Andrea Margheri', Massimiliano Masi?, Rosario Pugliesel , and Francesco Tiezzi

On a Formal and User-Friendly Linguistic Approach to
Access Control of Electronic Health Data

3
VYWniversita di Firenze, Viale Morgagni 65, 50134 Firenze, Italy
2Tiani “Spirit” GmbH, Guglgasse 6, 1110 Vienna, Austria
3IMT Advanced Studies Lucca, Piazza S. Ponziano 6, 55100 Lucca, Italy

andrea.margheri@unifi.it, massi@tiani-spirit.com, rosario.pugliese @unifi.it, francesco.tiezzi@imtlucca.it

Keywords:

Abstract:

Data Security; Electronic Health Records; Access Control.

The importance of the exchange of Electronic Health Records (EHRs) between hospitals has been recognized
by governments and institutions. Due to the sensitivity of data exchanged, only mature standards and im-
plementations can be chosen to operate. This exchange process is of course under the control of the patient,
who decides who has the rights to access her personal healthcare data and who has not, by giving her per-
sonal privacy consent. Patients’ privacy consent is regulated by local legislations, which can vary frequently
from region to region. The technology implementing such privacy aspects must be highly adaptable, often
resulting in complex security scenarios that cannot be easily managed by patients and software designers. To
overcome such security problems, we advocate the use of a linguistic approach that relies on languages for
expressing policies with solid mathematical foundations. Our approach bases on FACPL, a policy language
we have intentionally designed by taking inspiration from OASIS XACML, the de-facto standard used in all
projects covering secure EHRs transmission protected by patients’ privacy consent. FACPL can express poli-
cies similar to those expressible by XACML but, differently from XACML, it has an intuitive syntax, a formal
semantics and easy to use software tools supporting policy development and enforcement. In this paper, we

present the potentialities of our approach and outline ongoing work.

1 INTRODUCTION

Since the early 60s, provision of healthcare has
gradually evolved towards the so-called electronic
healthcare (e-Health). E-Health aims at improving
the effectiveness of healthcare by resorting to infor-
mation systems for storing and exchanging patient
data in form of Electronic Health Records (EHRs).
However, despite the many achievements attained in
this field so far, only in recent years governments
have started to significantly invest on initiatives and
projects aiming at providing (cooperative and inter-
operable) e-Health solutions to their citizens. For ex-
ample, in 1996, U.S.A. senators E. Kennedy and N.
Kassebaum sponsored the Health Insurance Portabil-
ity and Accountability Act (HIPAA), with the goal of
protecting “health insurance coverage for workers and
their families when they change and lose their jobs”
and requiring “the establishment of national standards
for electronic healthcare transactions and national
identifiers for providers, health insurance plans and
employers” (Kennedy and Kassebaum, 1996). More

recently, the exchange of EHRs among clinics and
hospitals has been pursued by the European Commis-
sion with the Standardisation Mandate 403 (EU Com-
mission, 2007), aiming at providing a set of estab-
lished standards for secure EHR access and commu-
nication to the ICT industry. An example of project
funded in response to this EU directive is epSOS (The
epSOS project, 2007). Its goal is to create a pan-
European network for exchanging patient summaries
and ePrescriptions/eDispensations among participat-
ing nations. To this aim, epSOS went far beyond
the state-of-the-art, by choosing and contributing to
the development of international standards for secu-
rity, communication protocols, and data representa-
tion (see, e.g., (OASIS Security Services TC, 2005
OASIS Web Services Security TC, 2009; The IHE
Initiative, 2009} |Health Level Seven organization,
2009; Bittins and Masi, 2011)).

The need of defining such standards is of crucial
importance in the field of e-Health, due to both the
high-level of sensitivity of patients private data, the
high impact that a security flaw can have in the life of

patients, and the need of harmonizing different coun-
try legislations on patients’ privacy consent and en-
abling their healthcare systems to interoperate.

In this paper, we focus on the problem of defin-
ing and implementing access control policies for pro-
tecting EHRs from accesses by unauthorized users
(i.e. people not explicitly authorized by patients).
The challenge comes from the necessity of adopting
a standard-based approach and, at the same time, of
providing policy designers with tools that permit writ-
ing access control policies in a user-friendly way and
enable formal reasoning on them. This latter aspect
would be a remarkable achievement, since it would
permit to formally enforce patients’ informed privacy
consent by supporting policy designers and system ar-
chitects (and, indirectly, also patients, healthcare pro-
fessionals and lawyers) to understand the overall ef-
fect of policies and their consequences.

We propose an approach inspired by the OA-
SIS standard eXtensible Access Control Markup Lan-
guage (XACML) (OASIS XACML TC, 2005)), which
is the de-facto standard for defining authorization
statements to protect sensible resources. For example,
also the epSOS’s standardization bodies endorsed its
use for guaranteeing a secure and authorized access
to patient health data by enforcing the informed pri-
vacy consent. However, the adoption of XACML may
imply a high cost. Indeed, XACML comes with an
XML syntax that makes the task of writing (and, then,
understanding) policies difficult and error-prone. Be-
sides, it comes without a formal semantics, rather its
specification document is written in prose (i.e., in En-
glish) and contains quite a number of loose points that
may give rise to different interpretations and lead to
different implementation choices. This leaves the dif-
ficult task of understanding the full implications of the
various choices to the implementers, which should be
avoided, since otherwise the portability of XACML
policies across different platforms could be consider-
ably undermined.

To address the issues above concerning XACML,
we advocate the use of Formal Access Control Pol-
icy Language (FACPL) (Masi et al., 2012). FACPL
is a language for expressing policies with solid math-
ematical foundations but, differently from XACML,
its simple and clear syntax and semantics makes it
easy to learn and use. Indeed, FACPL comes with
a BNF syntax that can be exploited to create front-
ends for user-friendly policy editors. Besides, since
FACPL relies on theoretical foundations, it enables
formal reasoning on policies to be used, e.g., for for-
mally proving patient consent, law fulfillment and
other soundness properties. We have intentionally de-
signed FACPL by taking inspiration from XACML,

thus it can express access control policies similar to
those expressible by XACML and for different appli-
cation domains. In this paper, however, we focus on
the healthcare domain and present the potentialities of
our approach when used in healthcare systems in pro-
duction where we believe it can contribute to build
safer and more reliable systems.

The rest of the paper is organized as follows. Sec-
tion [2] provides an overview of XACML by resorting
to an application to an healthcare scenario borrowed
from epSOS. Section 3| presents FACPL and the tools
already developed on top of it. Finally, Section] con-
cludes the paper by discussing the potentialities of the
proposed formal approach.

2 THE XACML STANDARD

The XACML standard provides a language for ex-
pressing access control policies and access requests,
and a framework to evaluate access requests w.r.t.
policies and to enforce the authorization decision.
The access to each resource is regulated by one or
more policies. These are XML documents expressing
the capabilities and credentials that a requestor must
have for accessing the resource.

Evaluation of XACML requests is performed by
two different actors, the Policy Decision Point (PDP)
and the Policy Enforcement Point (PEP). The autho-
rization decision is computed by the PDP by checking
the matching between values specified in the policies
and the corresponding values retrieved from the re-
quests. The decision can be one among permit, deny,
not-applicable and indeterminate: the first two values
have an obvious meaning, while the third means that
the PDP does not have any policy that applies to the
request and the fourth means that the PDP is unable to
evaluate the request. In case of permit and deny, the
PDP can attach some additional actions, called obli-
gations, to the decision. The PDP decision is then
enforced by the PEP, which authorizes the access re-
quest if it understands and can discharge the obliga-
tions and, of course, if the PDP decision is positive.

The basic elements of the policy language pro-
vided by the standard are the rules. A rule speci-
fies the logic for the access control decision by means
of an effect, that can be either permit or deny; a tar-
get, that indicates to which requests the rule applies;
a condition, that is an expression refining the appli-
cability established by the target; and some obliga-
tions. Rules are then combined into policies that, be-
sides their own target and obligations, specify a com-
bining algorithm, which, from the set of rules’ de-
cisions, computes what is the decision for a request.

Finally, policies can be combined into policy sets that,
again, specify a combining algorithm, a target and
some obligations.

As an example, consider the policy in Listing []
expressing (an excerpt of) the patient’s privacy con-
sent for the epSOS project. In this project, each role
(e.g., physician, nurse, pharmacist) has permissions
for performing a certain action (e.g., read or write)
on a resource (e.g., code 34133-9 identifies a patient
summary) for a certain purpose (e.g., healthcare treat-
ment, statistics, emergency).

Listing 1: epSOS patient consent in XACML (excerpt)

<Policy Policyld="summary”
RuleCombiningAlgld=""... :rule —combining—
algorithm:permit—overrides ">
<Target>
<AnyOf>
<AIlOf>
<Match Matchld="... :function:string —equal >
<AttributeValue> TREATEMENT </ AttributeValue>

<AttributeDesignator

Category="... :attribute —category:subject”
Attributeld="... subject:purposeofuse” />
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AIlOf>
<Match Matchld="... :function:string —equal >

<AttributeValue> physician </AttributeValue>
<AttributeDesignator

Category="... :attribute —category:subject”
Attributeld="... :subject:role” />
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AlIOf>
<Match Matchld="... :function:string —equal™>

<AttributeValue> 34133—9 </ AttributeValue>
<AttributeDesignator

Category="... :attribute —category:resource”
Attributeld="... resource:resource—id” />
</Match>
</AllOf>
</AnyOf>
</Target>
<Rule Ruleld="rule1” Effect="Permit™>
<Target>
<AnyOf>
<AIOf>
<Match Matchld="... :function:string —equal >

<AttributeValue> Read </AttributeValue>
<AttributeDesignator

Category="... :attribute —category:action”
Attributeld="... :action:action—id” />
</Match>
</AllOf>
</AnyOf>
</Target>

<Condition>
<Apply Functionld="... :function:string —subset”™>
<Apply Functionld="... :function:string —bag™>

<AttributeValue> ...
<AttributeValue> ...
<AttributeValue> ...
<AttributeValue> ...
</ Apply>
<AttributeDesignator
Category="... :attribute —category:subject”
Attributeld="... :subject:hl7:permission” />
</Apply>
</Condition>
</Rule>
<Rule Ruleld="ruledeny” Effect="Deny”>
</Rule>
<ObligationExpressions>
<ObligationExpression FulfillOn="Permit”
Obligationld="... :obligation:log ">
<AttributeAssignmentExpression
Attributeld="... :attribute:subject”™>
<AttributeValue DataType="#string™>
<AttributeDesignator

:PRD—003 </ AttributeValue>
:PRD—005 </ AttributeValue>
:PRD—010 </ AttributeValue>
:PRD—-016 </ AttributeValue>

Category=""... :attribute —category:subject”
Attributeld="... :subject:physician—id” />
</AttributeValue>
</AttributeAssignmentExpression>
<AttributeAssignmentExpression

Attributeld="... :attribute:resource ™>
<AttributeDesignator
Category="... :attribute —category:resource”

Attributeld="... :resource:resource—id” />
</ AttributeAssignmentExpression>
</ObligationExpression>
<ObligationExpression FulfillOn="Deny”
Obligationld="... :obligation:mail >
<AttributeAssignmentExpression

Attributeld="... :attribute:mailto ">
<AttributeDesignator
Category="... :attribute —category:resource”
Attributeld="... :resource:resouce—id:email” />

</AttributeAssignmentExpression>
<AttributeAssignmentExpression
Attributeld="... :attribute:text™
<AttributeValue DataType="#string ™
Your medical record has been requested by
EpSOS subject
</ AttributeValue>
</AttributeAssignmentExpression>
</ObligationExpression>
</ObligationExpressions>
</Policy>

The policy specifies a subject and a resource in its tar-
get, according to which the policy applies to requests
issued by a physician with the purpose of accessing
to a resource with a code identifier 34133-9 for an
healthcare TREATMENT. If these capabilities are met,
the rules enclosed in the policy are evaluated. The
first rule has effect Permit if the requestor aims at per-
forming a Read action and has at least the permis-

sions PRD-003, PRD-005, PRD-010, and PRD-016
for accessing the resource. The second rule has al-
ways effect Deny and is combined with the previous
one in such a way that if the first rule evaluates to Per-
mit then the policy permits the access to the resource,
otherwise the access is denied (combining algorithm
permit-overrides). Concerning the obligations, if an
access request is evaluated as permit, a log entry about
the requestor and the resource is recorded in the sys-
tem, while if the decision is deny an e-mail is sent to
the patient to notify the (unauthorized) attempt.

As witnessed by the code in Listing [1} the XML
syntax makes it hard to identify the relevant pol-
icy features, especially for users not familiar with
XACML but that anyhow need to understand the over-
all effect of combined policies.

3 THE FACPL APPROACH

The language FACPL provides a manageable al-
ternative syntax to XACML through a BNF-like
grammar. It is indeed a tiny language that is easy to
learn and capable of expressing XACML policies in
a very compact and readable way. For example, the
XACML policy reported in Listing[T|can be rewritten
in FACPL as shown in Listing[2]

Listing 2: epSOS patient consent in FACPL

<permit—overrides;
target:
string —equal ("TREATEMENT” , subject/purposeofuse)
and string—equal (”physician”,subject/role)
and string—equal(”34133—9” ,resource/resource—id) ;
rules:
(permit;
target: string—equal ("Read”,action/action—id);
condition:
string—subset(string —bag("PRD—-003" , "PRD—-005" ,
"PRD—-010" , "PRD—016") ,
subject/hl7:permission); obl:;)
(deny; target:; condition:; obl:;);
obl:
(permit; M;
log (subject/physician—id ,resource/resource—id))
(deny; M;
mail (resource/resource—id.email ,”Your medical record
has been requested by EpSOS subject”)); >

The above code demonstrates that the FACPL nota-
tion, compared to that of XACML, is simpler and
more intuitive. It is worth noticing that a FACPL
policy is denoted by a structured term, surrounded
by angular brackets, that specifies a combining algo-
rithm, a target, a set of rules, and a set of obligations.
A FACPL rule is surrounded by round brackets and
has a similar structure, but for the algorithm replaced

by the effect and for the enclosed rules replaced by
a condition. Notably, FACPL targets are not de-
fined according to the structure <AnyOf>-<AllOf>-
<Match>, rather are simply boolean expressions (i.e.
conjunctions and disjunctions of matching functions).
Finally, FACPL obligations are triples specifying an
effect, a type (M for mandatory and O for optionaﬂ),
and an action to be performed by the PEP.

The formal semantics of FACPL policies is given
in a denotational style, i.e. it is defined by a func-
tion [[-]& that, given a policy/policySet and a set R of
access requests, returns a decision tuple of the form

(permit : {< r;, Obl; >}icy,,
deny: {<r;,0bl; >} ey,
not-applicable : R,,
indeterminate : R;)

where {r;}icr,, {r;}jer,» Ra and R; form a partition
of R according to the results of the requests’ evalua-
tion. Requests in the permit and deny sets may have
attached sets of obligations. A decision tuple repre-
sents the evaluation result computed by the PDP and
passed as input to the PEP for its evaluation. The fi-
nal result does not contain obligations, as they are dis-
charged during the enforcement process by the PEP.

An example of a FACPL request for accessing a
patient summary is reported in Listing

Listing 3: Patient summary request

Request:{Request1
(subject/purposeofuse , "TREATEMENT”)
(subject/role ,”physician”)
(subject/physician—id, "jh1234")
(subject/hl7:permission , "PRD—-003"
(subject/hl7:permission , "PRD—005"
(subject/hl7:permission , "PRD—-010"
(subject/hl7:permission , "PRD—-016"

(resource/resource—id , "34133—9")
(resource/resource—id.email , "patient@mail .com”)
(action/action—id , "Read”)

}

The request is made by the physician with personal
identifier jh1234 for reading the health record of a pa-
tient for treatment purposes. Given this request and
the policy in Listing [2] the FACPL semantics returns
a decision tuple where the permit set consists of a pair
formed by the request and the obligation requiring the
log update.

We have seen so far that FACPL permits devel-
oping access control policies which are intuitive and
easy to read, write and understand. In order for
FACPL to be actually used for dealing with real sys-
tems, a software architecture for evaluating access re-

'In XACML jargon, the optional obligations are called
advices.

| i = GH-0-Q- [% [HE @[S

BP. 2 = 8 epsos.fpl 52
=R POP {

4 5 Facpl_Project permit-overrides ;

PatientSummary < permit-overrides ; target:

v‘ »'l 4 Quick Access ﬁjl
= 8 o= 0. 2 = 8
o iaz

‘= imp : epsos_request.fpl

» B Referenced Libraries string-equal ("TRE " , subject/purposeofuse) && @ main
> (BB src string-equal ("medical doctor” , subject/role) &&] paf : PatientSummary
config.properties string-equal ("34133-9" , resource/resource-id }; target
epsos_request.fpl rules: . > rul: rulel
cpsosfpl rulel (permit ; target: § vl rule2
psostp string-equal ("Read" , action/action-id); = |
condition: obligation
string-subset (st ag("PRD-8@3","PRD-8@5","PRD-018","PRD-816"), a paf : ePrescription

subject/hl7:perm target
Prics | d target diti b1 rul rulel
Wbt rule2 (deny ; target: ; condition: ; obl: ;); . rul: rule2
(permit ; M ; log (subject/doctor-id , resource/resource-id)) abligation

(deny ; M ; mail (resource/resource-id.email ,
"Your medical record has been requested by EpS05 subject™));

>

ePrescription < permit-overrides ; target:

string-equal ("TRE
(string-equal (

MENT" , subject/purposecfuse) &&
medical docter™ , subject/role) ||
string-equal ("pharmachist” ,

m

subject/role)

) && string-equal ("57829-4" , resource/resource-id);

rules:
rulel (permit ; target:

string-equal ("Read" , action/action-id);

condition:

string-subset (string-b
subject/hl7:permission);

obl: ;)

ag("PRD-2@4" , "PRD-818"),

rule2 (deny ; target: ; condition: ; obl: ;);

obl:

(permit ; M ; log (subject/doctor-id , resource/resource-id))

(deny

Vo3

M ; mail (resource/resource-id.email ,

"Your medical record has been requested by EpS0S subject”));

Figure 1: FACPL development environment

quests and software tools supporting policy develop-
ment are necessary.

Therefore, FACPL semantics has been imple-
mented in Java as a sort of “compiler” that transforms
FACPL policies into Java classes following the se-
mantics rules defined in (Masi et al., 2012). Simi-
larly, an access request is compiled into a J av;ﬂ class.
A policy decision is then computed by executing the
generated policy code with the request code passed as
parameter to an entry method.

Moreover, FACPL has been equipped with a dedi-
cated powerful Integrated Development Environment
(IDE), implemented as an Eclips plug—ilﬂ by means
of the Xtext frameworkﬂ The FACPL IDE supports
users in the process of developing policies by means
of such features as code auto-completion, syntax
checks, generation of XACML code and, of course,
generation of Java code by means of the library men-
tioned above. A screenshot of the IDE, showing two
epSOS’s policies for ePrescription and patient sum-
mary, is reported in Figure|[]

2Java 1.6 or higher. http: //www.java.com

3Eclipse Juno 4.2. http://www.eclipse.org/

4To install the FACPL plug-in it is sufficient to open
Eclipse, click on Help>Install New Software. .. and follow
the wizard, by specifying the URL http://rap.dsi.
unifi.it/xacml_tools/facpl/FacplEclipsePlugin/
when requested.

SXtext 2.3. http://www.eclipse.org/Xtext/

4 CONCLUDING REMARKS

We presented the use of a policy language with
solid mathematical foundations for the definition of
patients’ privacy consent in healthcare projects. Our
approach relies on FACPL, a language inspired by
OASIS XACML 3.0. We have seen that FACPL for-
mal semantics is more helpful than XACML natural
language descriptions for understanding the behav-
ior of the authorization process. Besides, it is an ef-
fective guide for the implementation of the language
and paves the way for the development of analysis
tasks, such as policy comparison, policy verification
and policy querying.

For example, equivalences and preorders among
different policies could be a first target achievable
by means of FACPL formal semantics. This is par-
ticularly helpful in the scope of the epSOS project,
which actually counts 23 participating countries and
some new non-EU countries are foreseen. From
a technological standpoint, epSOS’ challenges were
mostly related to the harmonization of all the Euro-
pean countries’ legislations for handling patients’ pri-
vacy consent. In fact, the goal of epSOS in this area
was to follow the suggestions of the EU Article 29
WP (Directorate-General of Justice, 2010), and to let
each member state define patients’ consent following
the national legislation. These facts have been re-
flected in the establishment of the epSOS Circle of

http://www.java.com
http://www.eclipse.org/
http://rap.dsi.unifi.it/xacml_tools/facpl/FacplEclipsePlugin/
http://rap.dsi.unifi.it/xacml_tools/facpl/FacplEclipsePlugin/
http://www.eclipse.org/Xtext/

Trust (CoT), a Service Level Agreement (SLA) signed
by countries in order to securely share data in the ep-
SOS network. In fact, due to the high level of sensitiv-
ity of patient’s private data exchanged, and to the high
impact that a security flaw can have in terms of break-
ing the CoT, only mature and well-known standards
are allowed in the scope of the project. Therefore, all
the policies in epSOS are written using XACML.

FACPL mathematical foundations enable each
participating nation to formally prove the SLA ful-
fillment of its policies for privacy consent (written in
agreement with the respective local legislation) thus
guaranteeing the country’s participation in the CoT.
In fact, various analysis on the policies can be per-
formed. For example, equivalence analysis, which is
already enabled by FACPL formal semantics, could
be used to prove that each policy follows the epSOS
requirements expressed by means of a continent-wide
referenced XACML policy.

To reduce lacking design, a constraint system for
validating the behavior of the authorization process
could be defined. To this aim, we will design a practi-
cal way to define safety and coverage properties over
an access control system model. These properties
are useful for one of the most difficult problem for
policy-based access control systems: to understand
the overall effect of combined policies evaluation or
the unexpected consequences on obligation discharg-
ing. For example, inaccurate policies might uninten-
tionally override patient consent, thus possibly autho-
rizing an intruder to access. This type of analysis is
known as change-impact analysis and is usually car-
ried on by means of a formal logic, as e.g. a descrip-
tion logic. It has many practical applications, among
which examining differences between policy versions
and identifying redundant policies.

To assess the effectiveness of FACPL and its re-
lated tools and techniques, we plan both to experiment
with healthcare systems in production and to also con-
sider case studies from other domains.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the EU
project ASCENS (257414).

REFERENCES

Bittins, S. and Masi, M. (2011). Cross community fetch.
http://www.ihe.net}

Directorate-General of Justice (2010). Article 29 working
party: documents.

EU Commission (2007). Mandate 403 en: Standardisa-
tion mandate addressed to cen, cenelec and etsi in
the field of information and communication technolo-
gies. Technical report, European Commission En-
terprise And Industry Directorate-General. |http:
//www.ehealth-interop.eu.

Health Level Seven organization (2009). HI7 standards.
http://www.hl7.orgl

Kennedy, E. and Kassebaum, N. (1996). Health in-
surance portability and accountability act. Techni-
cal report, US Congress. |http://www.cms.gov/
HIPAAGenInfol

Masi, M., Pugliese, R., and Tiezzi, F. (2012). Formalisa-
tion and implementation of the xacml access control
mechanism. In Barthe, G., Livshits, B., and Scandari-
ato, R., editors, ESSoS, volume 7159 of Lecture Notes
in Computer Science, pages 60—74. Springer.

OASIS Security Services TC (2005). Asser-
tions and protocols for the OASIS security
assertion markup language (SAML) v2.02.
http://docs.oasis-open.org/security/saml/
v2.0/saml-core-2.0-o0s.pdfl

OASIS Web Services Security TC (2009). Cross enterprise
security and privacy authorization profile for xacml
for healthcare.

OASIS XACML TC (2005). eXtensible Access Con-
trol Markup Language (XACML) version 2.0.
http://docs.oasis-open.org/xacml/2.0/
XACML-2.0-0S-NORMATIVE. zip.

The epSOS project (2007). An european ehealth project.
http://www.epsos.eul

The IHE Initiative (2009). Basic Patient Privacy Consent.
http://www.1ihe.net.

http://www.ihe.net
http://www.ehealth-interop.eu
http://www.ehealth-interop.eu
http://www.hl7.org
http://www.cms.gov/HIPAAGenInfo
http://www.cms.gov/HIPAAGenInfo
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://www.epsos.eu
http://www.ihe.net

	Introduction
	The XACML standard
	The FACPL approach
	Concluding remarks

