
Specifying and Analysing Reputation Systems
with Coordination Languages

Alessandro Celestini, Rocco De Nicola, Francesco Tiezzi
IMT Advanced Studies Lucca

{alessandro.celestini,rocco.denicola,francesco.tiezzi}@imtlucca.it

ABSTRACT
Reputation systems are nowadays widely used to support de-
cision making in networked systems. Parties in such systems
rate each other and use shared ratings to compute reputa-
tion scores that drive their interactions. The existence of
reputation systems with remarkable differences calls for for-
mal approaches to their analysis. We present a verification
methodology for reputation systems that is based on the
use of the coordination language Klaim and related anal-
ysis tools. First, we define a parametric Klaim specifica-
tion of a reputation system that can be instantiated with
different reputation models. Then, we consider stochastic
specification obtained by considering actions with random
(exponentially distributed) duration. The resulting spec-
ification enables quantitative analysis of properties of the
considered system. Feasibility and effectiveness of our pro-
posal is demonstrated by reporting on the analysis of two
reputation models.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Reputation
systems; F.3 [Theory of computation]: Specifying and
Verifying and Reasoning about Programs

Keywords
Reputation systems, Formal coordination languages,
Stochastic analysis

1. INTRODUCTION
Trust and reputation systems are more and more used

as tools to support decisions in several contexts, e.g. e-
commerce applications, ad-hoc networks, sensor networks,
P2P networks. Parties, which are willing to interact in these
environments, are likely to be disconnected from their pre-
ferred security infrastructures and/or have no trusted infor-
mation about their partners. Thus, they have to rely on
other instruments to build up relationships of trust among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

Network

Rating serverParty 1

Party 2

Party 3 Party 4

Party n

Resources Ratings

. . .

Figure 1: Infrastructure of a reputation system

each other. The best known applications where trust and
reputation systems have been successfully used are related
to e-commerce; examples in this context are auction sites,
like eBay; online shops, like Amazon; and software applica-
tion stores, like Google Play and Apple App Store.

In a reputation system, the involved parties rate each
other, e.g. after completing an interaction, and use aggre-
gated ratings about a given party to derive a reputation
score, i.e. a collective measure of trustworthiness based on
the ratings from the members of a community. Such value is
used to assist other parties in deciding whether to interact
with a specific partner.

A networked trust infrastructure allows parties of a repu-
tation system to exchange ratings and interact. We consider
a general infrastructure, graphically depicted in Figure 1,
where a rating server collects all ratings from system’s par-
ties and makes them publicly available. Every party can play
the role of a client, of a provider, or both, and may offer dif-
ferent kinds of resources (e.g., CPU time, disk space, files,
services). Therefore, whenever a party needs a resource, it
queries the rating server to determine the reputation of all
parties providing the resource. Then, it selects one of the
providers with the highest reputation score and, after the
interaction, rates it according to the quality of the provided
resource. Notably, we consider a centralised rating server,
because this is the most widely used setting for networked
trust infrastructures. On top of the general infrastructure
described so far, different kinds of reputation system can
be layered, which mainly differ for the model they use to
aggregate ratings when computing reputation scores.

Due to the widespread use of reputation systems, research
work on them is intensifying and several models have been

proposed. Thus, once a reputation system has to be de-
ployed in a network environment, questions like the follow-
ing may arise: Which reputation model is more suitable for
the given environment? Does the model meet the expected
behaviour? How does parties’ behaviour affect their repu-
tations? How do their initial reputation scores affect the
model?

In this paper, we propose using a coordination language
equipped with a formal semantics to deal with the above is-
sues. On the one hand, in the last two decades coordination
languages have been used for modelling and programming a
variety of different systems that are operating in open and
non-deterministic environments [14]. In particular, tuple-
based languages (see, e.g., [15] for a survey) have been ef-
fectively used to implement coordination mechanisms in a
distributed setting. On the other hand, formal methods are
perfectly suitable means to precisely describe the relevant as-
pects of distributed systems, to state and prove their proper-
ties, and to direct attention towards issues that might other-
wise be overlooked. Among the many coordination language
proposals, here we focus on Klaim [7], because it provides
powerful coordination mechanisms based on the tuple-based
communication model and, moreover, it is equipped with
formal tools supporting verification and, most importantly,
it has been specifically designed for network-aware program-
ming of distributed applications. Thus, Klaim appears to
be well suited for specifying trust and reputation systems
and for reasoning about them.

We proceed in three steps as follows:

1. We model the considered reputation system with
Klaim. Specifically, we provide a ‘schema’ specifica-
tion that is parametric w.r.t. the reputation model
used to determine the parties’ reputation (and w.r.t.
other parameters of the system). The specification of
the given system is obtained by appropriately instan-
tiating the parameters of the generic specification.

2. We enrich the specification with stochastic aspects, us-
ing the Klaim’s stochastic extension StoKlaim [8],
and formally express the desired properties using the
stochastic logic MoSL [8].

3. We check the properties of interest against the StoK-
laim specification by means of the analysis tool
SAM [8, 13].

We will focus on reputation models that use a probabilis-
tic approach for computing reputation scores. This prob-
abilistic trust approach is based on the definition of trust
given by Gambetta [10]: parties’ behaviour is modeled by
a probability distribution and rating values are used for es-
timating distribution’s parameters [11, 9]. To demonstrate
the feasibility and effectiveness of our proposal, we analyse
two models of reputation systems, namely the Beta model
[11] and a model based on maximum likelihood estimation
(which we call ML model) [9]. We show that, in the average,
reputation scores in the latter model converge more rapidly
to the right estimations of parties’ behaviour than in the
former one. Even though, the ML model is more unstable
than the Beta model when few ratings are available.

2. BETA AND ML REPUTATION MODELS
In this section, we provide a few details about the two

reputation system models taken into account in this paper:

the first based on the Beta model [11], and the second based
on maximum likelihood estimation (ML model) [9]. Before
presenting them, we introduce their common background.

System parties rate each other in a binary way, i.e. an in-
teraction can be either ‘satisfactory’ or ‘unsatisfactory’. Let
P be a set of party identities, the behaviour of each party
p ∈ P is assumed to be probabilistic, in the sense that there
is a fixed probability θp ∈ [0, 1] that an interaction with the
party p will be satisfactory. In a reputation system, the goal
is to predict parties’ behaviour in future interactions, given
the rating values about past interactions, i.e. determining an
estimation θ̃p of the unknown parameters θp. The sequence
of rating values xnp = x1p, . . . , xnp, with xip ∈ {0, 1}, about
past interactions with party p is considered as realization of
a sequence of independent, identically distributed random
variables Xn

p = X1p, . . . , Xnp. The considered models as-
sume that random variables Xip are distributed according
to a Bernoulli distribution with success probability θp. This
means that, when interacting with a party p, the proba-
bility that the i-th interaction is satisfactory, given θp the
behaviour of party p, is Pr(satisfactory | θp) = θp.

The Beta model seeks to estimate the a posterior distri-
bution for the value θp, given the results of past interactions
with party p. The model uses a conjugate prior distribution,
specifically a beta prior. Hence, the a posterior distribu-
tion results in a beta distribution. Party’s reputation score
θ̃p is given by the expected value of the beta distribution
Beta(α + 1, β + 1) with α ≥ 0 and β ≥ 0, where parame-
ter α represents the number of satisfactory past interactions
with party p and β represents the unsatisfactory interactions
with p.

The ML model seeks for a value θ̃p which maximises the
likelihood expression L(θ):

L(θ) = Pr(Xn
p | θ) =

∏n
i=1 Pr(Xip = xip | θ)

The party’s reputation score θ̃p is the θ ∈ [0, 1] that max-
imises the likelihood L(θ).

3. KLAIM AND RELATED STOCHASTIC
VERIFICATION TOOLS

In this section, we informally present Klaim, a tuple-
space-based coordination language specifically designed for
modelling mobile and distributed applications and their in-
teractions, which run in a network environment. Then, we
provide a brief overview of the Klaim-based formal meth-
ods that can be exploited for specifying and verifying rep-
utation systems. We refer the interested reader to [7] for a
more complete account of Klaim, and to [4] for a survey on
research work based on Klaim. Notably, we consider here a
version of Klaim enriched with standard control flow con-
structs (i.e., if-then-else, sequence, while, etc.), that are part
of the input language of the analysis tool used in Section 5.
These constructs simplify specifications and can be easily
rendered in the language originally presented in [7]. When
presenting the language, we omit describing the constructs
that are not used in the specification introduced in the next
section.

Klaim specifications consist of nets, namely finite plain
collections of nodes where components, i.e. processes P and
data tuples 〈t〉, can be allocated. Nodes are composed by
means of the parallel composition operator ‖ .

Nodes have the form s :: C, where s is a unique local-
ity name (i.e., a network address) and C is a set of hosted

components. During processes execution, locality variables l
(i.e., aliases for addresses) are bound to localities s. The dis-
tinguished locality variable self is used by processes to refer
to the address of their current hosting node. In this section,
we will use ` to range over locality names and variables.

Processes are the Klaim active computational units and
may be executed concurrently either at the same locality or
at different localities. They are built up from basic actions
(see below) and process calls A(p1, . . . , pm) by means of se-
quential composition ; , parallel composition | , condi-
tional choice if (e) then { } else { }, iterative constructs
for i = n to m { } and while (e) { }, and (possibly re-

cursive) process definitions A(f1, . . . , fn) , , where A is
a process identifier and the formal parameters fi are pair-
wise distinct. Notably, e ranges over expressions, which are
formed from basic values (booleans, integers, strings, floats,
etc.) and variables, by using standard operators on values.

During their execution, processes perform some basic ac-
tions. Actions in(T)@` and read(T)@` are retrieval actions
and permit, respectively, to withdraw and read data tuples
(i.e. sequences of values) from the tuple space hosted at
the (possibly remote) locality `: if some matching tuples
are found, one is non-deterministically chosen, otherwise the
process is blocked. These actions exploit templates as pat-
terns to select tuples in shared tuple spaces. Templates T
are sequences of actual and formal fields, where the latter
are written !x or ! l and are used to bind variables to values
or locality names, respectively. Action out(t)@` adds the
tuple resulting from the evaluation of tuple t (which may
contain expressions) to the tuple space of the target node
identified by `, while action eval(P)@` sends the process P
for execution to the (possibly remote) node identified by `.
Actions out and eval are both non-blocking. Finally, action
x := e assigns the value of e to x; this action, differently
from all the others, is not indexed with an address because
it always acts locally.

Quantitative analysis of a Klaim specification can be en-
abled by associating a rate to each action, thus obtaining a
StoKlaim [8] specification. This rate is the parameter of
an exponentially distributed random variable accounting for
the action duration time. A real valued random variable X
has a negative exponential distribution with rate λ > 0 if and
only if the probability that X ≤ t, with t > 0, is 1 − e−λ·t.
The expected value of X is λ−1, while its variance is λ−2.
The operational semantics of StoKlaim permits associat-
ing to each specification a Continuous Time Markov Chain
that can be used to perform quantitative analyses of the
considered system. The use of the exponential distribution
is motivated by the fact that it enjoys convenient properties
enabling automated analyses that are not always allowed by
other distributions.

The desired properties of a system under verification are
formalised using the stochastic logic MoSL [8]. MoSL for-
mulae use predicates on the tuples located in the considered
StoKlaim net to express the reachability of a certain system
state, while passing through, or avoiding, other specific in-
termediate states. Therefore, MoSL can be used to express
quantitative properties of the overall system behaviour, to
ask, e.g., whether the reputations of all parties converge (in a
steady state) to the corresponding parties’ behaviours. The
results of the evaluation of such properties do not have a
rigid meaning, like true or false, but have a less absolute
nature, e.g. in 97.5% of the cases, the reputations converge

within t time units.
Verification of MoSL formulae over StoKlaim specifica-

tions is assisted by the analysis tool SAM [8, 13], which
uses a statistical model checking algorithm [5] to estimate
the probability of the property satisfaction. In particular,
the probability associated to a path-formula is determined
after a set of independent observations.

4. FORMAL SPECIFICATION OF REPU-
TATION SYSTEMS

In this section, we present the relevant aspects of the
Klaim specification of a reputation system deployed in the
general infrastructure described in Section 1 and graphically
depicted in Figure 1. To help readability, the specification
code reported in this section is sometimes accompanied by
comments (strings preceded by // indicates that the rest
of the line is a comment).

The overall system can be rendered in Klaim as follows:

srating :: 〈“ratingList”, sparty 1,m1〉
| 〈“rating”, 1, sparty 1, srater, vrating〉
| . . . | 〈“rating”,m1, sparty 1, s

′
rater, v

′
rating〉

. . .
| 〈“ratingList”, sparty n,mn〉
| 〈“rating”, 1, sparty n, s

′′
rater, v

′′
rating〉

| . . . | 〈“rating”,mn, sparty n, s
′′′
rater, v

′′′
rating〉

‖
sparty 1 :: Aparty(behaviour1) | CproviderList 1

‖
. . .
‖
sparty n :: Aparty(behaviourn) | CproviderList n

Each system party i is rendered as a Klaim node whose
locality name is sparty i and, similarly, the rating server is
rendered as a node, with locality name srating, as well.

The rating server provides the list of ratings concerning
each party. Such list is rendered in Klaim as a set of tu-
ples of the form 〈“rating”, i, sparty j , srater, vrating〉 indicat-
ing that sparty j received the rating value vrating from srater,
such rating value is the i-th element of the list concerning
sparty j . A tuple of the form 〈“ratingList”, sparty j ,mj〉, de-
noting that the list for sparty j has length mj , is used to
read the whole list. Such tuple is used also for coordinating
read and write operations on the list: actions in, out and
read act on this tuple by implementing a readers-writers
lock mechanism. Finally, each party node sparty j contains
some tuples CproviderList j representing the list of providers
known by the party.

Depending on the processes running in its node, each
party sparty j can play different roles: it can provide re-
sources, require resources, or both. We consider here the
more complete case, where Aparty is defined as

Aparty(b) , Aprovider(b) | Aclient(b)

where the parameter b denotes the party’s behaviour (for
the analyses carried out in this paper b is the probability
θp of the party defined in Section 2). The process for the
provider role is defined as follows:

Aprovider(b) ,
// wait for a new resource request
in(“request”, !lapplicant)@self ;
// provide the resource and restart
(AprovideResource(b, lapplicant) | Aprovider(b))

The processing of a resource request is based on the def-
inition of process AprovideResource, which provides to the
applicant a resource whose quality depends on provider’s
behaviour. The definition of such process may vary from a
reputation system to another. In fact, this is a parameter
that must be specified when considering a specific reputation
system.

The process for the client role, instead, is defined as fol-
lows:

Aclient(b) ,
// initialise the tuple containing the locality of the
// most trusted party and its reputation value
out(“mostTrusted”, self ,NO ONE)@self ;
// read the list of known providers
read(“providerList”, !m)@self ;
for j = 1 to m {

// get an element of the list
read(“provider”, j, !lprovider)@self ;
// compute the reputation of the j-th provider
AevaluateReputation(lprovider);
// retrieve the computed reputation value
in(“reputation”, !rep)@self ;
// update the most trusted party
in(“mostTrusted”, !ltrusted, !repMT)@self ;
if (repMT < rep) then{

out(“mostTrusted”, lprovider, rep)@self
} else {

out(“mostTrusted”, ltrusted, repMT)@self
};

};
// get the most trusted provider
in(“mostTrusted”, !ltrusted, !repMT)@self ;
// check the reputation of the most trusted provider
if (MIN REPUTATION 6 repMT) then{

// send the resource request to the provider
out(“request”, self)@ltrusted;
// receive the resource
in(“resource”, !quality)@self ;
// check resource’s quality and rate the provider
Arate(b, quality, ltrusted)

};
Aclient(b)

A client cyclically determines the most trustworthy provider
and requests a resource to it. To this aim, the client com-
putes the reputation of each known provider (stored in a lo-
cal list) through the process AevaluateReputation, whose skele-
ton definition is as follows:

AevaluateReputation(l) ,
. . .possible variables initialisation . . .
// read the rating values of the provider l
read(“ratingList”, l, !m)@srating;
for j = 1 to m {

// get an element of the list
read(“rating”, j, l, !lrater, !rating)@srating;
. . .use rating to compute the reputation of l . . .

};
. . . compute reputation . . .
out(“reputation”, rep)@self

The above process differs from a reputation system to an-
other and is, indeed, a parameter that must be specified to
consider a given reputation system. Similarly, the constant

MIN REPUTATION is a system’s parameter and specifies
the minimum reputation required by the client for an in-
teraction with a provider. Instead, the constant NO ONE
simply denotes that there exists no provider for a requested
resource. Finally, the process Arate evaluates the quality of
the obtained resource and rates the provider accordingly. As
in the case of process AevaluateReputation, its definition may
differ from a reputation system to another.

The Klaim processes defining the two reputation models
considered in this paper are reported in [6].

5. STOCHASTIC SPECIFICATION AND
ANALYSIS

In this section, we demonstrate how the Klaim specifica-
tion presented in the previous section can support the anal-
ysis of trust and reputation systems. Our approach relies
on formal tools, such as stochastic simulation, modal logics
and model checking, that permit expressing and evaluating
performance measures in terms of logical formulae.

We enrich the Klaim specification introduced in the pre-
vious section with stochastic aspects. As an excerpt of the
StoKlaim specification, we report below the stochastic def-
inition of process AevaluateReputation :

AevaluateReputation(l) ,
. . .

read(“ratingList”, l, !m)@srating : λ1 ;

for j = 1 to m {
read(“rating”, j, l, !lrater, !rating)@srating : λ1 ;

. . .
};
. . . ;

out(“reputation”, rep)@self : λ2

The actions highlighted by a gray background are those an-
notated with rates, where λ1 = 37.0 and λ2 = 1400.0. These
rates assume that an ADSL connection (1.5 Mbit/s down-
stream and 0.5 Mbit/s upstream) is used and that the op-
eration of reading a rating costs as the transfer of 5KB of
data. For the local writing of a reputation value, we assume
that the operation is executed on a local hard drive. We re-
fer the interested reader to [2] for the rest of the stochastic
specification.

The result of some simulation runs of the StoKlaim spec-
ification, performed by using Sam, are reported in Figures 2
and 3. The charts present the trend of the reputation of a
given party in the system; the results are averaged across
1000 simulation runs1. On the x-axis we find the numbers
of rating values used to compute reputation scores, on the
y-axis the reputation scores. The behaviour of the party is
θ = 0.75, represented in the charts as an horizontal line. In-
stead, the trends of his reputation scores calculated by using
Beta and ML models are indicated by the polygonal lines.
In Figure 2 we assume that each party starts with no rat-
ings, instead in Figure 3 we fix an initial reputation score of
0.5 for each party. The reputation, in this case, is computed
by means of 8 rating values (4 positive and 4 negative) al-
ready stored in the system for each party. The charts show
that in the average the ML model converges more rapidly

1On an Apple MacBook Pro computer (2.4 GHz Intel Core
2 Duo and 4 GB of memory) simulation of a single run needs
an average time of 0.04 seconds.

Figure 2: Reputation trends for party with be-
haviour θ = 0.75 and no initial ratings assigned

Figure 3: Reputation trends for party with be-
haviour θ = 0.75 and 8 initial ratings assigned. The
initial ratings fix party’s reputation to 0.5

to the right estimation of party’s behaviour than the Beta
model. In the case of the Beta model, convergence is slower
but smoother.

We performed similar experiments with different numbers
of ratings. Such simulations show that, in presence of initial
ratings, party’s reputation score does not change brusquely
when a new rating value is provided as in the absence of
initial ratings. When the number of ratings increases, the
reputation score takes more time to converge to party’s be-
haviour, because the initial reputation is more solid. Other
experiments show that, if party’s behaviour is higher than
0.50, the Beta model underestimates it, i.e. party’s reputa-
tion score is always lower than party’s behaviour. Instead,
when the behaviour is lower than 0.50, the Beta model over-
estimates it.

We have also analysed some properties of reputation sys-
tems by formalising them as MoSL formulae that we have
verified over the StoKlaim specification by means of the
SAM tool. The property “the reputation of sparty i is cur-
rently within [θi + δ, θi − δ]” is expressed in MoSL by the

following formula φconv:

φconv = 〈“reputation”, sparty i, !rep〉@srating
→ (θi + δ ≥ rep ∧ rep ≥ θi − δ)

This formula relies on the consumption operator 〈T 〉@s→ φ,
which is satisfied whenever a tuple matching template T is
located at s and the remaining part of the system satis-
fies φ. Hence, formula φconv is satisfied if and only if a tuple
〈“reputation”, sparty i, vrep〉 is stored in the node srating and
the reputation value vrep is equal to the party’s behaviour
θi up to a given error δ. Notice that the Klaim model of
the reputation system has been slightly modified to enable
this analysis. In particular, the client process updates tuples
of the form 〈“reputation”, sparty i, vrep〉 in the rating server
every time it computes a provider’s reputation score. Thus,
the property “the reputation of sparty i converges to his ac-
tual behaviour within time t” is defined as true U≤tφconv,
where the until formula φ1U

≤tφ2 is satisfied by all the runs
that reach within t time units a state satisfying φ2 while
only traversing states that satisfy φ1. The model checking
analysis has been then performed by estimating the total
probability of the set of runs satisfying such formula (the
maximal time t has been set to 50 seconds and δ to 0.1).
Considering party’s behaviour θ = 0.75, we get that the
formulae is satisfied, in the Beta model, with probability
0.8587 and with probability 0.7994 in the ML model. The
average amount of ratings available for the computation af-
ter 50 seconds is 43. The same formula has been checked in
case of a fixed initial reputation score (computed by means
of 8 ratings). In this case we get probability 0.3972 for the
Beta model and 0.4982 for the ML model. The results of
the model checking confirm the simulation outcomes, i.e. in
the average the ML model estimation is better than that of
Beta model. In addition, such results point out that the ML
model is less stable than the Beta model when few ratings
are available. Notably, all these values have been estimated
with both error probability and tolerance set to 0.1, which
require 1198 simulation runs.

Similarly, the property “the reputation of sparty i goes be-
low a given threshold within time t” is formalised as

true U≤t
(
〈“reputation”, sparty i, !rep〉@srating
→ threshold ≥ rep

)
The threshold may represent, e.g., the minimum reputation
that a provider must have in order to be considered trust-
worthy for an interaction. Considering party’s behaviour
θ = 0.25 and threshold = 0.35, we get that the formulae
is satisfied, in the Beta model, with probability 0.9914 and
with probability 0.9947 in the ML model. The same formula
has been checked in case of an initial reputation score fixed
to 0.5 (using 8 ratings), by using the same parameters as
before for the estimations; we get probability 0.9246 for the
Beta model and 0.9446 for the ML model. Setting an initial
reputation score slows down achieving the threshold.

6. CONCLUDING REMARKS
In the last two decades, coordination languages have been

extensively exploited in different domains to support de-
velopment and analysis of concurrent and distributed sys-
tems. In this paper, by relying on one of these languages,
namely Klaim, we have shown how coordination languages
and formal methods can be beneficial to the field of rep-
utation systems. More specifically, we have illustrated how

such systems can be specified with Klaim and analysed with
Klaim-based stochastic tools.

Related and future work. The terminology used in the
literature to describe the systems considered in this paper
is sometimes quite confusing, due to the usage of the term
trust in different contexts with a variety of meanings. In
fact, trust and reputation are often used as synonyms. The
difference between the two concepts is clarified in [12]. Ac-
cording to this survey, trust is based on a subjective measure
of reliability of a given party, derived from some private
knowledge (e.g. past direct interactions). Reputation, in-
stead, relies on an objective measure derived from referrals
or ratings provided by other parties. Therefore, by adopting
such distinction, our work mainly focus on reputation.

There are many works in the literature whose goal is the
evaluation and comparison of reputation systems. However,
to the best of our knowledge, our contribution is the first
study based on the use of a formal coordination language.

Some related works make use of computational software
programs [19] or software for multi-agent modelling [18], for
simulating their reputation models. As an example, in [17]
the RePast simulator [1] is used to conduct various stud-
ies on reputation systems in a multi-agent context. Such
studies mainly differ from ours because we rely on formal
methods’ tools, such as coordination languages, stochastic
modal logics, simulation and model checking, that permit
expressing and evaluating performance measures in terms
of logical formulae. This is a strong conceptual framework
that provides abstraction primitives for conveniently spec-
ifying reputation systems and their properties. Stochastic
modelling and verification tools permit considering the typ-
ical uncertainty of real systems. In this way, the analysis
can cover more relevant situations of the considered system.

In this paper, for the sake of presentation, we have taken
into account two reputation system models, i.e. the Beta
model and the ML model. The proposed approach can be
extended to other reputation models proposed in the litera-
ture (e.g., those surveyed in [16, 12]); we intend to do that
as a future work. We want also to consider attacks to repu-
tation systems, e.g. by cheating raters or through purchase
of reviews. This, of course, will raise the issue of how to
model these behaviours within our proposal.

Another line of research we are exploring is the experi-
mentation with reputation systems in real networked execu-
tion environments, by deploying dedicated Klaim code on
each node. Specifically, we are developing a software tool
for rapid prototyping and testing reputation system models.
To this aim, we will implement the Klaim model introduced
in this paper by means of Klava [3], a Java library provid-
ing a run-time support for Klaim actions within Java code.
This would bring many benefits. Firstly, the Java imple-
mentations obtained with such framework would be driven
by a formal model, which would be initially verified at an
abstract level by means of formal tools. Then, the system
would be analysed by means of practical experiments in or-
der to take into account networking and other real world
aspects.

Acknowledgments
We would like to thank Michele Loreti for the fruitful dis-
cussions and his support while using the SAM tool.

7. REFERENCES
[1] RePast. Web site: http://repast.sourceforge.net.

[2] Specification and Analysis of Reputation Systems in
SAM, 2012. SAM source files available at
http://cse.lab.imtlucca.it/rep_sys_eval/

SpecAndAnalysisOfRepSysSAM.zip.

[3] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a
Java Package for Distributed and Mobile Applications.
Softw. - Pract. and Exper., 32(14):1365–1394, 2002.

[4] L. Bettini et al. The Klaim Project: Theory and
Practice. In Global Computing, LNCS 2874, pages
88–150. Springer, 2003.

[5] F. Calzolai and M. Loreti. Simulation and Analysis of
Distributed Systems in Klaim. In COORDINATION,
LNCS 6116, pages 122–136. Springer, 2010.

[6] A. Celestini, R. De Nicola, and F. Tiezzi. Specifying
and analysing reputation systems with coordination
languages (full version). Technical report, IMT
Advanced Studies Lucca, 2013. http://cse.lab.
imtlucca.it/rep_sys_eval/sac2013_TR.pdf.

[7] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A
Kernel Language for Agents Interaction and Mobility.
Trans. on Software Engineering, 24(5):315–330, 1998.

[8] R. De Nicola, J. Katoen, D. Latella, M. Loreti, and
M. Massink. Model checking mobile stochastic logic.
Theor. Comput. Sci., 382(1):42–70, 2007.

[9] Z. Despotovic and K.Aberer. A Probabilistic Approach
to Predict Peers’ Performance in P2P Networks. In
CIA, LNCS 3191, pages 62–76. Springer, 2004.

[10] D. Gambetta. Trust: Making and Breaking
Cooperative Relations, chapter 13: Can We Trust
Trust?, pages 213–237. Basil Blackwell, 1988.

[11] A. Jøsang and R. Ismail. The beta reputation system.
In Bled Conference on Electronic Commerce, 2002.

[12] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision Support Systems, 43(2):618–644, 2007.

[13] M. Loreti. SAM: Stochastic Analyser for Mobility,
2010. Available at http://rap.dsi.unifi.it/SAM/.

[14] A. Omicini and M. Viroli. Coordination models and
languages: from parallel computing to
self-organisation. Knowledge Eng. Review,
26(1):53–59, 2011.

[15] D. Rossi, G. Cabri, and E. Denti. Tuple-based
technologies for coordination. In Coordination of
Internet Agents: Models, Technologies, and
Applications, pages 83–109. Springer, 2001.

[16] J. Sabater and C. Sierra. Review on computational
trust and reputation models. Artif. Intell. Rev.,
24:33–60, 2005.

[17] A. Schlosser, M. Voss, and L. Brückner. Comparing
and Evaluating Metrics for Reputation Systems by
Simulation. In Work. on Reput. in Agent Soc., 2004.

[18] Y. Wang and J. Vassileva. Trust and reputation model
in peer-to-peer networks. In P2P, pages 150–157.
IEEE, 2003.

[19] L. Xiong and L. Liu. A reputation-based trust model
for peer-to-peer e-commerce communities. In CEC,
pages 275–284. IEEE, 2003.

