is not fully clarified; moreover, subtle behaviour can arise when implementing activities
that cause immediate termination of other activities, if suitable measures for ‘protecting’
such critical activities, as fault and compensation handlers, are not taken into account.

In this paper, we firstly point out major loose points of the WS-BPEL specification
by means of many examples focussing on key topics of the language specification, like
message correlation, asynchronous message delivering, multiple start and conflicting re-
ceive activities, scheduling of parallel activities, forced termination and eager execution
of activities causing termination, and handlers protection. The examples are exploited to
test and compare three of the most known freely available WS-BPEL engines, namely
ActiveBPEL [4], Apache ODE [11] and Oracle BPEL Process Manager [3]. Our tests
show that some WS-BPEL processes produce a very different behaviour when executed
by different engines. As a matter of fact, the engines implement different semantics, which
considerably undermines the portability of WS-BPEL programs across different platforms.

3

Portability is indeed of particular relevance in the SOC setting, however it is further com-
promised since the deployment procedure of WS-BPEL programs is not standardised. In
fact, to execute a WS-BPEL program, besides the associated WSDL document, different
engines require different (and not integrable) process deployment descriptors, i.e. sets of
configuration files that describe how the program should be deployed in the engine.

To face these difficulties, we put forward using formal methods as a means to build up
a framework to precisely describe the behaviour of SOC applications, to state and prove
their properties, and to direct attention towards issues that might otherwise be overlooked.
Therefore, we define Blite, a ‘lightweight’ orchestration language closely inspired by, but
simpler than, WS-BPEL. Blite is the result of the tension between handiness and expres-
siveness which is typical when designing a formalism. Thus, to keep the semantics of the
language rigorous but still manageable, the design of Blite focuses on the ‘procedural’
part of WS-BPEL and only retains those features of WS-BPEL that, in our opinion, are
absolutely necessary to formally define the basic elements of service orchestrations and
to characterise service engines. On the contrary, the set of WS-BPEL constructs is not
intended to be a minimal one and indeed the language supports both programming styles
of its two ‘official’ forerunners, the Microsoft’s block-structured language XLANG [55]
and the IBM’s graph-oriented language WSFL (Web Services Flow Language, [42]).

We believe that using Blite as a language for orchestrating services offers many signif-
icant advantages. On the one hand, the Blite textual notation is certainly more manageable
and user-friendly than those, possibly graphical, notations proposed for WS-BPEL, es-
pecially when programming larger applications. Besides, graphical design notations may
also be a source of problems when they are not backed up by a rigorous semantics [54]. On
the other hand, Blite is equipped with a formal operational semantics that precisely states
the effect of execution of its constructs. Moreover, since Blite constructs directly corre-
spond to those of a meaningful sublanguage of WS-BPEL, as the translation we present
in the paper demonstrates, we can confidently state that Blite’s formal semantics provides
this WS-BPEL’s sublanguage with a rigorous semantics. Some of the most intricate and
complex features of WS-BPEL, as e.g. the interplay between compensation activities and
the control flow of the originating process, or the relationship between the mechanisms for
service instance creation and identification, are thus made clearer.

The translation of Blite into WS-BPEL is also the key for developing a framework for
the execution of Blite programs. Actually, although a prototypical Blite engine following
the dictates of Blite’s operational semantics is under implementation [51], this task is ardu-
ous and time-consuming. To speed up the experimentation with Blite and its assessment,
we are exploiting ActiveBPEL that, according to our tests, is one of the freely available
WS-BPEL engines that better complies with the WS-BPEL specification. We have indeed
developed BliteC, a software tool that accepts as an input a Blite program and returns

4

Figure 1: BliteC workflow

a package, containing the corresponding WS-BPEL program and the associated WSDL
and process deployment descriptors, that is immediately executable by ActiveBPEL. This
way, BliteC further simplifies the programmers work by also automating the deployment
procedure. The workflow of use of BliteC is graphically summarized in Figure 1.

The rest of the paper is organized as follows. Section 2 provides a brief summary
of WS-BPEL, introduces a running example and, by means of many specific programs
illustrates major loose points of WS-BPEL and the tests carried out with the three pre-
viously mentioned WS-BPEL engines. Section 3 presents Blite’s syntax and operational
semantics, and shows some example applications. Section 4 illustrates the main features of
BliteC and the correspondence between Blite constructs and WS-BPEL activities. Finally,
Section 5 touches upon more closely related work and directions for future work.

2. Overview of WS-BPEL and experimentation

In this section, we provide an overview of WS-BPEL and a running example borrowed
from the official WS-BPEL specification. We also present some illustrative WS-BPEL
programs and use them to test and compare the behaviour of the three freely available
engines1 ActiveBPEL [4], Apache ODE [11] and Oracle BPEL Process Manager [3]. We
conclude with an evaluation of the results of our experiments.

1The former two are open source projects, whereas the latter is distributed under the Oracle Technology
Network Developer License. ActiveBPEL and Oracle BPEL Process Manager are also part of (commercial)
tool suites, ActiveVOS and Oracle SOA Suite resp., for designing, developing, testing and deploying WS-
BPEL applications.

5

2.1. A glimpse of WS-BPEL
WS-BPEL is essentially a linguistic layer on top of WSDL for describing the structural

aspects of Web Services orchestration. In WS-BPEL, the logic of interaction between a
service and its environment is described in terms of structured patterns of communication
actions composed by means of control flow constructs that enable the representation of
complex structures. For the specification of orchestration, WS-BPEL provides many dif-
ferent activities that are distinguished between basic activities and structured activities.
Orchestration exploits state information that is stored in variables and managed through
message correlation. In fact, when messages are sent/received, the value of their param-
eters is stored in variables. Likewise block structured languages, the scope of variables
extends to the whole immediately enclosing <scope> (or <process>) activity.

The basic activities are: <invoke>, to invoke an operation offered by a WS;
<receive>, to wait for an invocation to arrive; <reply>, to send a message in re-
ply to a previously received invocation; <wait>, to delay execution for some amount
of time; <assign>, to update the values of variables with new data; <throw>,
to signal internal faults; <exit>, to immediately end a service instance; <empty>,
to do nothing; <compensate> and <compensateScope>, to invoke compensation
handlers; <rethrow>, to propagate faults; <validate>, to validate variables; and
<extensionActivity>, to add new activity types. Notably, <reply> can be combined
with <receive> to model request-response interactions.

The structured activities describe the control flow logic of a business process by
composing basic and/or structured activities recursively. The structured activities are:
<sequence>, to execute activities sequentially; <if>, to execute activities conditionally;
<while> and <repeatUntil>, to repetitively execute activities; <flow>, to execute ac-
tivities in parallel; <pick>, to execute activities selectively; <forEach>, to (sequentially
or in parallel) execute multiple activities; and <scope>, to associate handlers for excep-
tional events to a primary activity. Activities within a <flow> can be further synchronised
by means of flow links. These are conditional transitions connecting activities to form di-
rected acyclic graphs and are such that a target activity may only start when all its source
activities have completed and the condition on the incoming flow links evaluates to true.

The handlers within a <scope> can be of four different kinds: <faultHandler>, to
provide the activities in response to faults occurring during execution of the primary activ-
ity; <compensationHandler>, to provide the activities to compensate the successfully
executed primary activity; <terminationHandler>, to control the forced termination
of the primary activity; and <eventHandler>, to process message or timeout events oc-
curring during execution of the primary activity. If a fault occurs during execution of a
primary activity, the control is transferred to the corresponding fault handler and all cur-
rently running activities inside the scope are interrupted immediately without involving

6

any fault/compensation handling behaviour. If another fault occurs during a fault/com-
pensation handling, then it is re-thrown, possibly, to the immediately enclosing scope.
Compensation handlers attempt to reverse the effects of previously successfully completed
primary activities (scopes) and have been introduced to support Long-Running (Business)
Transactions (LRTs). Compensation can only be invoked from within fault or compen-
sation handlers starting the compensation either of a specific inner (completed) scope, or
of all inner completed scopes in the reverse order of completion. The latter alternative is
also called the default compensation behaviour. Invoking a compensation handler that is
unavailable is equivalent to perform an empty activity.

A WS-BPEL program, also called (business) process, is a <process>, that is a sort of
<scope> without compensation and termination handlers.

WS-BPEL uses the basic notion of partner link to directly model peer-to-peer relation-
ships between services. Such a relationship is expressed at the WSDL level by specifying
the roles played by each of the services in the interaction. However, this information is
not enough to deliver messages to a service. Indeed, since multiple instances of a same
service can be simultaneously active because service operations can be independently in-
voked by several clients, messages need to be delivered not only to the correct partner,
but also to the correct instance of the service that the partner provides. To achieve this,
WS-BPEL relies on the business data exchanged rather than on specific mechanisms, such
as WS-Addressing [31] or low-level methods based on SOAP headers. In fact, WS-BPEL
exploits correlation sets, namely sets of correlation variables (called properties in WS-
BPEL jargon), to declare the parts of a message that can be used to identify an instance.
This way, a message can be delivered to the correct instance on the basis of the values
associated to the correlation variables, independently of any routing mechanism.

For the sake of readability, examples of WS-BPEL programs are presented by exploit-
ing the graphical notations we introduce in Figure 2, rather than the usual verbose XML
textual form. We additionally use the following symbols:

• i© to label an activity that initializes correlated variables;

• u© to label a receive activity that does not use correlated variables;

• c© to label an activity that checks correlated variables;

• ic© to label an activity that initializes or checks correlated variables;

• to label an activity waiting for a message from a partner;

• 4 to label a completed activity;

• to label a completed start activity that initiates a new instance of the service;

• 8 to label a terminated activity due to the execution of <exit> or <throw> activities.

7

Figure 2: A graphical representation of WS-BPEL basic/structured activities and service components

Notably, in Figure 2 are reported only the WS-BPEL constructs that are relevant for
the investigation conducted in Section 2.3 and that, in our opinion, are absolutely
necessary to conveniently program service orchestrations. Therefore, in the rest of
the paper, we shall not take into account flow links, event and termination handlers,
and activities <wait>, <compensateScope>, <validate>, <extensionActivity>,
<repeatUntil> and <forEach>. We leave for future work the extension of our investi-
gation to the above constructs, as we argue in Section 5.

2.2. A shipping service in WS-BPEL
Our running example is a shipping service drawn from the official specification of WS-

BPEL [49, Section 15.1]. In this section, this example will allow us to illustrate most of the
language features, including communication activities, correlation sets, shared variables
and control flow structures.

The shipping service handles the shipment of orders. From the service point of view,
orders are composed of a number of items. The service offers two types of shipments:

8

shipments where the items are held and shipped together and shipments where the items
are shipped piecemeal until the order is fulfilled. We report below a skeleton description:
receive shipOrder
if shipComplete then
send shipNotice

else
itemsShipped := 0
while itemsShipped < items do
itemsCount := getAvailableItems
send shipNotice
itemsShipped := itemsShipped + itemsCount

The corresponding WS-BPEL program is graphically depicted in Figure 3. We comment
below some excerpts of its code2. The definition starts with a receive activity for a message
from a client containing a request for a shipment:
<receive partnerLink="client" operation="ShippingRequest"

variable="shipRequest" createInstance="yes">
<correlations> <correlation set="shipOrderSet" initiate="yes"/> </correlations>
</receive>

A shipping request, stored in shipRequest, is a structured information consisting of an
order identifier, which is used to correlate the shipping notice(s) with the shipping order,
a boolean indicating whether the order is to be shipped complete or not, and the total
number of items in the order. In the graphical notation, the variable fields storing the three
parts of the message, (i.e. id, shipComplete and items) have been made explicit. The
correlation set shipOrderSet, which uniquely identifies a shipping order through the
identifier stored in id, is initialized by this receive activity (initiate="yes"). Whenever
prompted by a client request, the service creates an instance to serve that specific request
(createInstance="yes") and is immediately ready to concurrently serve other requests.

Afterwards, if a complete shipment has been requested, the created service instance
sends a shipping notice to the client, by means of the following invoke activity:
<invoke partnerLink="client" operation="ShippingNotice"

inputVariable="shipNotice">
<correlations> <correlation set="shipOrderSet"/> </correlations>
</invoke>

and terminates. A shipping notice contains an order identifier, to correlate the message
to the corresponding order, and the number of shipped items. The correlation mechanism
is used here to guarantee that the above invoke activity is performed only if the identifier
stored within variable shipNotice coincides with the value stored in the correlation set
shipOrderSet (which has been set by the receive activity).

2The complete code of the WS-BPEL process and the associated WSDL document can be found in [49].

9

Figure 3: Graphical representation of the shipping service

Instead, if the items can be shipped piecemeal, the variable itemsShipped, acting as
a counter for the number of items already shipped, is initialized as follows:
<assign> <copy> <from>0</from> <to>$itemsShipped</to> </copy> </assign>

Then, until all requested items have been shipped, the service instance repeatedly interacts
with a back-end system to get the number of items available for a shipment, sends the
corresponding shipping notice to the client and updates the value of itemsShipped.

2.3. Experimentation and assessment of three WS-BPEL engines
We now present the WS-BPEL programs used to test and compare the three engines.

For our evaluation, we have taken into account fundamental features of WS-BPEL that
remained unchanged since its initial version [25].

Example 2.1: Message correlation. A client can request a log-on operation via LogOn,
and can request some logging information via RequestLogInfo; this information can be

10

Figure 4: Message correlation

asynchronously obtained by implementing the callback operation SendLogInfo (on the
use of asynchronous request-response patterns in service-oriented applications see also
Example 2.2). Correlation variables can be exploited to correlate, by means of their same
contents, different service interactions logically forming a same ‘session’. For example,
consider the simple service LogOnService in Figure 4(a) providing ‘log-on’ and ‘request-
log-info’ operations. Initially, to request a log-on a client must send its logID with some
other data. Then, the service waits for a request from the client to provide some logging
information3. After that, the service can reply (and terminate) by sending the requested
information to the client. Notably, the WS-BPEL process in Figure 4(a) cannot ensure that
the service does provide logging information properly. In fact, since the messages for op-
erations LogOn and RequestLogInfo are uncorrelated, if concurrent instances are running
then, e.g., successive invocations for the same instance can be mixed up and delivered
to a wrong instance. This behavior can be prevented by simply correlating consecutive
messages by means of some correlation data, e.g. logID, as in the modified service Lo-
gOnService of Figure 4(b).

3For the sake of simplicity, we assume here that the logging information are simply the data sent by the
client through invocation of operation LogOn. In a more realistic scenario, of course, logging information
could be internally computed by LogOnService or retrieved from a (possibly external) service.

11

Figure 5: Asynchronous message delivering

A special case is when the two initial receives are on the same partner and operation,
as in Figure 4(c) where LogOnService requires some extra-information from the client,
so that it waits for two consecutive log-on requests to let the client logging on the service.
This is allowed by the WS-BPEL specification [49, Section 10.4] that does not mention
that possible conflicting receives could arise. Now, let us assume that a client process
has performed two log-on requests. This, accordingly to what seems to be the intended
semantics of WS-BPEL, should trigger only one instantiation of the service. This is indeed
the behaviour of ActiveBPEL and Apache ODE, that exploit the received data to correlate
the two consecutive receives, thus preventing creation of a wrong new instance. On the
contrary, when executing this example, Oracle BPEL creates two instances, one for each
received request. An important consequence, and indeed an unexpected side effect, is that
the created instances are in conflict and will soon get stuck. Despite this behaviour can be
reasonably considered wrong, the WS-BPEL specification does not explicitly forbid it.

Example 2.2: Asynchronous message delivering. In service-oriented systems communica-
tion paradigms are usually asynchronous (mainly for scalability reasons [17]), in the sense
that there may be an arbitrary delay between the sending and the receiving of a message,
the ordering in which messages are received may differ from that in which they were sent,
and a sender cannot determine if and when a sent message will be received. We can guess
from [49, Section 10.4], that this is also the case of WS-BPEL. To illustrate, consider the
WS-BPEL process in Figure 5(a) representing a client logging on to the previous service

12

Figure 6: Multiple start activities

depicted in Figure 4(b). After the request for some user information is sent by the first
invoke activity, a service instance is created as a result of consumption of the request for
logging on to the service produced by the second invoke activity as depicted in Figure 5(b).
Now, the first produced message is not considered expired and, thus, can be consumed by
the newly created service instance. All the examined WS-BPEL engines tacitly agree with
this communication paradigm, although no requirement is explicitly reported in the WS-
BPEL specification. Notably, messages that do not match the signature of any operation
provided by a service (e.g. the numbers of parameters are different) are rejected by the
engine and, as expected, do not affect the execution of running instances.

Example 2.3: Multiple start and conflicting receive activities. When defining services, the
WS-BPEL specification permits using multiple start activities [49, Section 10.4]. How-
ever, it is not clear how conflicting receive activities enabled at instantiation of such a
service must be handled. To explain this point, consider a simple variant of service Lo-
gOnService, called MultiLogOnService, that allows two clients to log on the same service
instance. Figure 6 illustrates two alternative definitions of MultiLogOnService with the
same semantics: the one on the left hand side makes use of activity <flow>, while the
one on the right hand side uses activity <pick>. In both definitions, the service waits for
two log-on requests from clients along two different partner links and then, on demand

13

Figure 7: Multiple start activities: service instantiation

by one of the two clients, provides logging information. After a message from a client,
say client1, has been processed, an instance of the service is initiated as illustrated in Fig-
ure 7(a) (we only consider the case of the definition in Figure 6(a)). Now, the definition
and the instance of the service compete for receiving the same message sent by another
client that is correlated to that sent by client1 through the datum stored in logID. In cases
like this, the WS-BPEL specification requires the second message to be delivered to the
existing instance, thus preventing creation of a new instance (i.e. the instance in Figure 7(a)
should only reduce to that of Figure 7(b)).

However, in case of conflicting receives, the WS-BPEL specification document pre-
scribes to raise the standard fault bpel:conflictingReceive, which seems to be some-
how in contrast with what we have illustrated before. In fact, this situation readily occurs
when a service exploits multiple start activities, because of race conditions on incoming
messages among the service definition and the created instances. In our example, both
the definition and the instance can perform a receive over LogOn(logID,info2) using the
same partner link. Anyway, in such cases, it does not seem fair to raise a fault because the
correlation data contained within each incoming message should be sufficient to decide if
the message has to be delivered to a specific instance or to the service definition.

This is indeed a tricky question that leads the three engines we have consid-
ered to behave differently. Indeed, Oracle BPEL always raises the fault bpel:con-
flictingReceive, ActiveBPEL exploits correlation to enforce creation of only one ser-
vice instance (just like the example in Figure 7), whereas Apache ODE does not currently
support multiple start activities.

14

Figure 8: Scheduling of parallel activities

Example 2.4: Scheduling of parallel activities. While using the WS-BPEL engines, we
have also experienced that they implement the flow activity in a different manner. For
example, the expected behaviour of the WS-BPEL process in Figure 8(a) is that the three
assignments updating a same shared variable are executed in an unpredictable order that
may change in different executions. In fact, only Apache ODE implements this semantics,
while the other two engines execute the assignments in an order fixed in advance, that is
sequentially from left to right in case of ActiveBPEL (Figure 8(b)) and from right to left
in case of Oracle BPEL (Figure 8(c)). As a consequence, we have that the parallel com-
position implemented by ActiveBPEL and Oracle BPEL is not a commutative operator.
One could argue that all the three engines comply with the WS-BPEL specification that
only prescribes to execute parallel activities in an arbitrary order. In fact this is true but,
as a matter of fact, this requirement is too permissive, since it has left room for different
implementations and, hence, contributed to limit the portability of WS-BPEL programs.

Example 2.5: Forced termination. The WS-BPEL specification [49, Section 12.6] states:
“The <sequence> and <flow> constructs must be terminated by terminating their behav-
ior and applying termination to all nested activities currently active within them”. This
sentence is ambiguous because it is not clear what “nested activities currently active”
means in case of termination due to <exit> or <throw> activities. For example, con-
sider a sequence of two assign activities. In Oracle BPEL, termination prompted by a
parallel <exit> activity has no effect on the sequence (Figure 9(a)), while termination
prompted by a parallel <throw> activity causes execution of only the first assign activ-
ity (Figure 9(b)). ActiveBPEL is more compliant to WS-BPEL for which all currently

15

Figure 9: Forced termination

running activities must be terminated as soon as possible (Figure 9(c)) without any fault
handling or compensation [49, Section 10.10]. However, differently from what the WS-
BPEL specification seems to suggests, ActiveBPEL does not distinguish short-lived activ-
ities (i.e. sufficiently brief activities that may be allowed to complete) from basic activities
and makes them terminate in the same way. Finally, Apache ODE is fully compliant with
WS-BPEL, since a termination activity function is applied to the continuation that only
retains short-lived activities.

Notably, since the flow activity is differently implemented by the three engines (see
Example 2.4), in the examples depicted in Figure 9 we have managed to guarantee that in
each engine <exit> and <throw> are executed before the sequence of assignments (this
way, the effect of the execution does not depend on the scheduling of the activities).

Example 2.6: Eager execution of activities causing termination. As shown in Exam-
ple 2.5, to be compliant with the WS-BPEL requirement stating that termination activities
must end immediately all currently running activities [49, Section 10.10], it seems that
execution of activities <throw> and <exit> should have higher priority than execution
of the remaining ones. For example, consider again a sequence of two assign activities.
By executing a parallel <throw> activity, the whole process should only reduce as shown
in Figure 10(a). This is indeed the behaviour we experienced with ActiveBPEL. Instead,
Oracle BPEL and Apache ODE seem not to implement any prioritized behavior for activ-
ities forcing termination and in fact they allow the above process to also evolve by firstly
performing the first <assign> activity and then the <throw>, as shown in Figure 10(b).
By suitably ordering the arguments of the flow activity, we have managed to guarantee
that the results are not a consequence of the engines’ different scheduling policies.

16

Figure 10: Eager execution of activities causing termination

Figure 11: Handlers protection

Example 2.7: Handlers protection. The structured activity in Figure 11 consists of a pro-
cess with two inner parallel activities, one of which being a scope whose primary activity
is a sequence of a scope and a <throw> activity (Throw1), while the other parallel activ-
ity is a basic <throw> activity (Throw2). Suppose that the innermost scope performs its
assignment Assign1 and completes. Then, the associated compensation handler CH (i.e.
the activity Assign2) is recorded into the default compensation activities of its enclosing
scope. When execution of Throw1 rises a fault, then it is caught by the corresponding
fault handler that activates the default compensation that consists of execution of Assign2.
This activity can be effectively executed since it is appropriately protected from the effect
of execution of the parallel activity Throw2.

We end by remarking two aspects of the compensation mechanism prescribed by the
WS-BPEL specification [49, Sections 12.5 and 10.10]. Firstly, compensation handlers

17

Oracle BPEL ActiveBPEL Apache ODE
Correlation (Ex.1) U U U
Consecutive conflict-
ing receives (Ex.1)

d creates two con-
flicting instances

U creates one instance U creates one instance

Asynchronous mes-
sage delivering (Ex.2) U U U

Multiple start activi-
ties (Ex.3)

d raises a fault U creates one instance d doesn’t support
multiple start activities

Scheduling of parallel
activities (Ex.4)

d fixed execution or-
der

d fixed execution or-
der

U unpredictable exe-
cution order

Short-lived activities
(Ex.5)

U distinguishes
short-lived activities

d doesn’t distinguish
short-lived activities

U distinguishes
short-lived activities

Forced Termination
(Ex.5)

d <exit> has no ter-
mination effect U U

Eager execution (Ex.6) d lazy termination U eager termination d lazy termination

Handlers protection
and installation (Ex.7)

d doesn’t protect han-
dlers and allows faulty
scopes’ compensation

U protects handlers
and doesn’t allow faulty
scopes’ compensation

U protects handlers
and doesn’t allow faulty
scopes’ compensation

Table 1: Experiment results on the tested WS-BPEL engines

of faultily terminated scopes should not be installed. Secondly, fault and compensation
handlers should not be affected by the activities causing termination. Both aspects are not
faithfully implemented in Oracle BPEL, while ActiveBPEL and Apache ODE meet these
specific requirements and adhere to the intended WS-BPEL semantics.

Evaluation. The results of our experiments, summarized in Table 1, point out that the
engines we have tested implement different semantics, which implies that WS-BPEL pro-
grams are not portable. We have used ‘thumbs up’ and ‘thumbs down’ to indicate whether
the engines comply with what we reasonably believe to be the intended semantics of WS-
BPEL. From these results it is clear that no engine passes all the selected experiments.
In fact, all the three engines only support a subset of the proposed orchestration patterns.
Specifically, it is worth noting the limited support for the multiple start pattern and the
eager execution as for Oracle BPEL and Apache ODE.

The engines we have used range over different periods of time. In particular, Oracle
BPEL is the oldest and best advertised engine, while Apache ODE is a relative newcomer.
The fact that, instead, ActiveBPEL seems to be the best established product has led us to
choose it for implementing and deploying Blite applications.

We believe that the engines’ different behaviour we have experienced is a consequence
of the lack of a formal reference semantics for WS-BPEL, that would have disambiguated
the intricate and complex features of the language, leaving less room for interpretation by
implementers. On the other hand, thanks to the quite intuitive and direct correspondence

18

of Blite with a meaningful sublanguage of WS-BPEL we illustrate in Section 4.2, we can
confidently state that Blite’s formal semantics provides this WS-BPEL’s sublanguage with
a rigorous semantics. Therefore we believe that our work, and works with similar goals,
can serve both for driving implementation of new engines and for making future versions
of existing implementations more compatible.

We end our evaluation with some observations on the procedure to deploy WS-BPEL
programs, although the description of the deployment is out of scope of the WS-BPEL
specification document [49]. A WS-BPEL process is designed to be a reusable definition
that can be deployed in different ways within different scenarios. In these respects the
three tested engines pose different requirements. ActiveBPEL provides deployment infor-
mation (i.e. partner link bindings and address information) in terms of abstract WS-BPEL
elements (i.e. partner links and partner roles), while Apache ODE and Oracle BPEL Pro-
cess Manager use proprietary defined elements to describe a deployment, regardless of
whether the same elements are declared at WS-BPEL level. The integration of different
deployment documents is then impossible to obtain, which is another factor that reduces
the level of portability a programmer might expect.

3. Blite: a prototypical orchestration language

Blite is a prototypical orchestration language that results from distilling out of WS-
BPEL those features that are, in our opinion, absolutely necessary to formally define the
basic elements of service orchestrations and to characterise service engines. Its design
has been driven by the aim of keeping the semantics of the language rigorous but man-
ageable, while preserving a close correspondence with the procedural part of WS-BPEL.
Thus, Blite retains partners and partner links, message correlation, concurrency, service
instance creation/identification, long-running business transactions, and (a limited form
of) fault and compensation handlers, while disregards request-response interactions, syn-
chronization dependencies within flow activities, timed activities, event and termination
handlers.

Moreover, the language provides a formal description of service deployments by only
keeping relevant implementation details. Thus, the roles played by service partners in
a service interaction are explicitly indicated by partner links and partners, while such
aspects as physical service binding are abstracted away. As we will see in Section 4.2, this
information is dealt with separately in the declarative parts associated to Blite programs,
in order to allow BliteC to generate the corresponding WSDL documents and process
deployment descriptors.

Before formally defining Blite, we provide some insights into its main features by
means of the running example introduced in Section 2.2. We conclude by showing the
specification in Blite of some WS-BPEL programs presented in Section 2.3.

19

3.1. The shipping service in Blite
The shipping service can be rendered in Blite as a deployment { [r • empty] }{xid} defin-

ing xid as a correlation variable and containing the service definition [r • empty], where r
is the primary activity of the service and empty is a fault handler that simply performs an
empty activity when it catches a fault. The structured activity r is defined as follows:

rcv 〈pshipping, xclient〉 oshippingRequest 〈xid, xshipComplete, xitems〉 ;
if (xshipComplete) { inv 〈xclient〉 oshippingNotice 〈xid, xitems〉 } { apiecemealShipment }

where the activity apiecemealShipment is

xitemsShipped := 0 ; while (xitemsShipped < xitems) {
xitemsCount := rand(xitems − xitemsShipped) ;
inv 〈xclient〉 oshippingNotice 〈xid, xitemsCount〉 ; xitemsShipped := xitemsShipped + xitemsCount }

The shipping service is instantiated by a receive activity, which is denoted by rcv and takes
as arguments the partner link 〈pshipping, xclient〉, the operation oshippingRequest used to receive
the shipping request, and the tuple of variables 〈xid, xshipComplete, xitems〉 used for storing the
request message. pshipping is the partner associated to the shipping service, while xclient is a
variable used to store the partner for sending shipping notices to the client. If a complete
shipment has been requested, i.e. the boolean value tt is assigned to the variable xshipComplete,
the created service instance sends a shipping notice (i.e. a tuple composed of the order
identifier and the number of items in the shipment) to the client by invoking the operation
oshippingNotice through an invoke activity, denoted by inv. Otherwise, variable xitemsShipped is
set to 0, by means of an assign activity, and a while loop is entered. At each step, the
variable xitemsCount is assigned the number of items available for a single shipment that is
randomly computed by function rand(·). We are assuming that the function call rand(k)
returns a random integer number greater than 0 and not greater than k, and represents an
internal interaction with a back-end system (that, as in [49], we do not further describe).
Then, a shipping notice containing the computed number is sent to the client through an
invocation of operation oshippingNotice and, before the end of the while step, the value of
xitemsShipped is updated.

Now, consider the following composition of the above deployment containing the ship-
ping service definition and a deployment containing an instance of a client service

{ [r • empty] }{xid} ‖ { µclient ` inv 〈pshipping, pclient〉 oshippingRequest 〈yid, yshipComplete, yitems〉 ; aclient }{yid}

where µclient is the state of the client instance that maps variables yid, yshipComplete and yitems to
values 123, ff and 50, respectively. The client instance can perform the invoke activity and,
hence, sends the message�〈pshipping, pclient〉 : oshippingRequest : 〈123, ff, 50〉� to the shipping
service deployment, which causes the instantiation of the service definition. Thus, the
system can evolve to

20

{ [r • empty] , µshipping ` [if (xshipComplete) {. . .} {. . .} • empty] }{xid} ‖ { µclient ` aclient }{yid}

where µshipping maps xclient, xid, xshipComplete and xitems to pclient, 123, ff and 50, respectively.
To illustrate the constructs provided by Blite for dealing with faults and compensations,

we consider an extension of the shipping service whose first activity of apiecemealShipment is
the scope [apriceCalculation • throw ? (acompDepartment | acompClient)] where the primary activity
apriceCalculation calculates the shipping price according to the value assigned to xitems and
sends the result to the accounts department, activity throw is the fault handler that propa-
gates faults raised within the primary activity to the enclosing scope (like the <rethrow>
activity of WS-BPEL), and terms acompDepartment and acompClient are compensation activities
that, respectively, send information about the non-shipped items to the accounts depart-
ment and send a refund to the client according to the ratio (stored in xratio) between the
shipped items and the required ones. The compensation activities are composed by us-
ing the parallel composition operator · | · (a sort of WS-BPEL flow activity) that allows
the two activities to be concurrently executed. We do not further describe the activities
apriceCalculation, acompDepartment and acompClient. Moreover, we allow the shipping service to
generate a fault, by means of an activity throw (within the body of the while construct),
in case the shipping company has ended the stock of items (this is modelled by function
call rand(k) returning an integer less than or equal to 0). The fault is handled by sending
an error message to the client, through the invocation of operation oerror, and by compen-
sating the inner scope, that has already successfully completed. Therefore, the activity
apiecemealShipment becomes the following scope activity

[apiecemealShipmentWithFault • (xmsg := “sorry” ; inv 〈xclient〉 oerror 〈xid, xmsg〉) ? empty]

where the primary activity apiecemealShipmentWithFault is

[apriceCalculation • throw ? (acompDepartment | acompClient)] ;
xitemsShipped := 0 ;
while (xitemsShipped < xitems) {

xitemsCount := rand(xitems − xitemsShipped) ;
if (xitemsCount 6 0) { xratio := xitemsShipped / xitems ; throw }

{ inv 〈xclient〉 oshippingNotice 〈xid, xitemsCount〉 ; xitemsShipped := xitemsShipped + xitemsCount } }

Consider again the system composed of the shipping service and client deployments,
where now we specify aclient as the following term

yitemsShipped := 0 ; while (yitemsShipped < yitems) {
rcv 〈pclient〉 oshippingNotice 〈yid, yitemsCount〉 ; yitemsShipped := yitemsShipped + yitemsCount

+ rcv 〈pclient〉 oerror 〈yid, yerr〉 ; exit }

The client instance requests a piecemeal shipment and then waits the shipping notices until
either the shipment is completely fulfilled or an error message is received. Notably, we

21

Deployments d ::= {s}c | d1‖ d2 deployment, composition

Services s ::= [r • a f] | µ ` a | µ ` a , s definition, instance, multiset

Start activities r ::= rcv ` r o x̄ |
∑

j∈J rcv ` r
j o j x̄ j ; a j receive, pick

| r ; a | r1 | r2 | [r • a f ? ac] sequence, parallel, scope

Structured activities a ::= b | if(e){a1}{a2} | while(e) {a} basic, conditional, iteration
| a1 ; a2 |

∑
j∈J rcv ` r

j o j x̄ j ; a j sequence, pick (with | J |> 1)
| a1 | a2 | [a • a f ? ac] parallel, scope

Basic activities b ::= inv ` i o x̄ | rcv ` r o x̄ | x := e invoke, receive, assign
| empty | throw | exit empty, throw, exit

Table 2: Syntax of Blite

exploit here the pick operator ·+ · (a sort of receive-guarded choice) to make a conditional
choice based on the received message, and the termination activity exit to immediately
terminate the execution of the client instance when an error message is received.

A possible computation of the system is as follows: (1) the client instance invokes
the operation oshippingRequest with arguments 〈123, ff, 50〉; (2) a shipping service instance is
created and the inner scope [apriceCalculation • throw ? (acompDepartment | acompClient)] success-
fully completes; (3) function call rand(50) returns 20 and a shipping notice with values
〈123, 20〉 is sent to the client instance through operation oshippingNotice; (4) function call
rand(30) returns 0 and a fault is raised; (5) the compensation activities acompDepartment and
acompClient and, then, the fault handling activity inv 〈xclient〉 oerror 〈xid, xmsg〉, are executed.

3.2. Syntax
The syntax of Blite is given in Table 2. Besides basic and structured activities, Blite

provides a syntax for specifying deployments, service instances and definitions, and the
auxiliary category of start activities (namely a restricted form of structured activities that
must be used for defining services).

Deployments are finite compositions of multisets of service instances µ ` a, containing
at most one service definition [r • a f] and having an associated correlation set c, namely
a (possibly empty) set of correlation variables. A service definition provides a ‘top-level’
scope, i.e. a scope that cannot be compensated. It groups a primary activity r, that offers
a choice of alternative receives among multiple start activities, and a fault handling ac-
tivity a f . Start activities r are indeed structured activities that initially can only execute
receive activities. We convene that the fault handling activity of a service definition may
be omitted, in which case it is intended to be throw. Each service instance µ ` a has its
own (private) state µ. States are (partial) functions mapping variables to values and are

22

written as collections of pairs of the form {x 7→ v}. The state obtained by updating µ with
µ′, written as µ ◦ µ′, is inductively defined by: µ ◦ µ′(x) = µ′(x) if x ∈ dom(µ′) (where
dom(µ) denotes the domain of µ) and µ(x) otherwise. The empty state is denoted by ∅.

Services are structured activities built from basic activities, i.e. service invocation
inv · · ·, service request processing rcv · · ·, assignment · := ·, empty activity empty, fault
generation throw and instance forced termination exit, by exploiting operators for condi-
tional choice if(·){·}{·} , iteration while(·) {·} , sequential composition · ; · , pick

∑
j∈J rcv · · · ; ·

(with the constraint that | J |> 1), parallel composition · | · and scope [· • · ? ·]. We
shall use · + · to abbreviate binary pick. Moreover, we let sequence have higher priority
(i.e. bind more tightly) than parallel composition and pick, i.e. a1 ; a2 | a3 ; a4 stands for
(a1 ; a2) | (a3 ; a4) and a1 ; a2 + a3 stands for (a1 ; a2) + a3. A scope activity [a • a f ? ac]
groups a primary activity a together with a fault handling activity a f and a compensation
activity ac. We convene that fault and compensation activities may be omitted from a
scope, in which case they are intended to be throw and empty, respectively.

Data can be shared among different activities through shared variables (ranged over
by x, x′, . . .). The set of manipulable values (ranged over by v, v′, . . .) is left unspecified;
however, we assume that it includes the set of partner names (ranged over by p, q, . . .) and
the set of operation names (ranged over by o, o′, . . .). We use u to range over partners and
variables and w to range over values and variables. Expressions (ranged over by e, e′, . . .)
are left unspecified 4 but contain, at least, values and variables.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting the
tuple of variables 〈x1, . . . , xh〉 (with h ≥ 0). We assume that variables in the same tuple
are pairwise distinct. The special notation ·̃ stands for tuples of one or two objects, e.g. p̃
denotes either 〈p1, p2〉 or 〈p1〉. Tuples can be constructed using a concatenation operator
· : ·, i.e. 〈p, u〉 : 〈x1, . . . , xh〉 returns 〈p, u, x1, . . . , xh〉. We will write Z , W to assign a
symbolic name Z to the term W.

Partner links ` r of receive activities can be either 〈p〉 or 〈p, u〉, where p is the part-
ner providing the operation and u is a partner or variable used to send messages in reply.
Indeed, in one-way interactions a partner link indicates a single partner because one of
the parties provides all the invoked operations. Instead, in request-response interactions,
partner links indicate two partners because the requesting partner must provide a callback
operation used by the receiving partner to send notifications. Service partners used for re-

4Blite is parametric w.r.t. the set of expressions as well as WS-BPEL is parametric w.r.t. the expression
language supporting data manipulation. Since Blite specifications are passed as input to the BliteC tool to
be translated into WS-BPEL programs (see in Section 4), BliteC accepts a simple, yet powerful, language
of expressions that can be comfortably translated into XPath 1.0 [24], the language adopted by the three
WS-BPEL engines we have compared in Section 2.3.

23

ceiving messages must be known at design-time, while the partners used to send messages
in reply may be dynamically determined. Partner links ` i within invoke activities can be
either 〈u〉 or 〈u, p〉, where u is the partner providing the operation and p is a partner used
to receive messages in reply. As before, this latter partner must be statically known, thus
it cannot be a variable.

Besides asynchronous invocation, WS-BPEL also provides a construct for syn-
chronous invocation of remote services. This construct forces the invoker to wait for an
answer by the invoked service, that indeed performs a pair of operations receive–reply. In
Blite, this behaviour is rendered in terms of a pair of activities invoke–receive executed
by the invoker and a pair of activities receive–invoke executed by the invoked service.
Notwithstanding this, Blite partner links and operations provide enough information to
tell such request-response interactions apart from those that are actually uni-directional
(and indeed BliteC translates these constructs in two different ways, as shown in Table 7).

3.3. Operational semantics
We will only consider well-formed deployments, i.e. compositions where the sets of

partners used for handling requests within different deployments are pairwise disjoint. The
rationale is that each service definition has its own partner names and all its instances run
within the same deployment where the definition resides.

The semantics is defined over an enriched syntax that also includes protected activi-
ties LaM, unsuccessful termination stop, messages � p̃ : o : v̄� and scopes of the form
[a • a f ? ac 4 ad]. The first three ‘auxiliary’ activities are used to replace, respectively, un-
successfully completed scopes (with their protected default compensation), compulsorily
or faultily terminated services (with stop), and invoke activities (with the message they
produced). Instead, such scopes as [a • a f ? ac 4 ad] are dynamically generated to store in
ad the compensation activities of the immediately enclosed scopes that have successfully
completed, together with the order in which they must be executed. In the sequel, empty,
exit, throw, stop and messages will be called short-lived activities and will be generically
indicated by sh.

The operational semantics of Blite deployments is defined in terms of a structural con-
gruence and a reduction relation. The structural congruence, written ≡, identifies syn-
tactically different terms which intuitively represent the same term. It is defined as the
least congruence relation induced by a given set of equational laws. In Table 3, we ex-
plicitly show, in the upper part, the laws for empty, stop, protected activities, messages
and scopes, and, in the lower part, the laws for services and deployments. Standard laws
stating, e.g., that sequence is associative, parallel composition is commutative and asso-
ciative, are omitted. A few observations on the structural laws are in order. Activity empty
acts as the identity element both for sequence and parallel composition. Multiple stop in

24

a | empty ≡ a empty ; a ≡ a ; empty ≡ a stop | stop ≡ stop stop ; a ≡ stop

LLaMM ≡ LaM LshM ≡ sh L� p̃ :o : v̄�| aM ≡� p̃ :o : v̄�| LaM

[a • a f ? ac] ≡ [a • a f ? ac 4 empty] (� p̃ :o : v̄�| a1) ; a2 ≡� p̃ :o : v̄�| (a1 ; a2)

[� p̃ :o : v̄�| a • a f ? ac 4 ad] ≡� p̃ :o : v̄�| [a • a f ? ac 4 ad] if ¬a⇓throw

a ≡ a′ a f ≡ a′f ac ≡ a′c ad ≡ a′d

[a • a f ? ac 4 ad] ≡ [a′ • a′f ? a′c 4 a′d]

r ≡ r′ a f ≡ a′f

{[r • a f] , s}c ≡ {s , [r′ • a′f]}c

a ≡ a′

{µ ` a , s}c ≡ {s , µ ` a′}c

d1‖ d2 ≡ d2‖ d1 (d1‖ d2) ‖ d3 ≡ d1‖ (d2‖ d3) {µ ` empty , s}c ≡ {s}c

{µ ` stop , s}c ≡ {s}c {µ ` empty}c‖ d ≡ d {µ ` stop}c‖ d ≡ d

Table 3: Structural congruence for Blite activities and deployments

parallel are equivalent to just one stop, moreover stop disables subsequent activities. The
protection operator is idempotent, and short-lived activities are implicitly protected, thus
messages can go in/out of the scope of a protection operator. Default compensation is ini-
tially empty. Messages do not block subsequent activities and scope completion, except
when throw is active in the scope (this is checked by predicate · ⇓throw that will be ex-
plained later on). Structural congruence is extended to scopes, instances and deployments
in the obvious way. Moreover, the order in which definition and instances occur within a
deployment does not matter, and deployment composition is commutative and associative.
Instances like µ ` empty and µ ` stop are terminated and, thus, can be removed. Similarly,
deployments only containing terminated instances are terminated too and can be removed.

The reduction relation over deployments, written �−_, exploits a labelled transition
relation over structured activities, written

α
−−_, where α is generated by the grammar:

α ::= τ | x← v | ! p̃ :o : v̄ | ? ` r :o : x̄ | � | � | (a)

The meaning of labels is as follows: τ indicates message productions, guard evaluations
for conditional and iteration or installation/activation of compensations; x ← v indicates
assignment of value v to variable x; ! p̃ : o : v̄ and ? ` r : o : x̄ indicate execution of invoke
and receive activities for operation o, where p̃ and v̄ match with ` r and x̄, respectively;
� indicates forced termination of a service instance; � indicates production of a fault

25

µ ` inv ` i o x̄
τ
−_�µ(` i) :o :µ(x̄)� (inv) rcv ` r o x̄

? ` r :o:x̄
−−−−−−_ empty (rec) throw

�
−−_ stop (thr)

µ ` x := e
x←µ(e)
−−−−−−_ empty (asg) � p̃ :o : v̄�

! p̃:o:v̄
−−−−−_ empty (msg) exit

�
−−_ stop (term)

µ ` a1
α
−−_ a′1

(seq)
µ ` a1 ; a2

α
−−_ a′1 ; a2

µ ` a
α
−−_ a′

(prot)
µ ` LaM

α
−−_ La′M

h ∈ J
(pick)∑

j∈J rcv ` r
j o j x̄ j ; a j

? ` r
h :oh:x̄h

−−−−−−−_ ah

a =

{
a1 if µ(e) = tt
a2 if µ(e) = ff

(if)
µ ` if(e){a1}{a2}

τ
−_ a

a′ =

{
a ; while(e) {a} if µ(e) = tt
empty if µ(e) = ff

(while)
µ ` while(e) {a}

τ
−_ a′

µ ` a1
α
−−_ a′1 α < {�, �} ¬(a2⇓throw∨ a2⇓exit)

(par1)
µ ` a1 | a2

α
−−_ a′1 | a2

a1
α
−−_ a′1 α ∈ {�, �}

(par2)
a1 | a2

α
−−_ a′1 | end(a2)

[empty • a f ? ac 4 ad]
(ac)
−−−_ empty (done1)

[stop • a f ? ac 4 ad]
τ
−_ Lad ; a f M (done2)

a
(a′′)
−−−−_ a′

(done3)
[a • a f ? ac 4 ad]

τ
−_ [a′ • a f ? ac 4 a′′ ; ad]

µ ` a
α
−−_ a′ α < {�, (a′′)}

(exec)
µ ` [a • a f ? ac 4 ad]

α
−−_ [a′ • a f ? ac 4 ad]

a
�
−−_ a′

(fault)
[a • a f ? ac 4 ad]

τ
−_ [a′ • a f ? ac 4 ad]

Table 4: Basic, auxiliary and structured activities

signal from inside a scope; (a) indicates successful completion of a scope that can be
compensated by the structured activity a.

The relation
α
−−_ is defined by the rules in Table 4 with respect to a state µ, that is

omitted when unnecessary (writing a
α
−−_ a′ instead of µ ` a

α
−−_ a′). Before commenting

the rules, we introduce the auxiliary functions and predicates they exploit. Specifically,
function µ(e) evaluates expression e with respect to the state µ and returns the computed
value. However, µ(·) cannot be explicitly defined because the exact syntax of expressions is
deliberately not specified. Predicates a⇓exit and a⇓throw check the ability of a of performing
exit or throw, respectively. They are defined inductively on the syntax of activities and hold
false in all cases but for the following ones:

exit⇓exit

a1⇓exit

a1 ; a2⇓exit

a⇓exit

LaM⇓exit

a1⇓exit ∨ a2⇓exit

a1 | a2⇓exit

a⇓exit

[a • a f ? ac]⇓exit

26

a⇓exit

[a • a f ? ac 4 ad]⇓exit

a1⇓exit ∧ a1 ≡ a2

a2⇓exit

throw⇓throw

a1⇓throw

a1 ; a2⇓throw

a⇓throw

LaM⇓throw

a1⇓throw ∨ a2⇓throw

a1 | a2⇓throw

a1⇓throw ∧ a1 ≡ a2

a2⇓throw

Function end(·), given an activity a, returns the activity obtained by only retaining short-
lived and protected activities inside a. It is defined inductively on the syntax of activities,
the most significant cases being

end(sh) = sh end(LaM) = LaM end([a • a f ? ac]) = [end(a) • a f ? ac]

end(a1 ; a2) = end(a1) end([a • a f ? ac 4 ad]) = [end(a) • a f ? ac 4 ad]

where a1 may not be congruent to empty or to � p̃ : o : v̄�, or to parallel compositions
of them. In the remaining cases, end(·) returns stop, except for parallel composition for
which it acts as an homomorphism. Like the two predicates above, function end(·) is
closed under ≡, i.e. end(a1) = a and a1 ≡ a2 imply end(a2) = a.

We now briefly comment on the rules in Table 4. Rules (inv) and (asg) state that invoke
and assign activities can proceed only if their arguments are closed expressions (i.e. ex-
pressions without uninitialized variables) and can be evaluated (i.e. µ(·) returns a value).
By rule (rec), a receive activity offers an invocable operation along a given partner link.
Rules (thr) and (term) report production of fault and forced termination signals, respec-
tively. Auxiliary activities behave as expected: a message can always be delivered (rule
(msg)) and the protected activity LaM behaves like a (rule (prot)). Rule (seq) takes care of ac-
tivities executed sequentially, while rule (pick) permits to choose among alternative receive
activities. Rules for conditional choice and iteration ((if) and (while), resp.) are standard.
Execution of parallel activities is interleaved (rules (par1) and (par2)), except when a termi-
nate/fault activity can be executed (rule (par2)), in which case all parallel activities must
immediately terminate except for short-lived activities and protected fault/compensation
handlers. In other words, termination activities throw and exit are executed eagerly.

By rules (done1) and (done3), scope completions can be compensated according to the
WS-BPEL default compensation behaviour (i.e. in the reverse order of completion) by
the immediately enclosing scope. Notably, scopes like [empty • a f ? ac 4 ad] have not
completed yet and when a scope completes, the default compensation ad of inner scopes is
not passed to the enclosing scope (rule (done1)). Rule (exec) permits to perform any action
of the primary activity a except for fault emission and scope completion. In particular,
inner forced terminations are propagated externally outside the scope. Differently from
forced termination, faults arising within a scope are managed internally (rule (fault)), and
the corresponding handler is installed when the main activity completes (rule (done2)). By

27

match(c, µ, v, v) = ∅ match(c, µ, x, v) =

{
{x 7→ v} if x < c ∨ (x ∈ c ∧ x < dom(µ))
∅ if x ∈ c ∧ {x 7→ v} ∈ µ

match(c, µ, 〈〉, 〈〉) = ∅
match(c, µ, w1, v1) = µ′ match(c, µ, w̄2, v̄2) = µ′′

match(c, µ, (w1, w̄2), (v1, v̄2)) = µ′ ◦ µ′′

|match(c, µ, ` r :o : x̄, p̃ :o : v̄) |< n

µ ` rcv ` r o x̄ ; a⇓c,n
p̃:o:v̄

∃ h ∈ J . |match(c, µ, ` r
h :oh : x̄h, p̃ :o : v̄) |< n

µ `
∑

j∈J rcv ` r
j o j x̄ j ; a j⇓

c,n
p̃:o:v̄

µ ` a1⇓
c,n
p̃:o:v̄

µ ` a1 ; a2⇓
c,n
p̃:o:v̄

µ ` a1⇓
c,n
p̃:o:v̄ ∨ µ ` a2⇓

c,n
p̃:o:v̄

µ ` a1 | a2⇓
c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄

µ ` LaM⇓c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄

µ ` [a • a f ? ac 4 ad]⇓c,n
p̃:o:v̄

µ ` a⇓c,n
p̃:o:v̄ ∨ s⇓c,n

p̃:o:v̄

µ ` a , s⇓c,n
p̃:o:v̄

Table 5: Matching rules / Is there an active receive along p̃ and o matching v̄?

rule (done2), default compensation is performed after termination of the primary activity
and before fault handling. Note that compensation activities do not store any state with
them: hence, if the state changes between the compensation being stored and executed,
the current state is used.

A few auxiliary functions are also used in the reduction relation over deployments
defined in Table 6. The rules for communication and variables updating ((com), (new) and
(var)) need a mechanism for checking if an assignment of some values v̄ to w̄ complies with
the constraints imposed by the given correlation set c and state µ and, in case of success,
returns a state µ′ for the variables in w̄ that records the effect of the assignment. This
mechanism is implemented by function match(·, ·, ·, ·) defined through the rules in the
upper part of Table 5. Notice that match(·, ·, ·, ·) is undefined when w̄ and v̄ have different
length or when x ∈ c and {x 7→ v′} ∈ µ for some v′ , v (since the state {x 7→ v} does
not comply with c and µ). Rules (com) and (new) also use the auxiliary predicate s ⇓c,n

p̃:o:v̄,
defined inductively on the syntax of s in the lower part of Table 5, that checks the ability
of s of performing a receive on operation o exploiting the partner link p̃, matching the
tuple of values v̄ and generating a state with fewer pairs than n that complies with c and
the current state of the activity performing the receive.

Finally, we comment on the rules in Table 6. By rule (com), communication can take
place when two service instances perform matching receive and invoke activities comply-

28

a1
? t1
−−−_ a′1 a2

! t2
−−−_ a′2 match(c1, µ1, t1, t2) = µ′1 ¬ (µ1 ` a1 , s1⇓

c1,|µ
′
1|

t2)
(com)

{µ1 ` a1 , s1}c1‖ {µ2 ` a2 , s2}c2 �−_ {µ1 ◦ µ
′
1 ` a′1 , s1}c1‖ {µ2 ` a′2 , s2}c2

[r • a f ? empty]
? t1
−−−_ a1 a2

! t2
−−−_ a′2 match(c1, ∅, t1, t2) = µ1 ¬ (s1⇓

c1,|µ1|

t2)
(new)

{[r • a f] , s1}c1‖ {µ2 ` a2 , s2}c2 �−_ {µ1 ` a1 , [r • a f] , s1}c1‖ {µ2 ` a′2 , s2}c2

µ ` a
x←v
−−−−_ a′ match(c, µ, x, v) = µ′

(var)
{µ ` a , s}c �−_ {µ ◦ µ′ ` a′ , s}c

d1 �−_ d′1
(part)

d1‖ d2 �−_ d′1‖ d2

µ ` a
α
−−_ a′ α < {? t1, ! t2, x← v}

(enab)
{µ ` a , s}c �−_ {µ ` a′ , s}c

d ≡ d1 d1 �−_ d2 d2 ≡ d′
(cong)

d �−_ d′

Table 6: Reduction rules for Blite deployments (where t1 = ` r :o : x̄ and t2 = p̃ :o : v̄)

ing with the correlation set of the receiving instance. Notice that matching covers both
partner link p̃ and business data v̄. Communication generates a state that updates the state
of the receiving instance. If more than one matching receive activity is able to process a
given invoke, then only the most defined one (i.e. the receive that generates the ‘smaller’
state) progresses (predicate ·⇓·,·· serves this purpose). This mechanism permits to correlate
messages to service instances and to model the precedence of an existing service instance
over a new service instantiation (rule (new)), as it has been shown in Example 2.3 of Sec-
tion 2.3. In rules (com) and (new), the assumption about well-formedness of deployments
finds full employment, because it avoids checking every single deployment for possible
conflicting receive activities. By rule (new), service instantiation can take place when a
service definition and a service instance perform matching receive and invoke activities,
respectively. By rule (var), correlation variables cannot be reassigned if the new value does
not match with the old one. Moreover, if an assignment takes place, its effect is global
to the instance, i.e. the state is updated. By rule (enab), execution of activities different
from communications or assignments can always proceed. If part of a larger deployment
evolves, the whole composition evolves accordingly (rule (part)) and, as usual, structural
congruent deployments have the same reductions (rule (cong)).

3.4. Examples
We report here the Blite specifications of some WS-BPEL processes graphically pre-

sented in Section 2.3. The specifications of the other examples can be found in [41].

29

Multiple start and conflicting receive activities. A deployment corresponding to the mul-
tiple start activities in Figure 6(a) is:

{ [(rcv 〈p1, q〉 LogOn 〈xlogID, xinfo1〉 | rcv 〈p2, q〉 LogOn 〈xlogID, xinfo2〉) ;
rcv 〈r〉RequestLogInfo 〈xlogID〉 ; inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉] }{xlogID}

Now, consider the following composed deployment with two client processes:

{ [(rcv 〈p1, q〉 LogOn 〈xlogID, xinfo1〉 | rcv 〈p2, q〉 LogOn 〈xlogID, xinfo2〉) ;
rcv 〈r〉RequestLogInfo 〈xlogID〉 ; inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉] }{xlogID}

‖ { {x 7→ id, y 7→ d1} ` inv 〈p1, q〉 LogOn 〈x, y〉 ; inv 〈r〉RequestLogInfo 〈x〉 ; rcv 〈q〉SendLogInfo 〈x, z, k〉 }{x}
‖ { {x 7→ id, y 7→ d2} ` inv 〈p2, q〉 LogOn 〈x, y〉 }{x}

After message�〈p1〉 :LogOn : 〈id, d1〉�, produced by invocation inv 〈p1, q〉 LogOn 〈x, y〉,
has been processed by rcv 〈p1, q〉 LogOn 〈xlogID, xdata1〉, the overall composition becomes

{ [(rcv 〈p1, q〉 LogOn 〈xlogID, xinfo1〉 | rcv 〈p2, q〉 LogOn 〈xlogID, xinfo2〉) ;
rcv 〈r〉RequestLogInfo 〈xlogID〉 ; inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉 ,
{ xlogID 7→ id, xinfo1 7→ d1 } ` [rcv 〈p2, q〉 LogOn 〈xlogID, xinfo2〉 ;

rcv 〈r〉RequestLogInfo 〈xlogID〉 ; inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉] }{xlogID}

‖ { {x 7→ id, y 7→ d1} ` inv 〈r〉RequestLogInfo 〈x〉 ; rcv 〈q〉SendLogInfo 〈x, z, k〉 }{x}
‖ { {x 7→ id, y 7→ d2} ` inv 〈p2, q〉 LogOn 〈x, y〉 }{x}

Now, the definition and the instance of the service compete for receiving the same mes-
sage sent by the invoke activity inv 〈p2, q〉 LogOn 〈x, y〉. In cases like this, the WS-BPEL
specification requires that the invocation is only delivered to the existing instance, which
prevents creation of a new instance. In fact, in Blite the above term can only reduce to

{ [(rcv 〈p1, q〉 LogOn 〈xlogID, xinfo1〉 | rcv 〈p2, q〉 LogOn 〈xlogID, xinfo2〉) ;
rcv 〈r〉RequestLogInfo 〈xlogID〉 ; inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉 ,
{ xlogID 7→ id, xinfo1 7→ d1, xinfo2 7→ d2 } ` [rcv 〈r〉RequestLogInfo 〈xlogID〉 ;

inv 〈q〉SendLogInfo 〈xlogID, xinfo1 , xinfo2〉] }{xlogID}

‖ { {x 7→ id, y 7→ d1} ` inv 〈r〉RequestLogInfo 〈x〉 ; rcv 〈q〉SendLogInfo 〈x, z, k〉 }{x}
‖ { {x 7→ id, y 7→ d2} ` empty }{x}

Handlers protection. The following Blite term corresponds to the example of Figure 11:

a , [([[x := v1 • throw ? x := v2] ; throw • throw ? empty] | if(tt){throw}{empty}) • empty]

Now, consider a deployment containing a service instance ∅ ` a. A possible computation
is the following one

30

{∅ ` a}∅ �
(1)
−−−_ {{x 7→ v1} ` [([[empty • throw ? x := v2] ; throw • throw ? empty]

| if(tt){throw}{empty}) • empty]}∅

�
(2)
−−−_ {{x 7→ v1} ` [([empty ; throw • throw ? empty 4 (x := v2 ; empty)]

| if(tt){throw}{empty}) • empty]}∅
≡ {{x 7→ v1} ` [([throw • throw ? empty 4 x := v2]

| if(tt){throw}{empty}) • empty]}∅

�
(3)
−−−_ {{x 7→ v1} ` [([stop • throw ? empty 4 x := v2]

| if(tt){throw}{empty}) • empty]}∅

�
(4)
−−−_ {{x 7→ v1} ` [(Lx := v2 ; throwM | if(tt){throw}{empty}) • empty]}∅

�
(5)
−−−_ {{x 7→ v1} ` [(Lx := v2 ; throwM | throw) • empty]}∅

�
(6)
−−−_ {{x 7→ v1} ` [(end(Lx := v2 ; throwM) | stop) • empty]}∅
≡ {{x 7→ v1} ` [(Lx := v2 ; throwM | stop) • empty]}∅

�
(7)
−−−_ {{x 7→ v2} ` [(LthrowM | stop) • empty]}∅

where we have numbered the reductions for ease of reference. When the scope of the
first assign activity completes, the compensation handler (i.e. the second assign activity)
is inserted into the default compensation activities of its enclosing scope (1-2). When exe-
cution of the next throw activity rises a fault, then the fault is caught by the corresponding
fault handler (3-4) that activates the default compensation. This activity is protected, by
using the auxiliary operator L·M, from the effect of the forced termination triggered by the
parallel throw activity (5-7). At this point, the computation can go on by raising the fault
and then executing the empty compensation.

4. BliteC: a tool for rapid development of WS-BPEL applications

BliteC5 is developed in Java to guarantee its portability across different platforms,
to exploit the well-established Java libraries for generating parsers and for manipulating
XML documents, and because Java is the reference language for the applications designed
around WS-BPEL. Besides the standard Java libraries, we have used JDOM [9] for creat-
ing and managing XML documents, JavaCC [8] for generating the parsers that validate the
input documents, and JJTree [8] for allowing the parsers to build parse trees (already ar-
ranged to support the Visitor design pattern [26]). The architecture of BliteC is graphically
depicted in Figure 12. The tool is composed of five main components:

5BliteC is a free software; it can be downloaded from http://rap.dsi.unifi.it/blite and redis-
tributed and/or modified under the terms of the GNU General Public License.

31

http://rap.dsi.unifi.it/blite

Mapper

Blite parser

Deployer

BliteC

WS-BPEL
generator

WSDL
generator

Blite
program

.bl

WS-BPEL
package

specification

declarations

Figure 12: BliteC architecture

• Mapper parses the declarative part (see Section 4.1) of the input Blite program and
initializes a map that associates each declared object to its name;

• Blite parser analyzes the Blite specification within the input program, completes
the map created by Mapper and creates the parse tree of the Blite specification;

• WS-BPEL and WSDL generators use the data produced by the above components
to generate a WS-BPEL process and the associated WSDL document;

• Deployer generates the process deployment descriptor and packages all created
documents into a deployable file.

In the rest of the section, we present the syntax of Blite accepted by the tool and the
declarative part of Blite programs through our running example, and explain the corre-
spondence between Blite constructs and WS-BPEL activities.

4.1. The shipping service in BliteC
A Blite program accepted by BliteC is composed of a Blite specification and a declar-

ative part. The former focusses on the behavioural aspects of the orchestration, while the
latter provides the implementation details (e.g. types, addresses, bindings, . . .) that are
necessary to deploy and execute the corresponding WS-BPEL program.

The syntax of Blite accepted by BliteC is a ‘machine readable’ version of the syntax
reported in Table 2. As a matter of notation, the scope construct is denoted by [a @ a f

* ac], sequence by seq a1 ; . . . ; an qes, flow by flw a1 | . . . | an wlf, and pick by
pck a1 + . . . + an kcp. Notably, for the sake of practicality, sequence and parallel com-
position are defined as n-ary operators. Moreover, expressions are explicitly defined as

32

combination of values and variables by means of boolean, arithmetic, relational and string
operators, where the manipulable values are boolean, integer numbers, strings (as usual,
written within double inverted commas), partner links, and literals (defined in the declara-
tive part). Assignments can also exploit special operators for inserting and extracting data
into and from XML-structured messages. Deployments only contain service definitions,
as service instances are created at runtime because of service invocations. Finally, the
symbol , used in Section 3 is replaced by the symbol ::= .

We show below the Blite specification6, written in the syntax accepted by BliteC, of
the shipping service already introduced in Section 2.2 and specified in Blite in Section 3.1:
a_piecemealShipment ::=
seq
x_itemsShipped := 0;
while (x_itemsShipped < x_items) { seq
inv <backend,cb_backend> o_num <x_id>;
rcv <cb_backend> o_num <x_itemsCount,x_id>;
inv <x_client> o_shippingNotice <x_id,x_itemsCount>;
x_itemsShipped := x_itemsShipped + x_itemsCount

qes }
qes ;;

s_ship ::=
[seq
rcv <p_shipping,x_client> o_shippingRequest <x_id,x_shipComplete,x_items>;
if (x_shipComplete)

{ inv <x_client> o_shippingNotice <x_id,x_items> }
else { a_piecemealShipment }
qes
@ empty];;

shipping_service ::= {s_ship}{x_id};;

Here, differently from the specification in Section 3.1, we have replaced the call of function
rand(·) by a more realistic (synchronous) invocation of a back-end service.

The declarative part of a Blite program specifies configuration data necessary to prop-
erly translate the Blite specification into an executable WS-BPEL program. Notably,
BliteC requires the user to insert only the strictly necessary data. The declarations must be
included within <?blm and ?>, and can occur in any position within a Blite program.

Below, we show the declarative part of the shipping service specification:
<?blm ADDRESSES { myns => "http://example";

myaddress =>"http://XXX:8080/active-bpel/services"; }

IMPORTS { bck => "http://example/backendService/backend_service.wsdl"; }

6The complete specification, including the back-end and client services, can be found in [41].

33

VARIABLES {
<x_id,x_shipComplete,x_items> => gen:shipOrder,<id,shipComplete,items>,

<xsd:int,xsd:boolean,xsd:int>;
<x_id,x_items> => gen:shippingNoticeMsg,<id,items>,<xsd:int,xsd:int>;
<x_id,x_itemsCount> => gen:shippingNoticeMsg;
<x_id> => bck:id;
<x_itemsCount,x_id> => bck:number;
x_itemsShipped => xsd:integer; }

PARTNERLINKS { PARTNERLINK { TYPE => bck:clientPLT;
PARTNER_ROLE backend => bck:p_backendPT; } } ?>

Within the ADDRESSES block the user has to specify the base for the namespaces used
inside the generated files (after the keyword myns) and the base for the address where the
new service will be hosted (after the keyword myaddress).

To define a service orchestration it is often necessary to import data (e.g. type dec-
larations) from documents (e.g. WSDL files) associated to other services. The user can
specify the addresses of such documents within the IMPORTS block, by associating to each
imported document a namespace prefix that will be used in the subsequent declarations to
refer to it. In our example, to interact with the back-end service the types of some message
variables and a partner link have been imported from the WSDL document of the ser-
vice, which is identified by the namespace prefix bck. Definitions belonging to standard
namespaces (e.g. http://www.w3.org/2001/XMLSchema) are automatically imported.

Since WS-BPEL variables are typed, whereas Blite ones are not, within the
VARIABLES block the user must declare the type of both local and message vari-
ables. Local variables, that can be used to temporarily store data and manipulate
them, are declared by associations of the form x => XML_Schema_type; like e.g.
x_itemsShipped => xsd:integer; . Messages, that are tuples of variables used ei-
ther as sending source or as receiving target, can be declared in two ways:

• by using an imported message type, e.g. in <x_itemsCount,x_id> =>
bck:number; the message composed of variables x_itemsCount and x_id
is typed as number, which is defined in the WSDL document identified by bck;

• by generating a new message type, e.g. the message <x_id,x_shipComplete,
x_items> is typed as shipOrder, that defines messages composed of two integer
parts, id and items, and a boolean part, shipComplete. The namespace prefix
gen indicates that the type must be generated.

Similarly, partner links are typed in WS-BPEL and untyped in Blite. Therefore, except
for the partner links used by the process to interact with its clients, that are automatically
generated and typed by BliteC, the type of the other partner links must be defined within
the PARTNERLINKS block. In our example, to interact with the back-end service, a partner

34

link with type clientPLT is specified, where the role backend is played by the partner
through the port type p_backendPT (notice that the partner link type and the port type are
defined in the imported WSDL document identified by bck). If the process would play
also an active role in the interaction, a MY_ROLE association could be specified.

4.2. From Blite to WS-BPEL
We provide here some insights about the transformation of Blite constructs into WS-

BPEL activities which is reported in Table 7. Since our tests point out that the same
WS-BPEL program might have different behaviours on different engines, the translation
described here is targeted to a specific engine, i.e. ActiveBPEL. If one wants to produce
packages intended to be executed by other WS-BPEL engines, the translation has possibly
to be properly tailored. It is worth noting that, since there is no precise description of the
behaviour of the ActiveBPEL engine, it cannot be formally proved that the semantics of
the WS-BPEL program resulting from a translation conforms to that of the original Blite
program. However, since Blite is a ‘sort of’ lightweight variant of WS-BPEL, the trans-
lation we define is quite intuitive and direct, which makes us confident that the original
semantics is obeyed. This is of course witnessed by all the experiments we have done.

Communication activities, i.e. invokes and receives, are translated in a different way
depending on their arguments and their position in the code. Therefore, the translation of
Blite programs proceeds in a top-down fashion and, in doing so, the WS-BPEL generator
exploits the information previously collected by the Mapper and the Blite parser. For
example, if a receive activity is positioned within a pck construct it is translated as an
<onMessage> activity; if it is positioned after an invoke (in case of a request-response
interaction) it is translated as a synchronous <invoke>; otherwise, it is simply translated
as a <receive>. In addition to the excerpts shown in the table, the translation also settles
the following activity attributes. If a receive is a start activity, to allow the process to
be instantiated, the createInstance attribute must be set to yes. Moreover, if some
correlation variables are involved, the corresponding correlation set (whose declaration is
generated during the translation of the deployment term) must be specified as a further
argument of the <receive> activity. The correlation attributes initiate and pattern
are specified according to the type of the interaction.

The invoke activity is translated similarly; in particular, when it is used in a request-
response interaction to send the response, it is translated as a <reply> activity. Thus,
despite request-response interactions are expressed in Blite through pairs of uni-directional
interactions, BliteC has enough information to tell such interactions apart from those that
are actually uni-directional. The translation of the remaining basic activities and of the
structured activities is straightforward. In particular, an assign activity involving message
variables is translated by exploiting the type of such variables (defined in the declarative

35

Blite WS-BPEL

Receive activity
pck ... <onMessage partnerLink="pl" operation="op"

rcv pl op <x1,. . .,xn>... kcp variable="x" />

inv <p,p’> op <y1,. . .,yn>; <invoke partnerlink="pl" operation="op"

rcv <p’> op <x1,. . .,xm> inputVariable="y" outputVariable="x" />

rcv pl op <x1,. . .,xn> <receive partnerLink="pl" operation="op"

variable="x" />

Invoke activity
inv pl op <x1,. . .,xn> <invoke partnerLink="pl" operation="op"

inputVariable="x" />

inv <p,p’> op <y1,. . .,yn>; <invoke partnerlink="pl" operation="op"

rcv <p’> op <x1,. . .,xm> inputVariable="y" outputVariable="x" />

rcv <p,p’> op <y1,. . .,yn> <receive ... /> ...

... <reply partnerlink="pl" operation="op"

inv <p’> op <x1,. . .,xm> variable="x" />

Other basic activities
<assign> <copy>

x := e <from> e </from> <to> $var_x.part_x </to>

</copy> </assign>

empty <empty />

throw <throw />

exit <exit />

Structured activities
if (e) {a1} else {a2} <if> <condition> e </condition> a1

<else> a2 </else> </if>

while (e) {a} <while> <condition> e </condition> a </while>
seq a1 ; . . . ; an qes <sequence> a1 . . . an </sequence>

flw a1 | . . . | an wlf <flow> a1 . . . an </flow>

pck a1 + . . . + an kcp <pick> a1 . . . an </pick>

<scope> <faultHandlers> <catchAll>

<sequence> <compensate/> a f </sequence>

[a @ a f * ac] </catchAll> </faultHandlers>

<compensationHandler> ac </compensationHandler>

a
</scope>

Service definitions
<process> <faultHandlers> <catchAll>

<sequence> <compensate/> a f </sequence>

[a @ a f] </catchAll> </faultHandlers>

a
</process>

Table 7: Transformation of Blite constructs into WS-BPEL activities

36

part) to identify the involved parts. A service definitions is translated as a scope, where
the compensation handler is missing and the tag <scope> is replaced by <process>.

Finally, a Blite deployment is rendered as a WS-BPEL package whose WS-BPEL doc-
ument contains the translation of the service definition within the deployment, while a
composition of deployments results in a collection of WS-BPEL packages deployed in
one or more WS-BPEL engines.

5. Concluding remarks

In this paper, we have argued about the difficulties that might arise when using WS-
BPEL for programming business processes and introduced a framework including the or-
chestration language Blite and the software tool BliteC that supports a rapid and easy
development of WS-BPEL applications.

As a first contribution, we have tested and compared, by means of several illustrative
examples, the behaviour of three of the most known freely available WS-BPEL engines.
The results of our experiments demonstrate that the many loose points in the WS-BPEL
specification document have led to engines implementing different semantics and, hence,
have undermined portability of WS-BPEL programs over different platforms. Our exam-
ples are very basic and some of them focus on peculiar aspects of WS-BPEL, but our
tests reveal that they produce a different behaviour on the different engines. As a matter
of fact, the lack of a formally defined semantics that serves as a point of reference for
implementers and programmers gives rise to different interpretations and implementation
choices, and prevents us from identifying possible bugs in individual engines and assessing
the quality of WS-BPEL engines in an indisputable way.

As a second contribution, we have defined Blite, a prototypical orchestration language
inspired by WS-BPEL but with a simpler syntax and a well-defined operational semantics.
Blite’s formal semantics can help making some loose aspects of the WS-BPEL specifi-
cation rigorous and can be used to drive implementations of future WS-BPEL engines.
In fact, since each Blite construct corresponds to a WS-BPEL construct, we can exploit
the semantics of Blite to assign a rigorous semantics to a large and quite expressive sub-
language of WS-BPEL. This way, our study can also contribute to the many discussions
on compensation and correlation which have been reported by the WS-BPEL Technical
Committee [48] (see, e.g., discussions related to issues 66, 207 and 271).

Several rigorous semantics of WS-BPEL were indeed proposed in the literature (for
an overview see [50]). Many of these efforts aim at formalizing a complete semantics for
WS-BPEL using Petri nets [50, 43], but do not cover such dynamic aspects as service in-
stantiation and message correlation. Other works [30, 33], instead, use process calculi and
focus on small and relatively simple subsets of WS-BPEL. Another bunch of related works

37

[36, 45] formalize the semantics of WS-BPEL by encoding parts of the language into more
foundational orchestration languages. Our work differs for the number of features that are
simultaneously modelled and for the fact that dynamic aspects are fully taken into account.
A very general and flexible framework for error recovery has been recently introduced in
[32]; this framework extends [33] with dynamic compensation, modelling in particular the
dependency between fault handling and the request-response communication pattern.

Some other relevant related works are [19, 18, 15]. In the first two, the authors propose
a formal approach to model compensation in transactional calculi and present a detailed
comparison with [20]. The third one is an extension of asynchronous π-calculus with
long-running (scoped) transactions. The language has a scope construct which plays a
role similar to the scope activity of Blite, but, differently from the semantics we propose, it
does not capture the order in which compensations should be activated according to the so-
called ‘default compensation handling’ (which prescribes compensations to be activated
in the reverse order w.r.t. the order of completion of the original scopes).

Concerning the language Blite, we intend to investigate its extension to cover some
WS-BPEL constructs that at the time being have been left out, such as timed activities,
event and termination handlers, and more flexible forms of fault and compensation han-
dling involving named faults and compensation of specified scopes. Their addition to Blite
as primitive constructs would require to significantly revise, and make more complex, the
formal definition of the operational semantics of the language, while we do not envisage
any major issue in extending BliteC to translate such constructs into WS-BPEL code, be-
cause each of them has a direct analogous in WS-BPEL. Some of the above constructs
have been actually considered in a limited form. For example, as concerns compensation
handling only the default behaviour has been modelled. The reason for this choice is that
this automatic mechanism relieves the programmer from the task of manually implement-
ing a compensation policy. At the same time, implementing the default behaviour is more
challenging than implementing compensation of specified scopes, since in the former case
the order of completion of the original scopes has to be taken into account. Instead, some
other constructs have been disregarded because considered ‘redundant’, that is reasonably
expressible in terms of more primitive constructs. For example, request-response oper-
ations can be expressed in Blite by means of two pairs of invoke and receive activities,
namely bi-directional interaction is essentially rendered as a pair of uni-directional inter-
actions. Other than from an operational point of view, this modelling is feasible also from
a practical point of view. In fact, the tool BliteC is able to retrieve all the information
that is necessary for telling apart in the automatically generated WSDL interface those
operations that are actually uni-directional from those that are part of a bi-directional in-
teraction. Similarly, flow links, a contribution coming from the WS-BPEL’s forerunner
WSFL, that permit introducing synchronization dependencies within flow activities, are

38

expressible by means of variables and conditional tests (likewise [38]).
We have also described BliteC, a software tool that translates service orchestrations

written in Blite into readily executable WS-BPEL programs. This way BliteC enables ex-
ecution of Blite programs and, furthermore, facilitates programming in WS-BPEL. This
latter aim is shared also by the several graphical editors that permit designing WS-BPEL
processes, among which we mention the designers embedded in Oracle BPEL Process
Manager [3], Intalio-Designer [7], ActiveVOS Designer [5], and Eclipse BPEL Project
[6]. Although their use is quite intuitive, developing large applications by using them
can be awkward and annoying compared to the more classic textual approach. Indeed,
graphical notations turn out to be suitable for beginner WS-BPEL programmers to rep-
resent simple business process workflows, but do not allow more expert programmers to
exploit commonly used functionalities, such as e.g. copy/cut/paste, and are inappropriate
for expressing some (textual) information, such as e.g. correlation sets. Moreover, graph-
ical designers have a significant negative impact on performance during the programming
phase (that is, indeed, the phase of the software development process on which we focus
on), since they usually are plugins of heavy software development environments such as
JDeveloper [1] and Eclipse [2]. Some other works with a similar aim are [44, 57, 10].
The first two present some tools that produce WS-BPEL processes starting, respectively,
from UML- and Petri Nets-based representations of SOC applications. Due to the use of
graphical representations, also these tools suffer from the problems previously mentioned.
Instead, the third one proposes a mapping from a π-calculus based formalism into WS-
BPEL. In all three approaches, only non-executable WS-BPEL processes are generated,
i.e. the generated code should be thought of as a template code where, besides binding
and deployment details, programmers have also to define such things as partner links,
variables, port types, correlations sets, etc. by editing the generated files. Another related
work is [47], which proposes a different approach to develop SOC applications that still re-
lies on a formal language. However, input programs, rather than being translated into and
deployed as WS-BPEL processes, are directly executed in a purposely developed engine.

Actually, we are also following this same line of research. We are indeed implement-
ing (see [51]) a prototypical Blite engine following the dictates of Blite’s operational se-
mantics. In fact, we are developing two software tools based on the Java technology: an
engine for directly executing Blite programs and a development environment specifically
designed for writing and testing them. The engine is a modular software composed of
three main components: a compiler, which parses Blite programs and generates their cor-
responding static model; a runtime environment, which executes stepwise each activity of
a program instance (according to the Composite design pattern [26]) by also taking into ac-
count its static model; a communication environment, which takes care of communication
and deployment aspects. Currently, we have implemented only a local communication

39

environment, which allows Blite programs to only interact each other within a local en-
gine, but we plan to extend it to support the common WSs standards WSDL, SOAP and
HTTP. We also intend to investigate a different approach based on the JBI standard [35]
that would require our engine to be integrated with an Enterprise Service Bus supporting
such technology. Meanwhile, we are developing an IDE based on the NetBeans Platform
to support easy and rapid writing of Blite programs and their testing through a simulation
tool relying on a graphical representation of their execution.

Practically, BliteC and the above engine are implementations of Blite. Among other
implementations of formal languages for WSs, we want to mention: JOLIE [47], an in-
terpreter written in Java for a programming language based on SOCK [33]; JCaSPiS [14],
a Java implementation of the service-oriented calculus CaSPiS [16] based on the IMC
framework [13]; JSCL [28], a coordination middleware for services based on the event
notification paradigm of Signal Calculus [29]; and PiDuce [21], a distributed run-time en-
vironment devised for experimenting web services technologies that implements a variant
of asynchronous π-calculus extended with native XML values, datatypes and patterns.

Currently, WS-BPEL packages generated by BliteC are intended to be deployed on
ActiveBPEL. Since ActiveBPEL is quite compliant with the WS-BPEL specification, this
choice has allowed us to define a rather intuitive and direct translation, which makes us
confident that the resulting WS-BPEL programs comply with the semantics of the original
Blite orchestrations. This is of course witnessed by all the tests we have done. Actually,
BliteC has been designed so that the generation of process deployment descriptors for
different engines can be easily integrated, and we plan to enable it to produce packages also
for other freely available engines, such as Oracle BPEL Process Manager, Apache ODE
and Beepell [34]. Of course, to preserve the semantics of the original Blite orchestrations,
one has to study the inner implementation of every supported engine and to possibly define
a customized translation. Since there is no formal description of engine’s behaviour, this
study has to be carried out by means of experimental tests and, most of all, no formal proof
of semantics preservation can be done.

It is also worth noticing that the semantics of Blite could be rather tough to render
by WS-BPEL engines other than ActiveBPEL, because their behaviour may significantly
differ on low-level implementation details (e.g. message queue handling) or may more
strictly (or inappropriately) enforce some WS-BPEL constraints. For instance, it may hap-
pen that a process instance should receive a message from a partner according to the Blite
semantics, while instead the message cannot be effectively accepted according to the se-
mantics of the considered engine, due to e.g. some peculiar correlation constraint. In such
a case, BliteC should identify the potential conflicting receives in the generated WS-BPEL
program and, e.g., replace them by a single receive enabling some proper coordination ac-
tivities.

40

At the time being, to facilitate the interoperation with non-Blite services, BliteC re-
sorts to XSD types and XML literal definitions in the declarative part of Blite programs.
Anyway, we plan to devise type and literal definitions specific for Blite and to integrate
them in BliteC.

Our long term goal is to provide a framework for the design and verification of WS-
BPEL applications that supports analysis of service orchestration. We believe that our ap-
proach can enable tailoring proof techniques and analytical tools typical of process calculi
to the needs of WS-BPEL applications. Indeed, on the one hand, alike other technological
standards, WS-BPEL does not provide support for sound engineering methodologies to
application development and analysis. On the other hand, it has been shown that type sys-
tems, model checking and (bi)simulation analysis provide adequate tools to address topics
relevant to the WSs technology [46, 56]. In the end, this ‘proof technology’ can pave the
way for the development of (semi-)automatic property validation tools (as e.g. in [27]).

As a step in this direction, in [37] we have defined an encoding from Blite to cows
[38], a recently proposed calculus for orchestration of Web Services, and we have formal-
ized the properties enjoyed by the encoding. By relying on these results, we plan to devise
methods to analyze Blite specifications (and the corresponding WS-BPEL applications)
by exploiting the analytical tools already developed for cows, such as the type system
introduced in [39] to check confidentiality properties, the stochastic extension defined in
[52] to enable quantitative reasoning on service behaviours, the static analysis introduced
in [12] to establish properties of the flow of information between services, and the logi-
cal verification environment presented in [27] to express and check functional properties
of services. Another similar approach that we plan to investigate is based on an encoding
from Blite to UML statechart models that would enable a model checking analysis through
the UMC tool [53]. This way, we would be able to specify in Blite a service orchestration,
validate its behaviour by using formal tools, and deploy it as a WS-BPEL program.

Acknowledgments. We thank Luca Cesari for having contributed with his master thesis
to the development of the software tool BliteC.

Supplementary data. Further examples of use of Blite and the complete BliteC spec-
ification of the shipping service scenario can be found in the electronic appendix [41]
associated to this article.

References

[1] Oracle JDeveloper. http://www.oracle.com/technology/products/jdev.

[2] The Eclipse project. http://www.eclipse.org.

41

http://www.oracle.com/technology/products/jdev
http://www.eclipse.org

[3] Oracle BPEL Process Manager 10.1.3, 2007. http://www.oracle.com/technology/
bpel.

[4] ActiveBPEL 5.0.2, 2009. http://sourceforge.net/projects/activebpel502.

[5] ActiveVOS Designer 5.0.2, 2009. http://www.activevos.com/.

[6] Eclipse BPEL project 0.4.0, 2009. http://www.eclipse.org/bpel.

[7] Intalio|Designer Community Edition 6.0.1, 2009. http://www.intalio.com/products/
bpm/community-edition/designer.

[8] JavaCC 4.2, 2009. https://javacc.dev.java.net.

[9] JDOM 1.1, 2009. http://www.jdom.org.

[10] F. Abouzaid and J. Mullins. A Calculus for Generation, Verification and Refinement of
BPEL Specifications. In WWV, ENTCS 200, pp. 43–65. Elsevier, 2008.

[11] Apache Software Foundation. Apache ODE 1.3.4, 2010. http://ode.apache.org.

[12] J. Bauer, F. Nielson, H. Nielson, and H. Pilegaard. Relational analysis of correlation. In
SAS, LNCS 5079, pp. 32–46. Springer, 2008.

[13] L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A Flexible and Modular
Framework for Implementing Infrastructures for Global Computing. In DAIS, LNCS 3543,
pp. 181–193. Springer, 2005.

[14] L. Bettini, R. De Nicola, M. Lacoste, and M. Loreti. Implementing Session Centered
Calculi. In COORDINATION, LNCS 5052, pp. 17–32. Springer, 2008.

[15] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In
FMOODS, LNCS 2884, pp. 124–138. Springer, 2003.

[16] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured
Service Programming. In FMOODS, LNCS 5051, pp. 19–38. Springer, 2008.

[17] A. Brown, S. Johnston, and K. Kelly. Using Service-Oriented Architecture and Component-
Based Development to Build Web Service Applications. Tech. rep., Rational Software, 2002.

[18] R. Bruni, M. Butler, C. Ferreira, C. Hoare, H. Melgratti, and U. Montanari. Comparing
two approaches to compensable flow composition. In CONCUR, LNCS 3653, pp. 383–397.
Springer, 2005.

[19] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In POPL, pp. 209–220. ACM, 2005.

[20] M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. In COORDINATION, LNCS 2949, pp. 87–104. 2004.

[21] S. Carpineti, C. Laneve, and L. Padovani. PiDuce - a project for experimenting Web services
technologies. Science of Computer Programming, 74(10):777–811, 2009.

42

http://www.oracle.com/technology/bpel
http://www.oracle.com/technology/bpel
http://sourceforge.net/projects/activebpel502
http://www.activevos.com/
http://www.eclipse.org/bpel
http://www.intalio.com/products/bpm/community-edition/designer
http://www.intalio.com/products/bpm/community-edition/designer
https://javacc.dev.java.net
http://www.jdom.org
http://ode.apache.org

[22] L. Cesari, A. Lapadula, R. Pugliese, and F. Tiezzi. A tool for rapid development of
WS-BPEL applications. In SAC, pp. 2438–2442. ACM, 2010.

[23] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. Tech. rep., W3C, 2001.

[24] J. Clark and S. DeRose. XML Path Language (XPath) 1.0. Tech. rep., W3C, November 1999.

[25] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana.
Business Process Execution Language for Web Services Version 1.0. Tech. rep., IBM, 2002.

[26] G. Erich, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[27] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A model
checking approach for verifying cows specifications. In FASE, LNCS 4961, pp. 230–245.
Springer, 2008.

[28] G. Ferrari, R. Guanciale, and D. Strollo. JSCL: A middleware for service coordination. In
FORTE, LNCS 4229, pp. 46–60. Springer, 2006.

[29] G. Ferrari, R. Guanciale, and D. Strollo. Event based service coordination over dynamic and
heterogeneous networks. In ICSOC, LNCS 4294, pp. 453–458. Springer, 2006.

[30] P. Geguang, Z. Xiangpeng, W. Shuling, and Q. Zongyan. Semantics of BPEL4WS-like fault
and compensation handling. In FM, LNCS 3582, pp. 350–365. Springer, 2005.

[31] M. Gudgin, M. Hadley, and T. Rogers. Web Services Addressing 1.0 - Core. TR, W3C, 2006.

[32] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the Interplay Between Fault Handling
and Request-Response Service Invocations. In ACSD, pp. 90–199. IEEE, 2008.

[33] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a calculus for service
oriented computing. In ICSOC, LNCS 4294, pp. 327–338. Springer, 2006.

[34] T. Hallwyl, F. Henglein, and T. Hildebrandt. A standard-driven implementation of WS-BPEL
2.0. In SAC, pp. 2472–2476. ACM, 2010.

[35] Java Community Process. JSR-000208 Java Business Integration 1.0, 2005.
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html.

[36] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, LNCS 3441, pp.
282–298. Springer, 2005.

[37] A. Lapadula. A Formal Account of Web Services Orchestration. PhD Thesis in Computer
Science, DSI, Università degli Studi di Firenze, 2008. http://rap.dsi.unifi.it/cows.

[38] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In
ESOP, LNCS 4421, pp. 33–47. Springer, 2007.

[39] A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented
applications. In FSEN, LNCS 4767, pp. 223–239. Springer, 2007.

43

http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://rap.dsi.unifi.it/cows

[40] A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In COORDINA-
TION, LNCS 5052, pp. 199–215. Springer, 2008.

[41] A. Lapadula, R. Pugliese, and F. Tiezzi. Using formal methods to develop WS-BPEL
applications (supplementary data). 2010. Electronic appendix associated to the paper.

[42] F. Leymann. Web Services Flow Language (WSFL 1.0). Tech. rep., IBM, 2001.

[43] N. Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In WS-FM, LNCS
4937, pp. 77–91. Springer, 2008.

[44] P. Mayer, A. Schroeder, and N. Koch. Mdd4soa: Model-driven service orchestration. In
EDOC, pp. 203–212. IEEE, 2008.

[45] M. Mazzara and R. Lucchi. A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming, 70(1):96–118, 2006.

[46] L. Meredith and S. Bjorg. Contracts and types. Comm. of the ACM, 46(10):41–47, 2003.

[47] F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In ECOWS, pp.
13–22. IEEE, 2007.

[48] OASIS WSBPEL TC. WS-BPEL issues list. http://www.oasis-open.org/

committees/download.php/20228/WS_BPEL_issues_list.html.

[49] OASIS WSBPEL TC. Web Services Business Process Execution Language Version 2.0.
Tech. rep., OASIS, 2007.

[50] C. Ouyang, W. van der Aalst, S. Breutel, M. Dumas, A. ter Hofstede, and H. Verbeek.
Formal semantics and analysis of control flow in WS-BPEL (revised version). Tech. rep.,
BPM Center Report, 2005. http://www.BPMcenter.org.

[51] P. Panconi. Blite-se and Blide, 2009. http://code.google.com/p/blite-se.

[52] D. Prandi and P. Quaglia. Stochastic cows. In ICSOC, LNCS 4749, pp. 245–256. 2007.

[53] M. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. A state/event-based model-checking
approach for the analysis of abstract system properties. Science of Computer Programming,
2010. To appear.

[54] M. ter Beek, F. Mazzanti, and A. Sulova. An experience on formal analysis of a high-level
graphical SOA design. In FM+AM, LNI 179, pp. 79–98. GI, 2010.

[55] S. Thatte. XLANG: Web Services for Business Process Design. Tech. rep., Microsoft, 2001.

[56] F. van Breugel and M. Koshkina. Models and verification of BPEL. Tech. rep., York Univer-
sity, 2006. http://www.cse.yorku.ca/˜franck/research/drafts/tutorial.pdf.

[57] W. M. P. van der Aalst and K. B. Lassen. Translating unstructured workflow processes
to readable BPEL: Theory and implementation. Information & Software Technology,
50(3):131–159, 2008.

44

http://www.oasis-open.org/committees/download.php/20228/WS_BPEL_issues_list.html
http://www.oasis-open.org/committees/download.php/20228/WS_BPEL_issues_list.html
http://www.BPMcenter.org
http://code.google.com/p/blite-se
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

	Introduction
	Overview of WS-BPEL and experimentation
	A glimpse of WS-BPEL
	A shipping service in WS-BPEL
	Experimentation and assessment of three WS-BPEL engines

	Blite: a prototypical orchestration language
	The shipping service in Blite
	Syntax
	Operational semantics
	Examples

	BliteC: a tool for rapid development of WS-BPEL applications
	The shipping service in BliteC
	From Blite to WS-BPEL

	Concluding remarks

