
A tool for rapid development of WS-BPEL applications

Luca Cesari, Rosario Pugliese and Francesco Tiezzi
Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
cesari.luca@gmail.com, pugliese@unifi.it, tiezzi@dsi.unifi.it

ABSTRACT
WS-BPEL is imposing itself as a standard for orchestration
of web services. However, there are still some well-known
difficulties that make programming in WS-BPEL a tricky
task. In this paper, we present BliteC, a software tool we
have developed for supporting a rapid and easy development
of WS-BPEL applications. BliteC translates service orches-
trations written in Blite, a formal language inspired to but
simpler than WS-BPEL, into readily executable WS-BPEL
programs. We illustrate our approach by means of a few
practical programming examples.

Categories and Subject Descriptors
D.2.2 [Software engineering]: Design Tools and
Techniques—Computer-aided software engineering ; D.3.1
[Programming Languages]: Formal Definitions and
Theory—Syntax Semantics; D.3.4 [Programming Lan-
guages]: Processors—Compilers Parsing

Keywords
Service-Oriented Computing, Web services, Compilers

1. INTRODUCTION
In recent years, there has been an ever increasing acceptance
of WS-BPEL [30] as a standard language for orchestration of
web services, one of the most successful and well-developed
implementations of the Service-Oriented Computing (SOC)
paradigm. However, designing and developing WS-BPEL
applications is a difficult and error-prone task. The lan-
guage has an XML syntax which makes awkward writing
WS-BPEL code by using standard editors. Therefore, many
companies (among which e.g. Oracle and Active Endpoints)
have equipped their WS-BPEL engines with graphical de-
signers. Such tools are certainly suitable to develop sim-
ple business processes, but turn out to be cumbersome and
ineffective when programming more complex applications.
Further difficulties derive from the fact that WS-BPEL is
equipped with such intricate features as concurrency, mul-

Applied Computing Review

tiple service instances, message correlation, long-running
business transactions, termination and compensation han-
dlers. Most of all, WS-BPEL comes without a formal se-
mantics and its specification document, written in ‘natural’
language, contains a fair number of acknowledged ambigu-
ous features that may give rise to different interpretations.
These ambiguities have led to engines implementing different
semantics (see [25]) and, hence, have undermined portability
of WS-BPEL programs across different platforms. There-
fore, many research efforts have been devoted to provide
WS-BPEL with a formal semantic (see, e.g., [27, 18, 33, 31,
24, 26, 20, 21]), although most of them do not deal with
the complete language. Finally, the deployment procedure
of WS-BPEL programs is not standardised, which further
compromises portability. In fact, to execute a WS-BPEL
program, besides the associated WSDL [17] document that
describes the program’s public interfaces, different engines
require different (and not integrable) process deployment de-
scriptors, i.e. sets of configuration files that describe how the
program should be deployed.

To overcome these difficulties, we have developed BliteC, a
software tool that accepts as an input a specification written
in the lightweight orchestration language Blite [25] and re-
turns the corresponding WS-BPEL program together with
the associated WSDL and deployment descriptor files.

Blite is closely inspired to WS-BPEL. It is the result of a
tension between handiness and expressiveness. While the set
of WS-BPEL constructs is not intended to be a minimal one,
the design of Blite, to keep the language manageable, only
retains the core features of WS-BPEL. It follows that Blite
is simpler and more compact than WS-BPEL, although it
maintains the same descriptive power. Using Blite for ini-
tially specifying a service orchestration offers some signifi-
cant advantages. From the one hand, Blite textual notation
is certainly more manageable than those, possibly graphi-
cal, notations proposed for WS-BPEL. From the other hand,
Blite is equipped with a formal operational semantics that
clarifies all ambiguous and intricate aspects of WS-BPEL.
Of course, to preserve such semantics on different WS-BPEL
engines, the translation of Blite programs into WS-BPEL
ones has to be properly targeted to each specific engine.

BliteC further simplifies the programmers work by automa-
tizing the deployment procedure. In fact, the returned files
are properly packaged to be immediately executable in a
WS-BPEL engine. Currently, these packages are intended

Figure 1: BliteC workflow

to be deployed on ActiveBPEL [6] that, according to [25],
is one of the freely available WS-BPEL engines that better
complies with the WS-BPEL specification. The workflow of
use of BliteC is graphically depicted in Figure 1.

The rest of the paper is organized as follows. Section 2 sum-
marizes WS-BPEL, while Section 3 introduces the syntax of
Blite accepted by our tool. Section 4 presents BliteC and
explains the correspondence between Blite constructs and
WS-BPEL activities. Section 5 illustrates BliteC at work on
some practical examples, one of which is borrowed from the
official specification of WS-BPEL. Section 6 reviews more
closely related work and hints at some future work.

2. AN OVERVIEW OF WS-BPEL
WS-BPEL is essentially a linguistic layer on top of WSDL
for describing the structural aspects of web service orches-
tration. In WS-BPEL, the logic of interaction between a ser-
vice and its environment is described in terms of structured
patterns of communication actions composed by means of
control flow constructs that enable the representation of
complex structures. Orchestration exploits state informa-
tion that is maintained through shared variables and man-
aged through message correlation. For the specification of
orchestration, WS-BPEL provides many different basic and
structured activities.

The following basic activities are provided: <receive> and
<reply>, to enable web service one-way and request-response
operations; <invoke>, to invoke web service operations; <wait>,
to delay execution for some amount of time; <assign>, to up-
date the values of variables with new data; <throw>, to signal
internal faults; <exit>, to immediately end a service instance;
<empty>, to do nothing; <compensate> and <compensateScope>, to
invoke compensation handlers; <rethrow>, to propagate faults;
<validate>, to validate variables; and <extensionActivity>, to
add new activity types.

The structured activities describe the control flow logic of
a business process by composing basic and/or structured
activities recursively. The following structured activities are
provided: <sequence>, to execute activities sequentially; <if>,
to execute activities conditionally; <while> and <repeatUntil>,
to repetitively execute activities; <flow>, to execute activities
in parallel; <pick>, to execute activities selectively; <forEach>,
to (sequentially or in parallel) execute multiple activities;
and <scope>, to associate handlers for exceptional events to
a primary activity.

The handlers within a <scope> can be of four different
kinds: <faultHandler>, to provide the activities in response
to faults occurring during execution of the primary ac-
tivity; <compensationHandler>, to provide the activities to
compensate the successfully executed primary activity;
<terminationHandler>, to control the forced termination of the
primary activity; and <eventHandler>, to process message or
timeout events occurring during execution of the primary
activity. If a fault occurs during execution of a primary ac-
tivity, the control is transferred to the corresponding fault
handler and all currently running activities inside the scope
are interrupted immediately without involving any fault/-
compensation handling behaviour. If another fault occurs
during a fault/compensation handling, then it is re-thrown,
possibly, to the immediately enclosing scope. Compensa-
tion handlers attempt to reverse the effects of previously
successfully completed primary activities (scopes) and have
been introduced to support Long-Running (Business) Trans-
actions (LRTs). Compensation can only be invoked from
within fault or compensation handlers starting the compen-
sation either of a specific inner (completed) scope, or of all
inner completed scopes in the reverse order of completion.
The latter alternative is also called the default compensa-
tion behaviour. Invoking a compensation handler that is
unavailable is equivalent to perform an empty activity.

A WS-BPEL program, also called (business) process, is a
<process>, that is a sort of <scope> without compensation and
termination handlers.

WS-BPEL uses the basic notion of partner link to directly
model peer-to-peer relationships between services. This re-
lationship is expressed at the WSDL level by specifying the
roles played by each of the services in the interaction. How-
ever, the information provided by partner links is not enough
to deliver messages to a business process. Indeed, since mul-
tiple instances of a same service can be simultaneously active
because service operations can be independently invoked by
several clients, messages need to be delivered not only to the
correct partner, but also to the correct instance of the ser-
vice that the partner provides. To achieve this, WS-BPEL
relies on the business data exchanged rather than on specific
mechanisms, such as WS-Addressing [22] or low-level meth-
ods based on SOAP headers. In fact, WS-BPEL exploits
correlation sets, namely sets of correlation variables (called
properties in WS-BPEL jargon), to declare the parts of a
message that can be used to identify an instance. This way,
a message can be delivered to the correct instance on the
basis of the values associated to the correlation variables,
independently of any routing mechanism.

We end this section by showing an auction service described
in the official specification of WS-BPEL [30, Sect. 15.4].
This example will allow us to illustrate most of the lan-
guage features, including correlation sets, shared variables,
control flow structures, asynchronous communication and
multiple start activities, and, through its implementation in
Blite presented in Section 5.3, will permit a rough compari-
son between the two languages.

The auction service collects information from a seller and a
buyer about a concluded auction, reports the auction result
to an auction registration service, and then communicates

the registration result to the seller and the buyer. The auc-
tion house process may be instantiated either by receiving
the seller information or by receiving the buyer information.
Indeed, the process is able of receiving the seller and buyer
requests in a statically unpredictable order and in such a
way that the first incoming message triggers the creation of
a process instance which the subsequent request is delivered
to. This requires the two starting receive activities to share
a correlation set, which will be initialized with an auction
identifier that the seller and the buyer have to provide when
sending their requests. The auction house process passes the
auction identifier to the auction registration service that, in
its turn, returns the identifier in its answer to locate the
proper process instance.

We report below the corresponding WS-BPEL program,
where to make the reading of the code easier, we have omit-
ted irrelevant details1 and highlighted the basic activities
receive, invoke and assign.

<process name="auctionService" ... >
<partnerLinks> ... </partnerLinks>
<variables> ... </variables>
<correlationSets>
<correlationSet name="auctionIdentification"

properties="as:auctionId" />
</correlationSets>
<sequence>
<flow>
<receive name="acceptSellerInformation"

partnerLink="seller"
portType="as:sellerPT"
operation="submit"
variable="sellerData"
createInstance="yes">

<correlations>
<correlation set="auctionIdentification"

initiate="join" />
</correlations>

</receive>

<receive name="acceptBuyerInformation"
partnerLink="buyer"
portType="as:buyerPT"
operation="submit"
variable="buyerData"
createInstance="yes">

<correlations>
<correlation set="auctionIdentification"

initiate="join" />
</correlations>

</receive>
</flow>

<assign>
<copy>
<from>
... http://example.com/auction/RegistrationService ...

</from>
<to partnerLink="auctionRegistrationService" />

</copy>
<copy>
<from partnerLink="auctionRegistrationService"

endpointReference="myRole" />
<to>$auctionData.auctionHouseEndpointReference</to>

</copy>
<copy>
<from>$sellerData.auctionId</from>
<to>$auctionData.auctionId</to>

</copy>
<copy>
<from>1</from>
<to>$auctionData.amount</to>

</copy>
</assign>

<invoke name="registerAuctionResults"
partnerLink="auctionRegistrationService"
portType="as:auctionRegistrationPT"
operation="process"
inputVariable="auctionData" />

<receive name="receiveAuctionRegistrationInformation"
partnerLink="auctionRegistrationService"
portType="as:auctionRegistrationAnswerPT"

1The fully detailed version of the WS-BPEL process and the
associated WSDL document can be found in [30, Sect. 15.4].

operation="answer"
variable="auctionAnswerData">

<correlations>
<correlation set="auctionIdentification" />

</correlations>
</receive>

<flow>
<sequence>

<assign>
<copy>
<from>$sellerData.endpointReference</from>
<to partnerLink="seller" />

</copy>
<copy>
<from><literal>Thank you!</literal></from>
<to>$sellerAnswerData.thankYouText</to>

</copy>
</assign>

<invoke name="respondToSeller"
partnerLink="seller"
portType="as:sellerAnswerPT"
operation="answer"
inputVariable="sellerAnswerData" />

</sequence>
<sequence>

<assign>
<copy>
<from>$buyerData.endpointReference</from>
<to partnerLink="buyer" />

</copy>
<copy>
<from><literal>Thank you!</literal></from>
<to>$buyerAnswerData.thankYouText</to>

</copy>
</assign>

<invoke name="respondToBuyer"
partnerLink="buyer"
portType="as:buyerAnswerPT"
operation="answer"
inputVariable="buyerAnswerData" />

</sequence>
</flow>

</sequence>
</process>

Notice that the buyer and the seller provide their endpoint
references for the auction house process to respond properly
in an asynchronous way. For similar reasons, the auction
house process provides its own endpoint reference to the
auction registration service.

3. PROGRAMMING SERVICES IN BLITE
A Blite program accepted by BliteC is composed of a Blite
specification and a declarative part. The former focusses on
the behavioural aspects of the orchestration, while the latter
provides the implementation details (e.g. types, addresses,
bindings, . . .) that are necessary to deploy and execute the
corresponding WS-BPEL program.

3.1 Blite specification
Blite [25] is a prototypical orchestration language whose de-
sign is closely inspired to WS-BPEL. To keep the language
manageable, the design of Blite only retains the core features
of WS-BPEL. In fact, some aspects have been intention-
ally left out, including timeouts, synchronization dependen-
cies within flow activities, event and termination handlers.
Moreover, Blite only provides a simplified form of fault and
compensation handling and only supports unnamed faults
and the default compensation mechanisms.

Blite provides a formal description of service deployments
by only keeping relevant implementation details. Thus, the
roles played by service partners in a service interaction are
explicitly indicated by partner links and partners, while such
aspects as physical service binding (necessary to generate

the associated WSDL documents and deployment descrip-
tors) are abstracted away and dealt with separately in the
declarative part.

The syntax of Blite accepted by BliteC is given in Figure 2.
Services are structured activities built from basic activities,
i.e. service invocation, service request processing, assign-
ment, empty activity, fault generation and instance forced
termination, by exploiting operators for conditional choice,
iteration, sequential composition, parallel composition, pick
and scope. A scope activity groups a primary activity A
together with a fault handling activity Af and a compen-
sation activity Ac. Start activities are structured activities
that initially can only execute receive activities. Sequence
has higher priority (i.e. bind more tightly) than parallel
composition and pick. Moreover, fault and compensation
activities may be omitted from a scope construct, in which
case they are intended to be throw and empty, respectively.

Notation < · > stands for tuples of objects, e.g. <x_1,. . . ,x_n>
denotes a tuple of variables (variables in the same tuple must
be pairwise distinct). Partner links pl can be either of the
form <partner> or of the form <partner1,partner2>. Indeed, in
one-way interactions a partner link indicates a single part-
ner because one of the parties provides all the invoked op-
erations. Instead, in asynchronous request-response inter-
actions, partner links indicate two partners because the re-
questing partner must provide a callback operation used by
the receiving partner to send notifications. Service partners
used for receiving messages must be known at design-time,
while the partners used to send messages in reply may be
dynamically determined.

Besides asynchronous invocation, WS-BPEL also provides
a construct for synchronous invocation of remote services.
This construct forces the invoker to wait for an answer by
the invoked service, that indeed performs a pair of activities
receive–reply. In Blite, this behaviour is rendered in terms
of a pair of activities invoke–receive over the same opera-
tion executed by the invoker and a corresponding pair of
activities receive–invoke executed by the invoked service.

Data can be shared among different activities through shared
variables (ranged over by x, x_1, . . .). The manipulable
values are boolean, integer numbers (ranged over by int),
strings (as usual, written within double inverted commas),
partner links, and literals (defined in the declarative part
and denoted by putting the symbol $ in front of the corre-
sponding identifier). Expressions combine values and vari-
ables by means of boolean, arithmetic, comparision and
string operators. Operators set(x,"path") and get(x,"path")

can be used respectively in the left and right hand sides of
an assignment to act on a specific element (indicated by path)
of the XML message stored in the variable x. Both opera-
tors turn out to be quite useful for easily interacting with
non-Blite services (see Section 5.5).

Blite specifications are finite compositions of definitions
(that assign names to Blite terms), containing at most one
deployment definition. A deployment associates a correla-
tion set, namely a (possibly empty) set of correlation vari-
ables, to a service. A service provides a ‘top-level’ scope (i.e.
a scope that cannot be compensated) and offers a choice of

alternative receives among multiple start activities.

We refer the interested reader to [25] for a formal account
of the Blite operational semantics.

3.2 Declarative part
The declarative part of a Blite program specifies configura-
tion data necessary to properly translate the Blite specifica-
tion into an executable WS-BPEL program. Notably, BliteC
requires the user to insert only the strictly necessary data.
The declarations must be included within <?blm and ?>, and
can occur in any position within a Blite program.

A declarative part has the following form:

<?blm
ADDRESSES {
myns => " base_for_namespaces ";
myaddress => " base_for_service_url ";

}
IMPORTS {

associations prefix => " url ";
}
VARIABLES {

variable and message declarations
}
LITERALS {

associations literal_name => [[literal_code]];
}
PARTNERLINKS {

partner link type declarations
}

?>

where blocks ADDRESSES and VARIABLES are mandatory, while
the other ones can be omitted.

Within the ADDRESSES block the user has to specify the base
for the namespaces used inside the generated files (after the
keyword myns) and the base for the address where the new
service will be hosted (after the keyword myaddress).

To define a service orchestration it is often necessary to im-
port data (e.g. type declarations) from documents (e.g.
WSDL files) associated to other services. To this aim,
the user can specify the addresses of the documents to
be imported within the IMPORTS block, by associating to
each imported document a namespace prefix that will be
used in the subsequent declarations to refer to it. No-
tably, definitions belonging to standard namespaces (e.g.
http://www.w3.org/2001/XMLSchema) are automatically imported
and, hence, do not require any declaration.

Blite variables are untyped, while WS-BPEL ones must be
typed. Therefore, to enable an automated translation, the
user has to declare the type of the variables (both local
variables and messages) within the VARIABLES block. Local
variables, that can be used to temporarily store data and
manipulate them, are declared by associations of the form
x => XML_Schema_type; (e.g. x_city => xsd:string;). Messages,
i.e. tuples of variables used as either sending source or re-
ceiving target, can be declared in two ways:

• by using an imported message type. For ex-
ample, in <x_auctionId,x_registrationId> => reg:regResp;

the message composed of variables x_auctionId and
x_registrationId is typed as regResp, that is defined in
the (WSDL) document identified by the namespace
prefix reg (defined in the IMPORTS block);

b ::= (basic activities)
inv pl op <x_1,. . . ,x_n> | rcv pl op <x_1,. . . ,x_n> (invoke, receive)

| x := e | set(x,"path") := e | y := get(x,"path") (assignments)
| empty | throw | exit (empty, throw, exit)

pl ::= <partner> | <partner1,partner2> (partner links)

e ::= (expressions)
e1 | e2 | e1 & e2 | ! e | TRUE | FALSE (boolean operators)

| e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2 | int (arithmetic operators)
| e1 >= e2 | e1 <= e2 | e1 > e2 | e1 < e2 | e1 = e2 | e1 != e2 (relational operators)
| e1 . e2 | "string" (string operators)
| x | pl | $literal_name (variable, partner link, literal)

a ::= (structured activities)
b | if (e) {a1} else {a2} | while (e) {a} (basic, conditional, iteration)

| seq a1 ; . . . ; an qes | flw a1 | . . . | an wlf (sequence, parallel)
| [A @ Af * Ac] | pck rcv pl1 op1 <x_1,. . . ,x_k> ; a1 (scope, pick)

+ . . . + rcv pln opn <x_1,. . . ,x_h> ; an kcp

r ::= (start activities)
rcv pl op <x_1,. . . ,x_n> | seq r; a1 ; . . . ; an qes | flw r1 | . . . | rn wlf (receive, sequence, parallel)

| [R @ Af * Ac] | pck rcv pl1 op1 <x_1,. . . ,x_k> ; a1 (scope, pick)
+ . . . + rcv pln opn <x_1,. . . ,x_h> ; an kcp

s ::= [R @ Af] d ::= { S } {x_1,. . . ,x_n} (services, deployments)

A ::= a | i R ::= r | i S ::= s | i (activities/services identifiers)

def ::= i := a;; def | i := r;; def | i := s;; def | i := d;; (definitions)

Figure 2: Syntax of Blite

• by generating a new message type. For example, in
<x_auctionId,x_creditCardNumberB,x_phoneNumber>
=> gen:buyerReq, <id,ccNum,phone>,

<xsd:int,xsd:string,xsd:string>;

message <x_auctionId,x_creditCardNumberB,x_phoneNumber> is
typed as buyerReq, that defines messages composed of
one integer and two string parts, id, ccNum and phone,
respectively. The namespace prefix gen indicates that
the type must be generated. If the type of a message
part is an element type defined in an XML schema not
generated by BliteC, the keyword (El) must precede
the type. For example, in

<num,scale,reqWeath>
=> gen:req,

<init,scale,request>,
<xsd:integer,xsd:string,(El)wth:GetCityWeatherByZIP>;

the element type GetCityWeatherByZIP is defined in the
block types of the WSDL document identified by wth.

In a WS-BPEL program, literals (i.e. constant values) can
be directly assigned to variables. Instead, in a Blite pro-
gram, for the sake of readability, literals must first be de-
clared within the LITERALS block, as e.g.

litConv => [[<tem:FahrenheitToCelcius
xmlns:tem="http://webservices.daehosting.com/

temperature">
<tem:nFahrenheit>0</tem:nFahrenheit>

</tem:FahrenheitToCelcius>]];

and, then, can be assigned to a variable by using the asso-
ciated name, e.g. reqConv := $litConv;.

Similarly, also partner links are typed in WS-BPEL and un-
typed in Blite. Therefore, except for the partner links used
by the process to interact with its clients, that are automat-
ically generated and typed by BliteC, the type of the other
partner links must be defined within the PARTNERLINKS block.
Each declaration has the following form:

PARTNERLINK { TYPE => partner_link_type;
MY_ROLE partner1 => port_type1 ;
PARTNER_ROLE partner2 => port_type2 ; }

where the association for MY_ROLE can be omitted whenever
the process does not play any role. Moreover, to de-couple
the Blite operation names from the WS-BPEL ones, associ-
ations of the form (bliteOperation => wsbpelOperation) may be
specified after the definitions of the two roles.

4. BLITEC: FROM BLITE TO WS-BPEL
In this section we present the architecture of BliteC and
explain the correspondence between the Blite constructs and
the WS-BPEL activities.

4.1 BliteC architecture
BliteC2 is developed in Java3 to guarantee its portability
across different platforms, to exploit the well-established li-
braries for generating parsers and for manipulating XML
documents, and because Java is the reference language for
the applications designed around WS-BPEL. Besides the
standard Java libraries, we have used JDOM [12] for cre-
ating and managing XML documents, JavaCC [11] for gen-
erating the parsers that validate the input documents, and
JJTree4 for allowing the parsers to build parse trees (already
arranged to support the Visitor design pattern [19]).

The architecture of BliteC is graphically depicted in Fig-
ure 3. The tool is composed of five main components:

2BliteC is a free software; it can be downloaded from http:
//rap.dsi.unifi.it/blite and redistributed and/or mod-
ified under the terms of the GNU General Public License.
3JRE and JDK version 6.
4JJTree is included within JavaCC.

Figure 3: BliteC architecture

• Mapper parses the declarative part of the input Blite
program and initializes a map that associates each de-
clared object (e.g. partner link, literal, variable, . . .)
to its name;

• Blite parser analyzes the Blite specification within the
input program, completes the map created by Mapper
and creates the parse tree of the Blite specification;

• WS-BPEL and WSDL generators use the data pro-
duced by the above components to generate a WS-
BPEL process and the associated WSDL document;

• Deployer generates the deployment descriptor and
packages all created documents into a deployable file;
it is the only ‘engine-dependent’ component.

Any text editor can be used to write Blite programs. Any-
way, to simplify the task, we provide users with a customized
version of jEdit5 [2] equipped with specific features sup-
porting programming in Blite, such as syntax highlighting,
auto indentation and direct compiling. The files for the cus-
tomization can be downloaded with the BliteC distribution
archive. The main advantage of jEdit with respect to more
professional development environments is that it is multi-
platform and lightweight. We are also implementing a devel-
opment environment with similar features written in Java.
Figure 4 shows a screenshot of our environment. In addition
to the functionalities of the customized version of jEdit, our
dedicated environment also provides text auto-completion,
highlight of search results, local deploy and undeploy.

4.2 From Blite to WS-BPEL
We now provide some insights about the transformation of
Blite constructs into WS-BPEL activities. Since the same
WS-BPEL program might have different behaviours on dif-
ferent engines [25], the translation described here is targeted
to a specific engine, i.e. ActiveBPEL. If one want to pro-
duce packages intended to be executed by other WS-BPEL
engines, the translation has possibly to be properly tailored.
Since there is no precise description of the behaviour of the
ActiveBPEL engine, it cannot be formally proved that the
semantics of the WS-BPEL program resulting from a trans-
lation conforms to that of the original Blite program. How-
ever, since Blite is a ‘sort of’ lightweight variant of WS-
BPEL, the translation we define is quite intuitive and di-
rect, which makes us confident that the original semantics is
5jEdit is a programmer’s text editor written in Java released
as free software with full source code, provided under the
terms of the GPL 2.0.

Figure 4: BliteC development environment

Table 1: Mapping of the receive activity
Blite WS-BPEL

pck ... <onMessage partnerLink="pl"
rcv pl op <x1,. . . ,xn>... operation="op"
kcp variable="x" />

<invoke partnerlink="pl"
inv <p,p’> op <y1,. . . ,yn>; operation="op"
rcv <p’> op <x1,. . . ,xm> inputVariable="y"

outputVariable="x" />

<receive partnerLink="pl"
rcv pl op <x1,. . . ,xn> operation="op"

variable="x" />

obeyed. This is of course witnessed by all the experiments
we have done.

Communication activities, invokes and receives, are trans-
lated in a different way depending on their arguments and
their position in the code. Therefore, the translation of Blite
programs proceeds in a top-down fashion and, in doing so,
the WS-BPEL generator exploits the information previously
collected by the Mapper and the Blite parser. For example,
as shown in Table 1, if a receive activity is positioned within
a pck construct it is translated as an <onMessage> activity; if it
is positioned after an invoke (in case of a request-response
interaction) it is translated as a synchronous <invoke>; oth-
erwise, it is simply translated as a <receive>. In addition to
the excerpts shown in the table, the translation also settles
the following activity attributes. If a receive is a start activ-
ity, to allow the process to be instantiated, the createInstance

attribute must be set to yes. Moreover, if some correla-
tion variables are involved, the corresponding correlation set
(whose declaration is generated during the translation of the
deployment term) must be specified as a further argument
of the <receive> activity. The correlation attributes initiate

and pattern are set according to the type of the interaction.

The invoke activity is translated similarly, as shown in Ta-

Table 2: Mapping of the invoke activity
Blite WS-BPEL

<invoke partnerLink="pl"
inv pl op <x1,. . . ,xn> operation="op"

variable="x" />

<invoke partnerlink="pl"
inv <p,p’> op <y1,. . . ,yn>; operation="op"
rcv <p’> op <x1,. . . ,xm> inputVariable="y"

outputVariable="x" />

<receive ... />
rcv <p,p’> op <y1,. . . ,yn> ...
... <reply partnerlink="pl"
inv <p’> op <x1,. . . ,xm> operation="op"

variable="x" />

Table 3: Mapping of assign, empty, throw and exit
Blite WS-BPEL

<assign>
<copy>

x := e <from> e </from>
<to> $var_x.part_x </to>
</copy>
</assign>

<assign>
<copy>
<from> e </from>

set(x,"path") := e <to variable="var_x" part="part_x">
<query> path </query>
</to>
</copy>
</assign>

<assign>
<copy>
<from variable="var_x" part="part_x">

y := get(x,"path") <query> path </query>
</from>
<to variable="var_y" part="part_y" />
</copy>
</assign>

empty <empty />

throw <throw />

exit <exit />

ble 2; in particular, when it is used in a request-response
interaction to send the response, it is translated as a <reply>

activity. The translation of the remaining basic activities,
as shown in Table 3, is straightforward. In particular, an
assign activity involving message variables is translated by
possibly using XPATH queries and by exploiting the type
of the involved variables (defined in the declarative part) to
identify the corresponding parts. Also the translation of the
structured activities does not require a significant effort, as
shown in Table 4. Finally, as shown in Table 5, a Blite ser-
vice is rendered as a scope, where the compensation handler
is removed and the tag <scope> is replaced by <process>.

5. BLITEC AT WORK
In this section, we present an application of BliteC to some
illustrative practical scenarios. The WS-BPEL and WSDL
files of the presented services are reported in [16], while all
Blite programs and the corresponding WS-BPEL packages
can be retrieved along with the BliteC distribution archive.

5.1 A virtual credit card service
A virtual credit card is a prepaid non-physical credit card
devised for safe online shopping. A Blite specification for
creating and handling a virtual credit card is the following:

s_vcard ::=
[seq

rcv <p_createcard> o_newcard <x_id,x_amount>;

Table 4: Mapping of structured activities
Blite WS-BPEL

<if>
<condition> e </condition>

if (e) {a1} else {a2} a1

<else> a2 </else>
</if>

<while>
while (e) {a} <condition> e </condition>

a
</while>

<sequence>
seq a1 ; . . . ; an qes a1 . . . an

</sequence>

<flow>
flw a1 | . . . | an wlf a1 . . . an

</flow>

<pick>
pck a1 + . . . + an kcp a1 . . . an

</pick>

<scope>
<faultHandlers>

<catchAll>
<sequence>

<compensate/> af

</sequence>
[a @ af * ac] </catchAll>

</faultHandlers>
<compensationHandler>

ac

</compensationHandler>
a

</scope>

Table 5: Mapping of service definitions
Blite WS-BPEL

<process>
<faultHandlers>

<catchAll>
<sequence>

[a @ af] <compensate/> af

</sequence>
</catchAll>

</faultHandlers>
a

</process>

while(x_amount>0){
seq
rcv <p_vcard,x_clt> o_getcash <x_id,x_wdr>;
if (x_amount>=x_wdr)

{ seq
x_amount := x_amount - x_wdr;
x_resp := "Withdrawal of ". x_wdr .

" Euros accepted"
qes }

else { x_resp := "Withdrawal of ". x_wdr .
" Euros not accepted"};

inv <x_clt> o_getcash <x_id,x_resp>
qes }

qes];;

virtualcard ::= {s_vcard}{x_id};;

A new card is created by invoking the operation o_newcard

and specifying a card identifier and the initial amount. The
created instance allows the card holder to perform with-
drawals by repeatedly invoking the request-response opera-
tion o_getcash until the card is empty. For each withdrawal
request, the money availability is checked and a message,
stored in x_resp, is sent back. The fact that the invoke activ-
ity used for the reply is performed along the same operation
of the second receive indicates that the two activities form a
synchronous request-response interaction, hence the invoke
will be translated into a <reply> activity. The card identifier,
stored in x_id, is used as a correlation value.

Since the above service does not need to invoke other ser-
vices, only its address and variables are explicitly declared:

<?blm
ADDRESSES {
myns => "http://virtualcard";
myaddress => "http://XXX:8080/active-bpel/services";

}
VARIABLES {
<x_id,x_amount> => gen:creationReq,<id,amount>,

<xsd:int,xsd:int>;
<x_id,x_wdr> => gen:withdrawalReq,<id,wdrAmount>,

<xsd:int,xsd:int>;
<x_id,x_resp> => gen:withdrawalResp,<id,msg>,

<xsd:int,xsd:string>;
}
?>

To compile this Blite program, we have to save the above
code into a file (named, e.g., vcard_service.bl) and execute the
command java -jar blite.jar vcard_service.bl. This way, the
file virtualcardProcess.bpr, which is a WS-BPEL package di-
rectly deployable into ActiveBPEL, is generated. Of course,
the same actions can be also performed by using the editor
or the development environment mentioned in Section 4.1.
The WS-BPEL file included in the generated package, where
irrelevant details have been omitted, is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<process name="virtualcardProcess" ... >
<import location="virtualcard.wsdl" ... />
<partnerLinks>
<partnerLink name="cltPL" partnerLinkType="mwl:cltPLT"

myRole="p_vcard" />
<partnerLink name="p_createcardPL"

partnerLinkType="mwl:p_createcardPLT"
myRole="p_createcard" />

</partnerLinks>
<variables>
<variable name="var1" messageType="mwl:withdrawalReq" />
<variable name="var2" messageType="mwl:withdrawalResp" />
<variable name="var0" messageType="mwl:creationReq" />

</variables>
<correlationSets>
<correlationSet name="x_idCorr"

properties="mwl:x_idProp" />
</correlationSets>
<faultHandlers>
<catchAll>
<sequence> <compensate /> <empty /> </sequence>

</catchAll>
</faultHandlers>
<sequence>
<sequence>
<receive partnerLink="p_createcardPL"

operation="o_newcard"
variable="var0"
createInstance="yes">

<correlations>
<correlation set="x_idCorr" initiate="yes" />

</correlations>
</receive>
<assign>
<copy>
<from variable="var0" part="id" />
<to variable="var1" part="id" />

</copy>
<copy>
<from variable="var0" part="id" />
<to variable="var2" part="id" />

</copy>
</assign>

</sequence>
<while>
<condition>$var0.amount > 0</condition>
<sequence>
<receive partnerLink="cltPL"

operation="o_getcash"
variable="var1">

<correlations>
<correlation set="x_idCorr" initiate="no" />

</correlations>
</receive>
<if>
<condition>
$var0.amount >= $var1.wdrAmount

</condition>

<sequence>
<assign>
<copy>
<from>$var0.amount - $var1.wdrAmount</from>
<to variable="var0" part="amount" />

</copy>
</assign>
<assign>
<copy>
<from>
concat(’Withdrawal of ’,string($var1.wdrAmount),

’ Euros accepted’)
</from>
<to variable="var2" part="msg" />

</copy>
</assign>

</sequence>
<else>
<assign>
<copy>
<from>
concat(’Withdrawal of ’,string($var1.wdrAmount),

’ Euros not accepted’)
</from>
<to variable="var2" part="msg" />

</copy>
</assign>

</else>
</if>
<reply operation="o_getcash"

partnerLink="cltPL"
variable="var2">

<correlations>
<correlation set="x_idCorr" initiate="no" />

</correlations>
</reply>

</sequence>
</while>

</sequence>
</process>

As expected, the resulting WS-BPEL code is more verbose
and intricate than the Blite one. However, the performed
translation turns out to be quite ‘clean’, in the sense that
each BliteC activity has been translated into the correspond-
ing WS-BPEL one without introducing ‘junk’ code.

To deploy the file virtualcardProcess.bpr, it is sufficient to
move it into the engine’s deployment directory bpr. Then,
to check that the deploy succeeded, we can use the Ac-
tiveBPEL’s administration console that can be accessed by
using any browser at the address http://XXX:8080/BpelAdmin

(where XXX is the server’s address where the ActiveBPEL
engine is running). By selecting Deployed Processes from the
menu on the left-hand side, we obtain the list of the de-
ployed processes (Figure 5) among which virtualcardProcess

should appear. Now, by selecting Deployed services, we can
retrieve the URLs of the two WSDL files6 corresponding to
the partner links for interacting with the service:

http://XXX:8080/active-bpel/services/p_createcardService?wsdl

http://XXX:8080/active-bpel/services/p_vcardService?wsdl

To test the service behaviour, we can use a tool for automatic
generation of web service requests, as e.g. soapUI [13], and
invoke the service by sending the following SOAP messages:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:vir="http://virtualcard/virtualcard.wsdl">
<soapenv:Header/>
<soapenv:Body>

<vir:x_idEL> 1234 </vir:x_idEL>
<vir:x_amountEL> 100 </vir:x_amountEL>

</soapenv:Body>
</soapenv:Envelope>

6In fact, when provided with a WSDL file, ActiveBPEL pro-
duces as many WSDL files as the different partner links.

Figure 5: List of deployed processes

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:vir="http://virtualcard/virtualcard.wsdl">
<soapenv:Header/>
<soapenv:Body>

<vir:x_idEL> 1234 </vir:x_idEL>
<vir:x_wdrEL> 50 </vir:x_wdrEL>

</soapenv:Body>
</soapenv:Envelope>

The first message creates a virtual credit card identified
by 1234 with 100 Euros as initial amount, while the sec-
ond message is a request for withdrawing 50 Euros. In re-
sponse to the second message we get the string Withdrawal

of 50 Euros accepted and, by selecting Active Processes from the
console menu, we can verify that the card instance is still
running. If we resend the request we obtain the same re-
sponse, but the instance status changes to Completed.

5.2 On asynchronous communication
Frequently, it is assumed that a service request can be pro-
cessed in a reasonable amount of time, justifying the re-
quirement that the invoker waits for a response related to a
synchronous request-response operation. In a business pro-
cess setting, where communication costs are high or net-
work latency is unpredictable, such assumption usually does
not hold and the interactions are better modeled by asyn-
chronous message exchanges. Therefore, an asynchronous
messaging approach is considered good practice for web ser-
vices and service orchestrations in particular.

Although WS-BPEL provides the means for implementing
asynchronous communication, it requires programmers to
directly deal with endpoint references, as shown by the ex-
ample in Section 2. Instead, in Blite this relevant communi-
cation pattern can be easily and transparently implemented.

A Blite specification for receiving a request and asyn-
chronously replying with the string Hello is the following:
s_asyncServer ::= [seq

rcv <server,client> request <x_id>;
x := "Hello";
inv <client> response <x_id,x>

qes];;
asyncServer ::= {s_asyncServer}{x_id};;

Since this service does not need to invoke other services, the
declarative part is just as follows:

<?blm
ADDRESSES {
myns => "http://asyncComm";
myaddress => "http://XXX:8080/active-bpel/services";

}
VARIABLES {

<x_id> => gen:req,<id>,<xsd:int>;
<x_id,x> => gen:resp,<id,msg>,<xsd:int,xsd:string>;

}
?>

The corresponding invoker service is rendered in Blite as

s_asyncClient ::= [seq
rcv <p_init,y_clt> init <y_id>;
inv <server,client> request <y_id>;
rcv <client> response <y_id,y_msg>;
y_resp := "Response: ".y_msg;
inv <y_clt> init <y_id,y_resp>

qes];;
asyncClient ::= {s_asyncClient}{y_id};;

The process is initialized by invoking the synchronous
request-response operation init. Then, the created instance
asynchronously invokes the partner server and, once receives
the reply message, appends it at the response and sends the
obtained message to the initiator. Notably, in Blite syn-
chronous and asynchronous interactions are rendered in a
similar way (i.e. as pairs of activities inv-rcv and rcv-inv);
they are distinguished only by the fact that synchronous in-
teractions use the same operation for invoking and receiving.

The declarative part of the asynchronous invoker is:

<?blm
ADDRESSES {
myns => "http://asyncComm";
myaddress => "http://XXX:8080/active-bpel/services";

}
IMPORTS { asS => "http://asyncComm/asyncServer.wsdl"; }
VARIABLES {

<y_id> => asS:req;
<y_id,y_msg> => asS:resp;
<y_id,y_resp> => gen:response,<id,resp>,<xsd:int,xsd:string>;

}
PARTNERLINKS {
PARTNERLINK {

TYPE => asS:serverPLT;
MY_ROLE client => asS:clientPT;
PARTNER_ROLE server => asS:serverPT;

}
}
?>

The types of the messages corresponding to the asyn-
chronous invocation and the related response are imported
by the WSDL document of the asynchronous server (iden-
tified by the prefix asS). Moreover, while the partner link
to interact with the initiator partner client is automatically
generated by BliteC, the partner link to interact with server

must be explicitly declared (the types of the partner link
and the involved ports are again imported from the server’s
WSDL document). Hence, the server must be complied first.

We report here an excerpt of the WS-BPEL program corre-
sponding to asyncServer

<process name="asyncServerProcess" ... >
...
<partnerLinks>
<partnerLink name="serverPL" partnerLinkType="mwl:serverPLT"

myRole="server"
partnerRole="client"
initializePartnerRole="no" />

</partnerLinks>
<variables> ... </variables>
<correlationSets>
<correlationSet name="x_idCorr" properties="mwl:x_idProp" />

</correlationSets>

<faultHandlers> ... </faultHandlers>
<sequence>
<sequence>
<receive partnerLink="serverPL"

operation="request"
variable="var0"
createInstance="yes">

<correlations>
<correlation set="x_idCorr" initiate="yes" />

</correlations>
</receive>
<assign> ... </assign>

</sequence>
<sequence>

<receive partnerLink="serverPL"
operation="setClientAddress"
variable="var2">

<correlations>
<correlation set="x_idCorr" initiate="no" />

</correlations>
</receive>
<assign>
<copy>
<from variable="var2" part="address" />
<to partnerLink="serverPL" />

</copy>
</assign>

</sequence>
<assign> ... </assign>
<invoke partnerLink="serverPL" operation="response" ... />

</sequence>
</process>

To enable asynchronous communication, the translation au-
tomatically puts an additional receive activity (highlighted
by a gray background) in the generated WS-BPEL code.
This activity will be used by clients to communicate their
addresses, which are then assigned to the partner link used
for the callback operation. Similarly, in a transparent way,
BliteC equips the clients invoking this partner link with the
symmetric invoke activity.

5.3 An auction service scenario
We show here an application of BliteC to a scenario built
upon the auction service drawn from the WS-BPEL specifi-
cation document and already introduced in Section 2.

The auction service is defined in Blite as:

s_auction ::=
[seq

flw
rcv <auctionS,seller> submit

<x_auctionId,x_creditCardNumberS,x_shippingCost>
|
rcv <auctionB,buyer> submit

<x_auctionId,x_creditCardNumberB,x_phoneNumber>
wlf;
x_amount := 1;
inv <register,auction> process <x_auctionId,x_amount>;
rcv <auction> regAnswer <x_auctionId,x_registrationId>;
x_resp := "Thank you!";
flw
inv <seller> answer <x_auctionId,x_resp>
|
inv <buyer> answer <x_auctionId,x_resp>

wlf
qes];;

auction ::= {s_auction}{x_auctionId};;

<?blm
ADDRESSES {

myns => "http://auction";
myaddress => "http://localhost:8080/active-bpel/services";

}
IMPORTS { reg => "http://register/register.wsdl"; }
VARIABLES {
<x_auctionId,x_creditCardNumberS,x_shippingCost>

=> gen:sellerReq,<id,ccNum,cost>,
<xsd:int,xsd:string,xsd:int>;

<x_auctionId,x_creditCardNumberB,x_phoneNumber>
=> gen:buyerReq,<id,ccNum,phone>,

<xsd:int,xsd:string,xsd:string>;
<x_auctionId,x_amount> => reg:regReq;

<x_auctionId,x_registrationId> => reg:regResp;
<x_auctionId,x_resp>

=> gen:resp,<id,msg>,<xsd:int,xsd:string>;
}
PARTNERLINKS {
PARTNERLINK {

TYPE => reg:registerPLT;
MY_ROLE auction => reg:auctionPT;
PARTNER_ROLE register => reg:registerPT;

}
}
?>

Here, differently from the program in Section2, the endpoint
references of the registration, buyer and seller services are
not explicitly handled by the programmer. Moreover, the
only partner link declared is that used for interacting with
the registration service.

The registration service is rendered in Blite as follows:
register ::=
{[seq

rcv <register,auction> process <x_id,x_amount>;
x_registrationId := "someId";
inv <auction> regAnswer <x_id,x_registrationId>

qes]}{x_id};;

<?blm
ADDRESSES {

myns => "http://register";
myaddress => "http://localhost:8080/active-bpel/services";

}
VARIABLES {
<x_id,x_amount>
=> gen:regReq,<id,amount>,<xsd:int,xsd:int>;

<x_id,x_registrationId>
=> gen:regResp,<id,regId>,<xsd:int,xsd:string>;

}
?>

Its behaviour is very simple: the process gets instantiated by
the auction service by invoking the operation process; then,
the created instance replies with a registration identifier. For
the sake of simplicity, we do not model here the generation
of a unique identifier (which most likely could be provided
by another service).

Finally, we report below the seller service (the buyer service
is defined similarly):
v_seller ::=
[seq

rcv <initSeller,initiator> init <x_id,x_cc,x_shipCost>;
inv <auction,seller> submit <x_id,x_cc,x_shipCost>;
rcv <seller> answer <x_id, x_resp>;
inv <initiator> init <x_id,x_resp>

qes];;

seller ::= {v_seller}{x_id};;

<?blm ADDRESSES {
myns => "http://seller";
myaddress =>"http://localhost:8080/active-bpel/services";

}
IMPORTS { as => "http://auction/auction.wsdl"; }
VARIABLES {

<x_id,x_cc,x_shipCost> => as:sellerReq;
<x_id, x_resp> => as:resp;

}
PARTNERLINKS {

PARTNERLINK {
TYPE => as:auctionSPLT;
MY_ROLE seller => as:sellerPT;
PARTNER_ROLE auction => as:auctionSPT;

}
}
?>

The above specification is very similar to that of the asyn-
chronous client described in Section 5.2.

Once the above programs have been compiled and deployed,
regardless of the activation order of the buyer and seller,
both services will receive the message Thank you! indicating
the successful termination of the orchestration.

5.4 An auction service scenario with fault and
compensation handling

We now extend the scenario introduced in Section 5.3 with
fault and compensation handling. Basically, we allow the
buyer and the seller services to cancel the auction, which
causes its unregistration. Thus, the auction service becomes:

invReg ::=
seq
inv <register,auction> process <x_auctionId,x_amount>;
rcv <auction> regAnswer <x_auctionId,x_registrationId>;
flw
inv <seller> answer <x_auctionId,x_resp>
|
inv <buyer> answer <x_auctionId,x_resp>

wlf
qes;;

compReg ::=
seq
x_motivation := "Auction cancelled";
inv <registerComp> unregister <x_auctionId,x_motivation>

qes;;

fh ::=
seq
x_resp := "The registration has been cancelled";
flw
inv <seller> answer <x_auctionId,x_resp>
|
inv <buyer> answer <x_auctionId,x_resp>

wlf
qes;;

s_auction ::=
[seq

flw
rcv <auctionS,seller> submit

<x_auctionId,x_creditCardNumberS,x_shippingCost>
|
rcv <auctionB,buyer> submit

<x_auctionId,x_creditCardNumberB,x_phoneNumber>
wlf;
x_amount := 1;
x_resp := "Thank you!";
[invReg @ empty * compReg];
rcv <auctionCanc> cancel <x_auctionId>;
throw

qes
@ fh];;

auction ::= {s_auction}{x_auctionId};;

<?blm
ADDRESSES {

myns => "http://auction";
myaddress => "http://localhost:8080/active-bpel/services";

}
IMPORTS { reg => "http://register/register.wsdl"; }
VARIABLES {
<x_auctionId,x_creditCardNumberS,x_shippingCost>

=> gen:sellerReq,<id,ccNum,cost>,
<xsd:int,xsd:string,xsd:int>;

<x_auctionId,x_creditCardNumberB,x_phoneNumber>
=> gen:buyerReq,<id,ccNum,phone>,

<xsd:int,xsd:string,xsd:string>;
<x_auctionId,x_amount> => reg:regReq;
<x_auctionId,x_registrationId> => reg:regResp;
<x_auctionId,x_motivation> => reg:unreg;
<x_auctionId,x_resp>

=> gen:resp,<id,msg>,<xsd:int,xsd:string>;
<x_auctionId> => gen:cancellation,<id>,<xsd:int>;
}
PARTNERLINKS {

PARTNERLINK {
TYPE => reg:registerPLT;
MY_ROLE auction => reg:auctionPT;
PARTNER_ROLE register => reg:registerPT;

}
PARTNERLINK {

TYPE => reg:registerCompPLT;
PARTNER_ROLE registerComp => reg:registerCompPT;

}
}
?>

Once the auction service receives the two requests, it ex-
ecutes the scope activity [invReg @ empty * compReg]: the pri-
mary activity invReg interacts with the registration service

and then replies to buyer and seller, while the activity compReg

is the corresponding compensation handler that simply in-
vokes the registration service to cancel the registration. Af-
ter the scope completes, the auction service waits for a can-
cellation message by either the buyer or the seller. The
reception of such a message generates a fault (through the
activity throw). The fault is handled by the fault handler
fh that automatically activates the compensation handler
compReg (we refer to [25] for a complete account of the default
compensation mechanism) and sends two messages to buyer
and seller to notify that the registration has been cancelled.

5.5 Orchestrating non-Blite services
The previous examples show how BliteC can be used to gen-
erate complete orchestration scenarios where each service is
obtained by a Blite specification. However, our tool can be
also used to orchestrate Blite services together with non-
Blite ones. To this aim, our specification language provides
two simple constructs, get and set, that permit manipulating
XML messages exchanged with (possibly) non-Blite services.

Consider a service that receives a US zip code and a pref-
erence for the temperature scale, i.e. either the character
c for Celsius or f for Fahrenheit, contacts a first service
for getting the current weather conditions and the temper-
ature in degrees Fahrenheit of the city corresponding to the
zip code, possibly contacts a second service for converting
degrees Fahrenheit into degrees Celsius, and finally sends
the obtained weather and temperature information to the
invoker. To implement this service we have orchestrated
two web services freely provided by CDYNE [1]. The corre-
sponding Blite specification is as follows:

zipWeatherClient ::=
{[seq

rcv <initWeatherClient,initiator> init <num,scale,reqWeath>;
inv <weather, cb_weather> reqWeather <reqWeath>;
rcv <cb_weather> reqWeather <respWeath>;
x := get(respWeath, "/wth:GetCityWeatherByZIPResponse

/wth:GetCityWeatherByZIPResult
/wth:Description");

x_city := get(respWeath, "/wth:GetCityWeatherByZIPResponse
/wth:GetCityWeatherByZIPResult
/wth:City");

x_temF := get(respWeath, "/wth:GetCityWeatherByZIPResponse
/wth:GetCityWeatherByZIPResult
/wth:Temperature");

x := "The current weather at " . x_city . " is: " . x .
", the temperature is: ";

if (scale == "c")
{seq

reqConv := $litConv;
set(reqConv,"/tem:FahrenheitToCelcius

/tem:nFahrenheit") := x_temF;
inv <converter, cb_converter> reqConversion <reqConv>;
rcv <cb_converter> reqConversion <respConv>;
x_temC := get(respConv,"/tem:FahrenheitToCelciusResponse

/tem:FahrenheitToCelciusResult");

x := x . x_temC ." ◦C"
qes}

else {x := x . x_temF ." ◦F"};
inv <initiator> init <num,x>
qes]}{num};;

<?blm
ADDRESSES {

myns => "http://zipWeather";
myaddress => "http://localhost:8080/active-bpel/services";

}
IMPORTS {
wth => "http://ws.cdyne.com/WeatherWS/";
tem => "http://webservices.daehosting.com/temperature";

}
VARIABLES {
<reqWeath> => wth:GetCityWeatherByZIPSoapIn;
<respWeath> => wth:GetCityWeatherByZIPSoapOut;
<num,scale,reqWeath>

=> gen:req, <init,scale,request>,
<xsd:integer,xsd:string,(El)wth:GetCityWeatherByZIP>;

<num,x>
=> gen:resp, <init,response>,<xsd:integer,xsd:string>;

x_city => xsd:string;
x_temF => xsd:decimal;
<reqConv> => tem:FahrenheitToCelciusSoapRequest;
<respConv> => tem:FahrenheitToCelciusSoapResponse;
x_temC => xsd:string;

}
LITERALS {
litConv => [[<tem:FahrenheitToCelcius

xmlns:tem="http://webservices.daehosting.com
/temperature">

<tem:nFahrenheit>0</tem:nFahrenheit>
</tem:FahrenheitToCelcius>]];

}
PARTNERLINKS {

PARTNERLINK {
TYPE => gen:weatherPLT;
PARTNER_ROLE weather => wth:WeatherSoap,

(reqWeather =>GetCityWeatherByZIP);
}
PARTNERLINK {

TYPE => gen:converterPLT;
PARTNER_ROLE

converter => tem:TemperatureConversionsSoapType,
(reqConversion =>FahrenheitToCelcius);

}
}

?>

The get construct is used here to extract information from
the XML messages received from the two external web ser-
vices, while the set construct is used to insert the received
temperature expressed in degrees Fahrenheit into the XML
request message for the converter service, whose structure
has been previously initialized by means of the literal litConv.

Once the program has been compiled and deployed, if we
invoke the operation init by specifying the zip code 90210

and the scale Celsius, we will get back a string of the form:

The current weather at Beverly Hills is: Clear,

the temperature is: 14.4444444 ◦C

6. CONCLUDING REMARKS
We have presented BliteC, a software tool for supporting a
rapid and easy development of WS-BPEL applications. The
tool aims at solving some well-known programming prob-
lems of WS-BPEL caused by its XML syntax, lack of a
formal semantics, and non-standardization of the deploy-
ment procedure. Basically, BliteC takes as inputs programs
written in Blite, a prototypical orchestration language in-
spired to WS-BPEL but with a simpler syntax and a well-
defined operational semantics, and provides as output the
corresponding deployable WS-BPEL programs.

The aim of facilitating the development of WS-BPEL ap-
plications is shared also by the several graphical editors
that permit designing WS-BPEL processes, among which
we mention the designers embedded in Oracle BPEL Pro-
cess Manager [5], Intalio|Designer [10], ActiveVOS Designer
[7], and Eclipse BPEL designer [9]. Although their use is
quite intuitive, developing large applications by using them
can be awkward and annoying compared to the more classic
textual approach. Indeed, graphical notations turn out to be
suitable for beginner WS-BPEL programmers to represent
simple business process workflows, but do not allow more ex-
pert programmers to exploit commonly used functionalities,
such as e.g. copy/cut/paste, and are inappropriate for ex-
pressing some (textual) information, such as e.g. correlation
sets. Moreover, graphical designers have a significant nega-
tive impact on performance during the programming phase

(that is, indeed, the phase of the software development pro-
cess on which we focus on), since they usually are plugins of
heavy software development environments such as JDevel-
oper [3] and Eclipse [4]. Some other works with a similar aim
are [28, 32, 14]. The first two present some tools that pro-
duce WS-BPEL processes starting, respectively, from UML-
and Petri Nets-based representations of SOC applications.
Due to the use of graphical representations, also these tools
suffer from the problems previously mentioned. Instead, the
third one proposes a mapping from a π-calculus based for-
malism into WS-BPEL. In all three approaches, only non-
executable WS-BPEL processes are generated, i.e. the gen-
erated code should be thought of as a template code where,
besides binding and deployment details, programmers have
also to define things such as partner links, variables, port
types, correlations sets, etc. by editing the generated files.
Another related work is [29], which proposes a different ap-
proach to develop SOC applications that still relies on a
formal language. However, input programs are directly ex-
ecuted in a purposely developed engine, rather than being
translated into and deployed as WS-BPEL processes.

Currently, the WS-BPEL packages generated by BliteC are
intended to be deployed on ActiveBPEL. This is just to
demonstrate feasibility of our approach. In fact, BliteC has
been designed so that the generation of deployment descrip-
tors for different engines can be easily integrated, and we
plan to enable it to produce packages also for other freely
available engines, such as Oracle BPEL Process Manager,
Apache ODE [8] and Beepell [23]. Of course, to preserve the
semantics of the original Blite programs, one has to study
the inner implementation of every supported engine and to
define a customized translation. Since no engine has a for-
mal description of its behaviour, this study has to be carried
out by means of experimental tests and, most of all, no for-
mal proof of semantics preservation can be done. It is also
worth noticing that the semantics of Blite, which is in fact
quite close to that of ActiveBPEL, could be rather tough
to render by some WS-BPEL engines, whose semantics may
significantly differ on low-level implementation details (e.g.
message queue handling) or may more strictly (or inappro-
priately) enforce some WS-BPEL constraints. For instance,
it may happen that a process instance should receive a mes-
sage from a partner according to the Blite semantics, while
instead the message cannot be effectively accepted accord-
ing to the semantics of the considered engine, due to e.g.
some peculiar correlation constraint. In such a case, BliteC
should identify the potential conflicting receives in the gener-
ated WS-BPEL program and, e.g., replace them by a single
receive enabling some proper coordination activities.

We also plan to enrich the BliteC development environment
presented in Section 4.1 with further functionalities, such
as deployment/undeployment facilities over remote servers,
and debugging tools, such as automatic generation of web
interfaces for invoking the created services and log recording
based on an embedded dedicated web service. This latter
tool could require to extend the syntax of Blite accepted by
BliteC with a construct for printing strings into the log that
would be translated into a WS-BPEL one-way interaction.

For what concern the language Blite, we also intend to in-
vestigate its extension to cover some WS-BPEL constructs

that at the time being have been left out, such as timed
activities, event and termination handlers, and more sophis-
ticated forms of fault and compensation handling involving
named faults and compensation of specified scopes. We do
not envisage any major issue in translating such constructs
in WS-BPEL code, while their addition to Blite would re-
quire to significantly revise the formal definition of the op-
erational semantics of the language.

Finally, we intend to develop formal analysis techniques, e.g.
based on model checking (as in [14, 15]), for Blite specifi-
cations. This way, we would be able to specify in Blite an
orchestration scenario, validate its behaviour by using for-
mal tools, and deploy it as a set of WS-BPEL programs.

7. ACKNOWLEDGMENTS
We thank Alessandro Lapadula for his fundamental contri-
bution to the definition of the language Blite. We also thank
the anonymous reviewers of SAC’10 and Applied Comput-
ing Review for their helpful comments, and people attending
the SOAP track at SAC’10 for the fruitful discussions fol-
lowing the presentation of our work. Finally, we thank the
chairs of the SOAP track for their invitation to submit to
the Applied Computing Review and their support.
This work has been sponsored by the EU project Sensoria,
IST-2005-016004.

8. REFERENCES
[1] CDYNE Corporation. http://www.cdyne.com/.

[2] jEdit Programmer’s Text Editor 4.3.
http://www.jedit.org/.

[3] Oracle JDeveloper.
http://www.oracle.com/technology/products/jdev.

[4] The Eclipse project. http://www.eclipse.org.

[5] Oracle BPEL Process Manager 10.1.3, December
2007. http://www.oracle.com/technology/bpel.

[6] ActiveBPEL 5.0.2, October 2009.
http://sourceforge.net/projects/activebpel502/.

[7] ActiveVOS Designer 5.0.2, June 2009.
http://www.activevos.com/.

[8] Apache ODE 1.3.3, August 2009.
http://ode.apache.org.

[9] Eclipse BPEL project 0.4.0, May 2009.
http://www.eclipse.org/bpel.

[10] Intalio|Designer Community Edition 6.0.1, August
2009. http://www.intalio.com/products/bpm/
community-edition/designer.

[11] JavaCC 4.2, April 2009.
https://javacc.dev.java.net.

[12] JDOM 1.1, April 2009. http://www.jdom.org.

[13] soapUI 3.5, March 2010. http://www.soapui.org.

[14] F. Abouzaid and J. Mullins. A Calculus for
Generation, Verification and Refinement of BPEL
Specifications. In WWV, volume 200 of ENTCS, pages
43–65. Elsevier, 2008.

[15] F. Abouzaid and J. Mullins. Model-checking Web
Services Orchestrations using BP-calculus. In
FOCLASA, volume 255 of ENTCS, pages 3–21.
Elsevier, 2009.

[16] L. Cesari, R. Pugliese, and F. Tiezzi. A tool for rapid
development of WS-BPEL applications. Technical

report, Dip. Sistemi e Informatica, Univ.Firenze, 2010.

[17] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1. Technical report, W3C, 2001.

[18] N. Dragoni and M. Mazzara. A Formal Semantics for
the WS-BPEL Recovery Framework: The pi-Calculus
Way. In WS-FM, volume 6194 of LNCS, pages 92–109.
Springer, 2010.

[19] G. Erich, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[20] D. Fahland and W. Reisig. ASM-based Semantics for
BPEL: The Negative Control Flow. In Abstract State
Machines, pages 131–152, 2005.

[21] A. Ferrara. Web services: a process algebra approach.
In ICSOC, pages 242–251. ACM, 2004.

[22] M. Gudgin, M. Hadley, and T. Rogers. Web Services
Addressing 1.0 - Core. Technical report, W3C, May
2006. W3C Recommendation.

[23] T. Hallwyl, F. Henglein, and T. Hildebrandt. A
standard-driven implementation of WS-BPEL 2.0. In
SAC, pages 2472–2476. ACM, 2010.

[24] S. Hinz, K. Schmidt, and C. Stahl. Transforming
BPEL to Petri Nets. In Business Process Management,
volume 3649 of LNCS, pages 220–235. Springer, 2005.

[25] A. Lapadula, R. Pugliese, and F. Tiezzi. A formal
account of WS-BPEL. In COORDINATION, volume
5052 of LNCS, pages 199–215. Springer, 2008.

[26] N. Lohmann. A Feature-Complete Petri Net
Semantics for WS-BPEL 2.0. In WS-FM, volume 4937
of LNCS, pages 77–91. Springer, 2008.

[27] R. Lucchi and M. Mazzara. A pi-calculus based
semantics for WS-BPEL. J. Log. Algebr. Program.,
70(1):96–118, 2007.

[28] P. Mayer, A. Schroeder, and N. Koch. Mdd4soa:
Model-driven service orchestration. In EDOC, pages
203–212. IEEE, 2008.

[29] F. Montesi, C. Guidi, and G. Zavattaro. Composing
Services with JOLIE. In ECOWS, pages 13–22. IEEE,
2007.

[30] OASIS WSBPEL TC. Web Services Business Process
Execution Language Version 2.0. Technical report,
OASIS, April 2007.

[31] C. Ouyang, E. Verbeek, W. van der Aalst, S. Breutel,
M. Dumas, and A. ter Hofstede. Formal semantics and
analysis of control flow in WS-BPEL. Sci. Comput.
Program., 67(2-3):162–198, 2007.

[32] W. M. P. van der Aalst and K. B. Lassen. Translating
unstructured workflow processes to readable BPEL:
Theory and implementation. Information & Software
Technology, 50(3):131–159, 2008.

[33] M. Weidlich, G. Decker, and M. Weske. Efficient
Analysis of BPEL 2.0 Processes Using π-calculus. In
APSCC, pages 266–274. IEEE, 2007.

