
Heuristic Search for the Analysis
of Graph Transition Systems

Stefan Edelkamp1, Shahid Jabbar1 and Alberto Lluch Lafuente2

1 Computer Science Department, University of Dortmund, Dortmund, Germany
{stefan.edelkamp,shahid.jabbar}@cs.uni-dortmund.de

2 via del Giardino A 58, I-50053 Empoli, Italy
lafuente@di.unipi.it

Abstract. Graphs are suitable modeling formalisms for software and
hardware systems involving aspects such as communication, object ori-
entation, concurrency, mobility and distribution. State spaces of such
systems can be represented by graph transition systems, which are ba-
sically transition systems whose states and transitions represent graphs
and graph morphisms. Heuristic search is a successful Artificial Intel-
ligence technique for solving exploration problems implicitly present in
games, planning, and formal verification. Heuristic search exploits infor-
mation about the problem being solved to guide the exploration process.
The main benefits are significant reductions in the search effort and the
size of solutions. We propose the application of heuristic search for the
analysis of graph transition systems. We define algorithms and heuristics
and present experimental results.

1 Introduction

Graphs are a suitable formalism for software and hardware systems involving
issues such as communication, object orientation, concurrency, distribution and
mobility. The graphical nature of such systems appears explicitly in approaches
like graph transformation systems [31] and implicitly in other modeling for-
malisms like algebras for communicating processes [26]. The properties of such
systems mainly regard aspects such as temporal behavior and structural prop-
erties. They can be expressed, for instance, by logics used as a basis for a formal
verification method, like model checking [5], whose success is mainly due to the
ability to find and report errors.

Finding and reporting errors in model checking and many other analysis
problems can be reduced to state space exploration problems. In most cases,
the main drawback is the state explosion problem. In practice, the size of state
spaces can be large enough (even infinite) to exhaust the available space and
time resources. Heuristic search has been proposed as a solution in many fields,
including model checking [13], planning [2] and games [24]. Basically, the idea is
to apply algorithms that exploit the information about the problem being solved
in order to guide the exploration process. The benefits are twofold: the search
effort is reduced, for instance, errors are found faster and by consuming less

memory, and the solution quality is improved, i.e., counterexamples are shorter
and thus may be more useful.

In cases like wide area networks with Quality of Service (QoS), one might not
be interested in short paths, but in cheap or optimal ones according to a certain
notion of cost. Typical examples are algebra defined on Reals, on Booleans, on
Probabilities, or on any other system. To cover such a diversity, we generalize
our approach by considering an abstract notion of cost.

Our work is mainly inspired by approaches to directed model checking [13],
logics for graphs (like the monadic second order logic [8]), spatial logics used to
reason about the behavior and structure of processes calculi [3] and graphs [4],
approaches for the analysis of graph transformation systems [1, 15, 28, 33], and
cost-algebraic search algorithms [12, 32].

The goal of our approach is to formalize a framework for the application of
heuristic search in order to analyze structural properties of systems modeled by
graph transition systems. We believe that our work additionally illustrates the
benefits of applying heuristic search for state space exploration. Heuristic search
is intended to reduce the analysis effort and, in addition, to deliver shorter
solutions, which in our case means shorter paths in graph transition systems.
Such paths might represent errors of a system or examples of interesting correct
behaviours. It is worth saying that our approach offers no benefit if one is inter-
ested in exhaustively exploring a states space, like is usual when one needs to
correctnes of a graph transition system.

Section 2 introduces a running example that is used along the paper to illus-
trate some of the concepts and methods. Section 3 defines our modeling formal-
ism, namely graph transition systems. Section 4 defines the kind of properties
we are interested in verifying. Section 5 summarizes the analysis algorithms
and discusses their correctness. Section 6 proposes heuristics for the analysis of
properties in graph transition systems. Abstraction is one of the most successful
techniques in model checking. In Section 7, we discuss the role of abstraction to
define useful heuristic estimates. Section 8 presents experimental results. Sec-
tion 9 concludes the paper and outlines future research avenues. For the sake of
readability proofs are included in an appendix that follows the bibliography.

2 The Arrow Distributed Directory Protocol

The arrow distributed directory protocol [9] is a solution to ensure exclusive access
to mobile objects in a distributed system. The protocol induces a distributed
queue structure on a distributed system. The distributed system is given as an
undirected graph G, where vertices and edges respectively represent nodes and
communication links. Costs are associated with the links in the usual way, and
a mechanism for optimal routing is assumed.

The protocol works with a minimal spanning tree T of G. Each node has an
arrow which either indicates the direction in which the object lies or is going to
be. If a node owns the object or is requesting it, the arrow points to itself; we
say that the node is a terminal. The directed graph induced by the arrows is

v1 e1

%%JJJ
J v4

e4yyttt
t

v2

e2yyttt
t

v3
e3

oo

v0

e0

ZZ
v5

e5

eeJJJJ

v1 e1

%%JJJ
J v4

e6

��

v2

e2yyttt
t

v3
e3

oo

v0

e0

ZZ
v5

e5

eeJJJJ

v1 e1

%%JJJ
J v4

e6

��

v2

e2yyttt
t

v3

e7 99tttt

v0

e0

ZZ
v5

e5

eeJJJJ

Fig. 1. Three states of the directory.

called L. The protocol works by propagating requests and updating arrows such
that at any moment the paths induced by arrows, called arrow paths, lead to a
terminal either owning the object or waiting for it.

Fig. 1 illustrates three states of a protocol instance with six nodes v0,. . . ,v5.
For the sake of simplicity only L is depicted. The state on the left is the initial
one: node v0 has the object and all paths in L lead to it. The state on the right
of the figure is the result of two steps: 1) node v4 sends a request for the object
through its arrow; and 2) v3 processes it, making its arrow points to v4. Request
propagation should end by making all paths in L pointing towards v4, where
the object will be transfered once v0 is finished with it. Each propagation step
comprises of two transitions: deleting its out-going edge, and adding the new
edge in the direction, where the request came from.

One could be interested in properties like: Can a certain node v be terminal?
(Property 1), Can a certain node v be terminal and all arrow paths end at v?
(Property 2), Can some node be terminal? (Property 3), Can some node be
terminal and all arrow paths end at it? (Property 4).

3 Graph Transition Systems

This section presents our algebraic notion of costs. It shall be used as an abstrac-
tion of costs or weights associated to edges of graphs or transitions of transition
systems. For a deeper treatment of the cost algebra, we refer to [12].

Definition 1. A cost algebra is a 5-tuple 〈A,×,�,0,1〉, such that 1) 〈A,×〉
is a monoid with 1 as identity element and 0 as its absorbing element, i.e.,
a× 0 = 0× a = 0; 2) �⊆ A×A is a total ordering with 0 =

d
A and 1 =

⊔
A;

A is isotone, i.e., a � b implies both a × c � b × c and 3) c × a � c × b for all
a, b, c ∈ A [32].

In the rest of the paper a ≺ b abbreviates a � b and a 6= b. Moreover, a � b
abbreviates b � a, and a � b abbreviates a � b and a 6= b.

Intuitively, A is the domain set of cost values, which is linearly ordered by
� and has t, u as least and greatest operations, and × is the operation used to
cumulate values. Consider, for example, the following instances of cost algebras,

typically used as cost or QoS formalisms: 〈{true, false},∧,⇒,false, true〉 (Net-
work and service availability), 〈R+ ∪ {+∞},+,≤,+∞, 0〉 (Price, propagation
delay) or 〈R+∪{+∞},min,≥, 0,+∞〉 (Bandwidth). In the rest of the paper, we
consider a fixed cost algebra 〈A,×,�,0,1〉.

Definition 2. A graph G is a tuple 〈VG, EG, srcG, tgtG, ωG〉 where VG is a set
of nodes, EG is a set of edges, srcG, tgtG : EG → VG are source and target
functions, and ωG : EG → A is a weighting function.

Graphs usually have a particular start state sG
0 ∈ VG, which we sometimes

denote with s0 if G is clear from the context.

Definition 3. A path in a graph G is a alternating sequence of nodes and edges
represented as u0

e0→ u1 . . . such that for each i ≥ 0, we have ui ∈ VG, ei ∈ EG,
srcG(ei) = ui and tgtG(ei) = ui+1, or, shortly ui

ei→ ui+1.

An initial path is a path starting at sG
0 . Finite paths are required to end at

states. The length of a finite path p is denoted by |p|. The concatenation of two
paths p, q is denoted by pq, where we require p to be finite and end at the initial
state of q. The cost of a path is the cumulative cost of its edges. Formally,

Definition 4. Let p = u0
e0→ . . .

ek−1→ uk be a finite path in a graph G. The path
cost ωG(p) is ωG(e)× ωG(q) if p = (u e→ v)q and 1 otherwise.

Let γ(u) denote the set of all paths starting at node u. We shall use ω∗G(u, V)
to denote the cost of the optimal path starting at a node u and reaching a node
v in a set V ⊆ VG. For ease of notation, we write ω∗G(u, {v}) as ω∗G(u, v).

Graph transition systems are suitable representations for software and hard-
ware systems and extend traditional transition systems by relating states with
graphs and transitions with partial graph morphisms. Intuitively, a partial graph
morphism associated to a transition represents the relation between the graphs
associated to the source and the target state of the transition, i.e., it models
the merging, insertion, addition and renaming of graph items, where the cost of
merged edges is the least one amongst the edges involved in the merging.

Definition 5. A graph morphism ψ : G1 → G2 is a pair of mappings ψV :
VG1 → VG2 , ψE : EG1 → EG2 such that we have ψV ◦ srcG1 = srcG2 ◦ ψE,
ψV ◦ tgtG1

= tgtG2
◦ ψE, and for each e ∈ EG2 such that {e′ | ψE(e′) = e} = ∅

we have, ωG2(e) =
⊔
{ωG1(e

′) | ψE(e′) = e}. A graph morphism ψ : G1 → G2 is
called injective if so are ψV and ψE; identity if both ψV and ψE are identities,
and isomorphism if both ψE and ψV are bijective. A graph G′ is a subgraph of
graph G, if VG′ ⊆ VG and EG′ ⊆ EG, and the inclusions form a graph morphism.
A partial graph morphism ψ : G1 → G2 is a pair 〈G′

1, ψm〉 where G′
1 is a

subgraph of G1, and ψm : G′
1 → G2 is a graph morphism.

The composition of (partial) graph morphisms results in (partial) graph mor-
phisms. Now, we extend transition systems with weights.

Definition 6. A transition system is a (posibly infinite) graph M = 〈SM , TM , inM , outM , ωM 〉
whose nodes and edges are called states and transitions, with inM , outM repre-
senting the source and target of an edge.

Finally, we are ready to define graph transition systems, which are transition
systems together with morphisms mapping states into graphs and transitions
into partial graph morphisms.

Definition 7. A graph transition system (GTS) is a pair 〈M, g〉, where M is a
weighted transition system and g : M → U(Gp) is a graph morphism from M to
the graph underlying Gp, the category of graphs with partial graph morphisms.
Therefore g = 〈gS , gT 〉, and the component on states gS maps each state s ∈ SM

to a graph gS(s), while the component on transitions gT maps each transitions
t ∈ TM to a partial graph morphism gT (t) : gS(inM (t)) ⇒ gS(outM (t)).

In the rest of the paper, we shall consider a GTS 〈M, g〉 modeling the state
space of our running example, where g maps states to L, i.e., the graph induced
by the arrows, and transitions to the corresponding partial graph morphisms.
Consider Fig. 1, each of the three graphs depicted, say G1, G2 and G3 cor-
responds to three states s1,s2,s3, meaning that g(s1) = G1, g(s2) = G2 and
g(s3) = G3. The figure illustrates a path s1

t1→ s2
t2→ s3, where g(t1) is the iden-

tity restricted to all items but edge e4. Similarly, g(t2) is the identity restricted
to all items but edge e3. Thus, in both transitions all other items are preserved
(with their identity) except the edges mentioned.

4 Properties of Graph Transition Systems

The properties of a graph transition system can be expressed using different for-
malisms. One can use, for instance, a temporal graph logic like the ones proposed
in [1, 28], which combine temporal and graph logics. A similar alternative are
spatial logics [3], which combine temporal and structural aspects. In graph trans-
formation systems [7], one can use rules to find certain graphs: the goal might
be to find a match for a certain transformation rule. For the sake of simplicity,
however, we consider that the problem of satisfying or falsifying a property is
reduced to the problem of finding a set of goal states characterized by a goal
graph and the existence of an injective morphism.

Definition 8. Given a GTS 〈M, g〉 and a graph G, the goal function goalG :
SM → {true, false} is defined such that goalG(s) = true iff there is a partial
injective graph morphism ψ : G→ g(s).

Intuitively, goalG maps a state s to true, if and only if G can be injectively
matched with a subgraph of g(s). It is worth mentioning that most graph trans-
formations approaches consider injective rules, for which a match is precisely
given by injective graph morphisms, and that the most prominent graph logic,
namely the Monadic Second-Order (MSO) logic by Courcelle [8] and its first-
order fragment (FO) can be used to express injective graph morphisms. The

v1

%%
v2

��

v3

zzuuu
u

v4 // v0

ddJJJJ
v5oo

v1 ZZ
v1

$$JJJ
J v2

��

v3

yy

v4 // v0

::uuuu
v5oo

Fig. 2. Three graphs illustrating various goal criteria.

graph G will be called goal graph. It is of practical interest identifying particular
cases of goal functions as the following goal types:

1. ψ is an identity - the exact graph G is looked for. In our running example,
this corresponds to Property 2 mentioned in Section 2. For instance, we look
for the exact graph depicted to the left of Fig. 2.

2. ψ is a restricted identity - an exact subgraph of G is looked for. This is
precisely Property 1. For instance, we look for a subgraph of the graph
depicted to the left of Fig. 2. The graph in the center of Fig. 2 satisfies this.

3. ψ is an isomorphism - a graph isomorphic to G is looked for. This is precisely
Property 4. For instance, we look for a graph isomorphic to the one depicted
to the left of Fig. 2. The graph to the right of Fig. 2 satisfies this.

4. ψ is any injective graph morphism - we have the general case. This is precisely
Property 3. For instance, we look for an injective match of the graph depicted
in the center of Fig. 2. The graph to the right of Fig. 2 satisfies this.

Note that there is a type hierarchy, since goal type 1 is a subtype of goal
types 2 and 3, which are subtypes of the most general goal type 4.

The computational complexity of the goal function varies according to the
above cases. For goals of type 1 and 2, the computational efforts needed are just
O(|G|) and O(|ψ(G)|), respectively. Unfortunately, for goal types 3 and 4, due
to the search for isomorphisms, the complexity increases to a term exponential
in |G| for the graph isomorphism case and to a term exponential in |ψ(G)|
for the subgraph isomorphism case. The problem of graph isomorphism is not
completely classified. It is expected not to be NP-complete [34].

Now we state the two analysis problems we consider.

Definition 9. Given a GTS 〈M, g〉 and a graph G (the goal graph), the reach-
ability problem consists of finding a state s ∈ SM such that goal(s) is true.
The optimality problem of our approach consists of finding a finite initial path
p ending at a state s ∈ SM such that goalG(s) is true and ω(p) = ω∗M (sM

0 , S′),
where S′ = {s ∈ SM | goalG(s) = true}.

For the sake of brevity, in the following, ω∗M (s) abbreviates ω∗M (s, S′) with
S′ = {s ∈ SM | goalG(s) = true}, when goalG is clear from the context.

5 The Analysis of Graph Transition Systems

The two problems defined in the previous section can be solved with traditional
graph exploration and shortest-path algorithms. For the reachability problem,

for instance, one can use, amongst others, depth-first search, hill climbing, best-
first search, Dijkstra’s algorithm (and its simplest version breadth-first search)
or A*. For the optimality problem, only the last two are suited.

Recall that Dijkstra’s algorithm [6] maintains a set of nodes as search horizon
and iteratively explores the (currently optimal) node in the horizon. A* [18]
basically improves Dijkstra’s algorithm by selecting the most promising node
for expansion by considering not only the weight of the current optimal path
to a node but also a heuristic estimate of its distance to the set of goal nodes.
Contrarily, best-first search takes into account the heuristic only. For a deeper
treatment of both algorithms, we refer to [6, 18, 27].

Dijkstra’s algorithm and A* are traditionally defined over a simple instance of
our cost algebra A, namely cost algebra 〈R+∪{+∞},+,≤,+∞, 0〉. Fortunately,
the results that ensure the admissibility of Dijkstra’s algorithm or A*, i.e., the
fact that both algorithms correctly solve the optimality problem, have been
generalized for the cost algebra [12]:

Proposition 1. Dijkstra’s algorithm solves the optimality problem.

Definition 10. Given a GTS 〈M, g〉 and a goal function goalG, a heuristic h :
SM → A is admissible, if for all s ∈ SM we have h(s) � ω∗M (s), and have h(s) =
1 whenever goalG(s); consistent, if for each s t→ s′, we have h(s) � ω(t)×h(s′).

A consistent heuristic is admissible if for all s such that goalG(s), h(s) = 1,
even for our cost algebra [12].

It is worth saying that in some practical cases non-admissible strategies, like
A* with non-admissible heuristics or best-first, find near-to-optimal solutions
efficiently.

Proposition 2. For an admissible heuristic A* solves the optimality problem.

6 Heuristics for Graph Transition Systems

Now we propose various heuristics for the analysis of graph transition systems.

Items to remove and insert Consider Fig. 1 and suppose we want to esti-
mate the number of transitions necessary to transform the leftmost graph to the
rightmost one. We need to remove e3 and e4, and to add e6 and e7. Since we
know that each transition removes and adds at most one edge, we conclude that
at least two transitions are necessary. We can generalize them as follows.

First, recall that partial graph morphisms are induced by system transitions.
In the case of graph transformation systems, for instance, graph morphisms are
induced by graph transformation rules, while in communication protocols by the
operations of the processes. In most cases, such transitions are usually local and
involve a few insertion/deletion/merging of items. We can thus determine, prior
to the analysis, the number of items deleted and erased by graph morphisms.

Let ni
m and nd

m respectively be the maximum number of inserted and deleted
nodes in any transition, and ei

m and ed
m respectively be the maximum number

of inserted and deleted edges in any transition, where the merging of n items is
interpreted as the deletion of n− 1 items. Let G be the goal graph. In addition,
let cm be the least cost associated to transitions. On the other hand, for goals
of type 2, only the number of items to add are relevant. When considering goals
of type 3, we cannot rely on the identity of edges as in previous heuristics and
have thus to base our heuristic on the number of items to be added or deleted.
Finally, for type 4, only the number of items to be added is taken into account
because we have use item identities.

Definition 11. Heuristics h1
n, h

2
n, h

3
n, h

4
n are defined as follows:

h1
n(s) = c

max{b|VG\Vg(s)|/ni
mc,b|EG\Eg(s)|/ei

mc,b|Vg(s)\VG|/nd
mc,b|Eg(s)\EG|/ed

mc}
m

h2
n(s) = c

max{b|VG\Vg(s)|/ni
mc,b|EG\Eg(s)|/ei

mc}
m

h3
n(s) = c

max{(b|VG|−|Vg(s)|)/ni
mc,(b|EG|−|Eg(s)|)/ei

mc,(b|Vg(s)|−|VG|)/nd
mc,(b|Eg(s)|−|EG|)/ed

mc}
m

h4
n(s) = c

max{(b|VG|−|Vg(s)|)/ni
mc,(b|EG|−|Eg(s)|)/ei

mc}
m

Proposition 3. Heuristic h1
n (resp. h2

n,h3
n,h4

n) is consistent and, for goals of
type 1 (resp. 2,3,4), admissible.

Isomorphism Heuristics The main drawback of the previously presented
heuristics for goals of type 4 is evident. If state graphs have more edges and
nodes than the goal graph, the resulting heuristic is completely blind, i.e., it
returns 1 for all states. Thus A* degenerates into Dijkstra and best-first into a
random search. Thus, we propose functions inspired by heuristics to decide iso-
morphism or sub-graph isomorphism. For instance, if one has to decide whether
two graphs are isomorphic one would check first whether the two graphs have
the same number of items. If so, one could continue trying to match nodes with
the same in- and out-degrees.

First, let din(u) and dout(u) denote the in- and out-degree of a node u in a
graph G, i.e., din(u) = |{e ∈ EG | tgt(e) = u}| and dout(u) = |{e ∈ EG | src(e) =
u}|. Let further DG be the set of pairs of in- and out-degrees of all nodes of G,
i.e., DG =

⋃
u∈VG

〈in(u), out(u)〉, and D̂G be a vector with all elements of DG

ordered according to the first component of the tuples. Finally, let dM denote
the Manhattan distance between two vectors, i.e., dM (u, v) =

∑
i |ui − vi|.

Definition 12. Let G be the goal graph. We define h4
c as

h4
c(s) = c

Pmax{|D̂G|,|D̂g(s)|}
i=0 dM (D̂G[i],D̂g(s)[i])

m ,

where D̂G′ [i] is 〈0, 0〉 if i ≥ |D̂G′ |. In words, we compute for each graph G and
g(s) a node degree-ordered vector. Then we compute the Manhattan distances of
elements in the same rank. Intuitively, we decide a match of nodes and establish
how many in- and out-going edges have to be removed or inserted.

Note that if one graph has more nodes than the other, we consider that the
graph with less nodes has extra nodes with no degree at all. If the goal type is
3, we can refine the heuristic by trying different matches of the two vectors, as
formalized in the following heuristic:

Definition 13. Let G be the goal graph. We define h3
c as

h3
c(s) =

h4
c(s) if |D̂G| ≥ |D̂g(s)|

c
FS|D̂G|−|D̂g(s)|

j=0 {
P|D̂G|

i=0 dM (D̂G[i+j],D̂g(s)[i])}
m otherwise

Obviously, none of the two heuristics presented in this section is consistent
or admissible in general, and one could define other versions of the heuristics by
changing some of the parameters used: the order criteria, the distance between
vectors, etc. The idea of these heuristics is, indeed, to illustrate the wide variety
of non-admissible heuristics one could define.

Formula-Based Heuristic Based on the original formula-based heuristic [13]
we define a heuristic that exploits the specification of goal states by graph for-
mulae. The details on how to transform the goal function as a goal graph and
a requirement on the injective morphism into a corresponding closed negation-
free FO graph formula is out of the scope of the paper. A simple example for
Property 3 is to find out if there is an edge with the same source and target, i.e.,
∃e.src(e) = tgt(e).

In addition to boolean connectives, FO ingredients include first-order node
and edge quantifiers, and node and edge comparison. For a detailed description of
the logic we refer to [8]. The idea of the formula-based heuristic is that each false
predicate contributes to an increase to the value. In other words, FO formulae
are interpreted over the domain of the cost algebra in the spirit of quantitative
logics [20]. Thus, true is interpreted as 1, false as cm, disjunction as selection
and conjunction as cumulation.

Definition 14. Let G be a graph and f, g be closed negation-free FO formulae.
The interpretation of FO formulae over the cost algebra is given by

JtrueKG = 1 JfalseKG = cm
Jf ∨ gKG = JfKG t JgKG Jf ∧ gKG = JfKG × JgKG

J∃x.fKG =
⊔

u∈VG
Jf{u/x}KG J∀x.fKG =

∏
u∈VG

Jf{u/x}KG

J∃y.fKG =
⊔

e∈EG
Jf{e/y}KG J∀y.fKG =

∏
e∈EG

Jf{e/y}KG

Ju = u′KG = 1 if u = u′, cm otherwise Je = e′KG = 1 if e = e′, cm otherwise

where
∏

denotes the iterated application of operator ×, x and y are node and
edge variables, respectively, and u, u′ and e, e′ are node and edge constants.

Finally, we define the formula-based heuristic as the interpretation of the
formula described over the cost algebra.

Definition 15. Heuristic hf is defined as hf (s) = JfKg(s).

The formula-based heuristic is neither consistent nor admissible in general
as one transition can change the falsehood of more than one predicate.

Hamming Distance The Hamming distance of two bit vectors is the number
of vector indices on which the bits differ. As there are many different encodings of
a graph, we choose a simple one based on the image of the state representation.

Definition 16. If binG denotes the bit-vector representation of G, and if we
interpret false as 0, and true as 1, we obtain

hh(s) = c
||binG|−|bing(s)||+

Pmin{|binG|,|bing(s)|}
i=0 binG[i] ⇐⇒ bing(s)[i]

m

As more than one bit can change within one transition (e.g. the last one
before reaching the goal) heuristic hh is neither admissible nor consistent.

Tool-specific Heuristics Finally, one can profit from specific heuristics avail-
able in the concrete tool that performs the analysis. For example, if the system is
implemented and analyzed with HSF-SPIN [13], one can benefit from heuristics
like the FSM Distance, which takes into account the finite automata representa-
tion of processes. If the Java Pathfinder [16] is used structural heuristics based on
coverage metrics and interleavings are available. If planning tools like MIPS [11]
are used, one can apply variants of the relaxed planning heuristic [21].

7 Abstraction and Heuristic Search

Abstraction is one of the most important issues to cope with large and infinite
state spaces and to reduce the exploration efforts. Abstracted systems should be
significantly smaller than the original one and while preserve some properties
of concrete systems. The study of abstraction formalisms for graph transition
systems is, however, out of the scope of this paper. We refer to [1] for an example
of such a formalism. We assume that abstractions are available, state the prop-
erties necessary for abstractions to preserve our two problems (reachability and
optimization) and propose how to use abstraction to define informed heuristics.

The preservation of the reachability problem means that the existence of an
initial goal path in the concrete system must entail the existence of a corre-
sponding initial goal path in the abstract system. Note that this does not mean
the existence of spurious initial goal paths in the abstract system, i.e., abstract
paths that do no not correspond to any concrete path. Similarly, the preserva-
tion of the optimization problem means that the cost of the optimal initial goal
path in the concrete system should be greater than or equal to the cost of the
optimal initial goal path in the abstract system.

Abstractions have been applied in combination with heuristic search both
in model checking [14] and planning [10] approaches. The main idea is that
the abstract system is explored in order to create a database that stores the
exact distances from abstract states to the set of abstract goal states. The exact
distance between abstract states is an admissible and consistent estimate of the
distance between the corresponding concrete states. The distance database is
thus used as heuristics for analyzing the concrete system.

We recall the notion of 〈α, γ〉-simulations [25] typically used in model check-
ing abstraction approaches.

Definition 17. Let S, S′ be two set of states. A Galois connection from 2S to
2S′

is a pair of monotonic functions 〈α, γ〉, with α : 2S → 2S′
(abstraction) and

γ : 2S′ → 2S (concretization) such that id2S ⊆ γ ◦ α and α ◦ γ ⊆ id2S′ .

Definition 18. Let 〈M, g〉 and 〈M ′, g′〉 be two GTSs and 〈α, γ〉 be a Galois con-
nection from 2SM to 2SM′ . We say that 〈M ′, g′〉 〈α, γ〉-simulates 〈M, g〉, written
〈M, g〉 v〈α,γ〉 〈M ′, g′〉, if α ◦ pre ◦ γ ⊆ pre′, where pre : SM → SM is defined by

pre(S) = {s ∈ S | s t→ s′} and pre′ is defined similarly for 〈M ′, g′〉.

We say that a simulation 〈M, g〉 v〈α,γ〉 〈M ′, g′〉 preserves a goal function
goalG whenever s′ ∈ α(s′) implies goalG(s) ⇒ goalG(s′), and we call it cost

consistent if for any transition s1
t→ s2 in M there is a transition s′1

t′→ s′2 with
s′1 ∈ α(s1), s′2 ∈ α(s2) and ω(t′) � ω(t).

Proposition 4. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that 〈M, g〉 v〈α,γ〉 〈M ′, g′〉
and goalG is preserved. Then, there is a solution to the reachability problem in
〈M ′, g′〉 if there is a solution to the reachability problem in 〈M, g〉.

As a consequence, if there is no solution to the reachability problem in the
abstract graph transition system, there is no solution in the concrete system.
Recall that the contrary is not true: there might be initial goal paths in the
abstract system, but not in the concrete one. Such spurious solutions are usually
eliminated by refining the abstractions [19]. Now we state that the optimality
problem is preserved for cost consistent simulations.

Proposition 5. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that 〈M, g〉 v〈α,γ〉 〈M ′, g′〉
is cost consistent and goalG is preserved. Then ω∗M ′(sM ′

0) � ω∗M (sM
0).

We now describe how to use abstraction to define informed heuristics.

Definition 19. Let 〈M, g〉, 〈M ′, g′〉 be two GTSs such that 〈M, g〉 v〈α,γ〉 〈M ′, g′〉
is cost consistent and goalG is preserved. Heuristic ha is defined as ha(s) =
ω∗M ′(s′), for any s′ ∈ SM ′ such that s′ ∈ α(s).

Proposition 6. Heuristic ha is consistent and admissible.

When different abstractions are available, we can combine the different data-
bases in various ways to obtain better heuristics. The first way is to trivially
select the best value delivered by two heuristic databases, which trivially results
in a consistent and admissible heuristic.

Definition 20. Given two different abstraction database heuristics ha and ha′

we define hata′ as hata′(s) = ha(s) t ha′(s).

s3 s2oo

s1

OO

s0oo

OO

s2, s3

��
s1, s0oo

��
s1, s3

��
s2, s0oo

��
s3 s1, s2oo s0oo

Fig. 3. A transition system (leftmost) with three different abstractions.

In some cases, however, it is possible to take their cumulative values using
×, which provides a much better guidance for the search process. The corre-
sponding abstraction databases are called disjoint. Intuitively the idea is that
each (non self-)transition in the concrete system either has a corresponding (non
self-)transition in one of the abstracted systems but not in both.

Definition 21. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two abstracted
GTS such that 〈M, g〉 v〈α,γ〉 〈M ′, g′〉, 〈M, g〉 v〈α′,γ′〉 〈M ′′, g′′〉 are cost consis-
tent and goalG is preserved by both simulations. We say that 〈M ′, g′〉, 〈M ′′, g′′〉
are disjoint abstractions whenever for any transition s1

t→ s2 in M such that
s1 6= s2 either there is a transition s′1

t→ s′2 with s′1 6= s′2 and s′1 ∈ α(s1),
s′2 ∈ α(s2), or s′′1

t→ s′′2 with s′′1 6= s′′2 and s′′1 ∈ α′(s1), s′′2 ∈ α′(s2).

Fig. 3 depicts a concrete transition system (left) with three abstractions
(given by node mergings). The center-left and center-right abstractions are mu-
tually disjoint. However any of these together with the rightmost abstraction is
not disjoint. For instance, the concrete transition from s0 to s3 in the leftmost
graph has a corresponding abstract (non self-)transition in the center-left ab-
straction and in the rightmost one. As a result the distance from s0 to s3 would
be estimated as 3 which is clearly not a lower bound.

Definition 22. Given two different abstraction database heuristics ha and ha′ ,
we define hata′ as hata′(s) = ha(s)× ha′(s).

Proposition 7. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two disjoint
abstracted GTS. Let 〈M, g〉 be a GTS and 〈M ′, g′〉, 〈M ′′, g′′〉 be two abstracted
GTS such that 〈M, g〉 v〈α,γ〉 〈M ′, g′〉, 〈M, g〉 v〈α′,γ′〉 〈M ′′, g′′〉 are cost consis-
tent and goalG is preserved by both simulations. Let further ha and ha′ be the
database heuristics constructed from 〈M ′, g′〉 and 〈M ′′, g′′〉, respectively. Then
hata′ is consistent and admissible.

8 Experimental Results

We validate our approach by presenting experimental results obtained with
HSF-SPIN [13], a heuristic model checker compatible with the successful model
checker SPIN [22]. The analysis we perform regards Property 2, i.e., Can a cer-
tain node vi be a terminal and no other requests are queued over the network?.
We have implemented the Arrow Distributed Directory Protocol in Promela, the

star DJK DFS BF+h1
n BF+hh BF+hf

expanded nodes 38,701 6,253 30 6,334 30

solution cost 20 134 58 32 58

chain DJK DFS BF+h1
n BF+hh BF+hf

expanded nodes 413,466 78,112 38 1,49 38

solution cost 28 118 74 74 74

tree DJK DFS BF+h1
n BF+hh BF+hf

expanded nodes 126,579 24,875 34 24,727 34

solution cost 24 126 66 44 66

Table 1. Reachability experiments in the arrow distributed directory protocol.

specification language of both SPIN and HSF-SPIN. The implemented model al-
lows for an easy definition of the minimal spanning tree underlying the protocol.
A node is modeled as a non-deterministic process that can request an object,
accept the request as a non-terminal node, accept the request as a terminal node,
send the object if it has finished working on it, or receive the object sent directly
over the network. We choose three different topologies: star, where all nodes
are connected to one common node, chain, nodes forming a connected chain,
and tree, where nodes are arranged in the form of a binary tree. Each instance
consists of 10 nodes. In all our experiments, we set a memory bound of 512 MB.

The results in Table 1 correspond to the first phase of the goal-finding process,
namely when one is interested in finding a goal state as quick as possible. The
table shows the number of expanded nodes and solution length for Dijkstra’s
algorithm (DJK), depth-first search (DFS) and best-first search with heuristics
h1

n (BF+h1
n), hh (BF+hh) and hf (BF+hf).

As expected, Dijkstra’s algorithm offers the optimal path to the desired state
graph though requiring the greatest number of state expansions. Best-first offers
the best performance in terms of node expansions with heuristics h1

n and hf . It
is worth mentioning that in this particular example hf amounts to (h1

n)5. When
applying the Hamming distance, the number of expanded nodes increases, still
the solution length decreases.

Table 2 regards the second phase of the bug-finding process, namely when one
is interested in finding optimal paths to a given goal state. The table shows the
number of expanded nodes and solution length for Dijkstra’s algorithm (DJK)
and A* with heuristics h1

n (A*+h1
n), hh (A*+hh) and hf (A*+hf). In addition,

we used the Hamming distance applied to the whole state vector representation
(A*+Hh), where sb and sd indicate that the goal state used for the heuristic was
the one obtained with breadth- and depth-first search, respectively.

The first thing to observe is that h1
n, being admissible, always delivers optimal

paths and requires less search effort than Dijkstra’s algorithm. The performance
of the Hamming distance is not regular. Version hh that takes into account the
graph representation and Hh(sb) based on the whole bit-vector of the state ob-
tained with Dijkstra’s algorithm outperform heuristic h1

n. On the other hand,

star DJK A*+Hh(sd) A*+Hh(sb) A*+h1
n A*+hh A*+hf

expanded nodes 38,701 o.m. 1,255 13,447 117 206

solution cost 20 o.m. 20 20 20 20

chain DJK A*+Hh(sd) A*+Hh(sb) A*+h1
n A*+hh A*+hf

expanded nodes 413,466 26,622 1,245 106,629 1,620 198

solution cost 28 42 28 28 28 28

tree DJK A*+Hh(sd) A*+Hh(sb) A*+h1
n A*+hh A*+hf

expanded nodes 126,579 o.m 1,481 33,720 6,197 224

solution cost 24 o.m. 24 24 24 24

Table 2. Optimality experiments in the arrow distributed directory protocol.

the Hamming distance that takes into account the bit-vector representation of
the state obtained with the depth-first search exploration shows poor perfor-
mances by delivering non-optimal counterexamples and running out of memory.
The reason is that the state vectors corresponding to states sb and sd are very
different (though both representing the goal state). The bits representing data,
not involving the goal graph items, result in rich information in one case and
fuzzy in the other. Heuristic hf performs the best, both in terms of the expanded
nodes and the path length.

9 Conclusion

We have presented an abstract approach for the analysis of graph transitions
systems, which are traditional transition systems where states and transitions
respectively represent graphs and partial graph morphisms. It is a useful formal-
ism to represent the state space of systems involving graphs, like communication
protocols, graph transformations, and visually described systems.

The analysis of such systems is reduced to exploration problems consisting
of finding certain states reachable from the initial one. We analyze two prob-
lems: finding just one path and finding the optimal one, according to a certain
notion of optimality. As algorithms, we propose the use of heuristic search. They
use heuristic functions that lead the exploration to the set of goal states. We
have proposed different such functions proving some of their properties. In ad-
dition, we have proposed the use of abstraction-based heuristics which exploit
abstraction techniques in order to obtain informed heuristics.

We have illustrated our approach with a scenario in which one is interested
in analyzing structural properties of communication protocols. As a concrete
example we used the arrow distributed directory protocol [9], which ensures ex-
clusive access to a mobile service in a distributed system. We implemented our
approach in the heuristic model checker HSF-SPIN, an extension of the well-
known model checker SPIN and presented promising preliminary experiments.
In future work, we plan to realize a richer empirical evaluation of our approach,

focusing on abstraction database heuristics and possibly profiting from existing
approaches for the abstraction of graph transformation systems[1, 30].

References

1. P. Baldan, A. Corradini, B. König, and B. König. Verifying a behavioural logic for
graph transformation systems. In CoMeta’03, ENTCS, 2004.

2. B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33, 2001.

3. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Inf. Comput.,
186(2):194–235, 2003.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
ICALP, volume 2380, pages 597–610, 2002.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2001.
7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic

approaches to graph transformation, volume 1, chapter Basic concepts and double
push-out approach. World Scientific, 1997.

8. B. Courcelle. Handbook of graph grammars and computing by graph transforma-
tions, volume 1 : Foundations, chapter 5, pages 313–400. World Scientific, 1997.

9. M. J. Demmer and M. Herlihy. The arrow distributed directory protocol. In DISC,
pages 119 –133, 1998.

10. S. Edelkamp. Planning with pattern databases. In ECP, 2001. 13-24.
11. S. Edelkamp. Taming numbers and durations in the model checking integrated

planning system. JAIR, 20:195–238, 2003.
12. S. Edelkamp, S. Jabbar, and A. Lluch Lafuente. Cost-algebraic heuristic search.

In AAAI, pages 1362–1367, 2005.
13. S. Edelkamp, S. Leue, and A. Lluch Lafuente. Directed explicit-state model check-

ing in the validation of communication protocols. STTT, 5(2-3):247–267, 2003.
14. S. Edelkamp and A. Lluch Lafuente. Abstraction databases in theory and model

checking practice. In ICAPS Workshop on Connecting Planning Theory with Prac-
tice, 2004.

15. F. Gadducci and A. Lluch Lafuente. Graphical verification of a spatial logic for the
pi-calculus. In Graph Transformation for Verification and Concurrency. ENTCS,
2005. to appear.

16. A. Groce and W. Visser. Model checking Java programs using structural heuristics.
In ISSTA. ACM Press, 2002.

17. S. Gyapay, Á. Schmidt, and D. Varró. Joint optimization and reachability analysis
in graph transformation systems with time. In GT-VMT, volume 109 of ENTCS,
pages 137–147. Elsevier, 2004.

18. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination
of minimum path cost. IEEE Trans. on Systems Science and Cybernetics, 4:100–
107, 1968.

19. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
Blast. In SPIN, pages 235–239, 2003.

20. D. Hirsch, A. Lluch Lafuente, and E. Tuosto. A logic for application level QoS.
In Proceedings of the 3rd Workshop on Quantitative Aspects of Programming Lan-
guages, ENTCS, 2005. To Appear.

21. J. Hoffmann and B. Nebel. Fast plan generation through heuristic search. JAIR,
14:253–302, 2001.

22. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

23. H. Kastenberg and A. Rensink. Model checking dynamic states in GROOVE. In
SPIN, pages 299–305, 2006.

24. R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

25. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, 1995.

26. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
27. J. Pearl. Heuristics. Addison-Wesley, 1985.
28. A. Rensink. Towards model checking graph grammars. In Automated Verification

of Critical Systems, Tech. Report DSSE-TR-2003, pages 150–160, 2003.
29. A. Rensink. Time and space issues in the generation of graph transition systems.

In GraBaTs, volume 127 of ENTCS, pages 127–139. Elsevier, 2005.
30. A. Rensink and D. Distefano. Abstract graph transformation. In SVV, ENTCS,

2005. To appear.
31. G. Rozenberg, editor. Handbook of graph grammars and computing by graph trans-

formations. World Scientific, 1997.
32. J. L. Sobrinho. Algebra and algorithms for QoS path computation and hop-by-hop

routing in the internet. IEEE/ACM Trans. Netw., 10(4):541–550, 2002.
33. D. Varrò. Automated formal verification of visual modeling languages by model

checking. Journal on Software and Systems Modeling, 2003.
34. I. Wegener. Komplexitätstheorie. Springer, 2003. (in German).

