
Towards Model-Driven Development of Access Control
Policies for Web Applications ∗

Marianne Busch
LMU München

Oettingenstr. 67
80538 Munich, Germany
busch@pst.ifi.lmu.de

Nora Koch
LMU München

Oettingenstr. 67
80538 Munich, Germany
kochn@pst.ifi.lmu.de

Massimiliano Masi
Tiani “Spirit” GmbH

Guglgasse, 6
1110 Vienna, Austria

massi@tiani-spirit.com

Rosario Pugliese
Università di Firenze
Viale Morgagni, 65
50134 Firenze, Italy

rosario.pugliese@unifi.it

Francesco Tiezzi
IMT Advanced Studies Lucca

Piazza S. Ponziano, 6
55100 Lucca, Italy

francesco.tiezzi@imtlucca.it

ABSTRACT
We introduce a UML-based notation for graphically mod-
eling systems’ security aspects in a simple and intuitive
way and a model-driven process that transforms graphical
specifications of access control policies in XACML. These
XACML policies are then translated in FACPL, a policy
language with a formal semantics, and the resulting policies
are evaluated by means of a Java-based software tool.

Keywords
Security, Model-driven development, Web engineering

1. INTRODUCTION
Security is an important issue in software, in particular in
software publicly available, as web applications. Software se-
curity requires protection of the system’s resources against
unauthorized access, ensuring as well accessibility by au-
thorized users whenever needed. Due to the ever increasing
relevance of security, the software development processes are
being improved for comprising security aspects, such as in-
tegrity and confidentiality, from the beginning on, i.e. in
early phases like requirements engineering and design in-
stead of adding them at implementation level.

Access control is a fundamental means for restricting what
operations (authenticated) users can perform on protected
resources. Different access control systems have been devel-
oped to support security. The main components of these sys-
tems are the security policies, a security model and the im-
∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM_PROC_ARTICLE-SP.CLS. Supported by ACM.

plementation mechanisms [7]. The policies define the rules
according to which access control must be regulated. The
model provides a formal representation of the policies and
how they work. The mechanisms define how the controls
imposed by the policies and the model are implemented.

Several languages for access control have been proposed.
Many of them are XML-based as, e.g., the OASIS stan-
dard eXtensible Access Markup Language (XACML) [13].
XACML is the de-facto industry standard for expressing and
enforcing policy-based authorizations. However, the XML
syntax of XACML can make the task of writing policies dif-
ficult and error-prone, besides it is not adequate for formally
defining the semantics of the language and reasoning on it.
Other languages rely on concepts and techniques from logic,
which instead offer the advantage of formal foundation and
possibilities of analysis, but have the drawback of not being
easily usable for a wide spectrum of users.

Access control languages might thus be too low level and im-
practical for developers accustomed to work with abstract
architectural models of systems. Our aim is to make the
specification of access control policies accessible to people
not necessarily familiar with such languages. The proposal
we illustrate hereafter is to initially specify the security re-
quirements using a high-level, graphical, modeling language
called UWE [5, 6], which is based on the de-facto standard
modeling language UML and thus provides a human un-
derstandable view of the access control policies in force at
the system. UWE is already equipped with tools for policy
editing. We then automate the policy development process
towards a formally founded language (called FACPL [12])
by means of a suitable software toolchain, comprising the
transformations UWE2XACML and XACML2FACPL. The
former transformation enables the possibility of integrating
into the toolchain other software tools, e.g. generation of
test cases that take XACML as input language. The lat-
ter transformation gives to software engineers a powerful
tool with solid mathematical foundations that enables for-
mal reasoning on the policies of applications developed using
UWE. The proposed model-driven process, shown in Fig-
ure 1, solves the problems mentioned before. It offers the ad-
vantages of an easy to learn and intuitive visual specification

Figure 1: Toolchain for the model-driven approach

language for policies, which can be also translated automat-
ically to a formal specification enabling evaluation of poli-
cies and access requests through the FACPL Policy Decision
Point. Instructions and software for installing our toolchain
can be found at http://uwe.pst.ifi.lmu.de/uwe2facpl.
We illustrate our approach by means of a running example
from the e-Health domain.

2. MODELING ACCESS CONTROL
In this section, we outline UML-based Web Engineering
(UWE) [5, 6], an engineering approach for modeling web
applications. We focus, in particular, on the access control
aspects of UWE and use an example from the e-Health area.

2.1 UML-based Web Engineering (UWE)
UWE uses the extension mechanisms provided by UML via
the definition of a UML profile, which provides a set of ster-
eotypes, tag definitions and constraints. One of the corner-
stones of the UWE language is the “separation of concerns”
principle using separate models for views such as content,
navigation, presentation, processes, etc. The most relevant
UWE models for this work are: (1) The Content Model,
representing the domain concepts that are relevant for the
web application and the relationships between them. (2)
The Role Model, defining a hierarchy of user groups with
the purpose of authorization and access control. It is usu-
ally included in a User Model, which specifies basic struc-
tures as e.g. that a user can take on certain roles simultane-
ously. (3) The Basic Rights Model, expressing role based ac-
cess control on the domain concepts specified in the content
model, picking the roles from a user model. (4) The Naviga-
tion Model, providing a graphical representation of the path
the user can navigate in the web system. This model also
represents security features as, e.g., authentication, access
control and secure connections [5].

For each view, an appropriate type of UML diagram is se-
lected and a set of stereotypes, tag definitions and con-
straints is provided. Concepts of the content and role models
and their relationships are shown as classes and associations
in a UML class diagram. The basic rights model connects
role instances with content classes or their attributes/meth-
ods using stereotyped dependencies. These dependencies
specify create/read/update/delete/execution rights. For the
navigation model, UWE provides two graphical representa-
tions: a structural visualization as UML stereotyped class
diagrams and a behavioral form using UML state machines.

2.2 The HospInfo Case Study
Our case study, called HospInfo1, is a prototype of a web-
based Hospital Information System. The roles identified for
1HospInfo. A secure hospital information system. http:
//uwe.pst.ifi.lmu.de/exampleHospInfo.html

Figure 2: HospInfo content model

Figure 3: HospInfo basic rights
this web application are: visitor, registeredUser, nurse, re-
ceptionist, physician, and admin. Its main requirements are:
(1) staff members should be able to register; (2) an admin-
istrator can set roles to staff members; (3) physicians need
the permission to create new patient records or change infor-
mation of patients; (4) nursing staff should be able to read
the health records of the patients; (5) receptionists can read
and update all information with exception of health related
data, while only physicians can update the latter ones.

The focus of interest of the content model is on the Patient
class with attributes as name, address, ward or gender (see
Figure 2). The classes User and Role (from the user model)
are included as well in Figure 2, for showing the associations
to the content model elements. Figure 3 depicts the basic
rights model with access specifications for the classes User
and Patient. The rule that admins cannot change their own
user account is depicted with the OCL [14] authorization-
Constraint in the center of the UML diagram. Thereby, the
variable caller stands for the operating user, i.e. the admin.
The {except=healthStatus, blood} tag on the «updateAll»
dependency between Receptionist and Patient specifies
that the updates on all other attributes of Patient are per-
mitted. Conversely, physicians can update all Patient at-
tributes without any {except} restrictions.

Figure 4 shows an excerpt of the main navigation state dia-
gram for HospInfo. The whole application HospInfo trans-
mits all information in a confidential way and cares for the
integrity and the f reshness of the data (denoted by «ses-
sion»{transmissionType=“cif”}). Basically, HospInfo con-
sists of the two navigation areas depicted in Figure 4: a

http://uwe.pst.ifi.lmu.de/uwe2facpl
http://uwe.pst.ifi.lmu.de/exampleHospInfo.html
http://uwe.pst.ifi.lmu.de/exampleHospInfo.html

Figure 4: HospInfo navigational states (excerpt)

visitor area (on the left) and an internal area (on the right),
which is guarded according to the existing roles.

2.3 The MagicUWE CASE Tool
UWE models can be built using any UML CASE tool that
enables the use of profiles. The UWE profile can be down-
loaded from the UWE website2. We use the MagicUWE
plugin [6] implemented for MagicDraw3 that provides addi-
tional support to the developer.

With MagicUWE, repetitions can be avoided. Thus, in-
stead of creating a basic element, as a class, and applying
a stereotype to it, UWE’s stereotyped elements can be in-
serted directly from the MagicDraw toolbar. Besides, trans-
formations between UWE models can be performed semi-
automatically. E.g., the modeler can start modeling the
content class diagram; then the model can be transformed
with MagicUWE to a navigation model. Additional stereo-
typed elements can be added to the navigation diagram from
the toolbar as, e.g., an element to indicate the home node
that represents the main entry of a web application.

3. POLICY TRANSFORMATION
In this section, we describe our approach for generating
XACML and FACPL policies from UWE models.

3.1 The XACML Standard
XACML permits decoupling the access control from the ap-
plication’s flow. In its underlying access control model, the
access to each resource is regulated by one or more policies,
i.e. XML documents expressing the capabilities and creden-
tials that a requestor must have for accessing the resource.
A request to access a resource can be created by, e.g., a
remote-access gateway, a Web server or an email user-agent.

Evaluation of XACML access requests is as follows. The
authorization decision is made by the Policy Decision Point
(PDP) by checking the matching between values of request’s
attributes and the corresponding values retrieved from the
policies. The decision can be one among permit, deny, not-
applicable and indeterminate: the first two values have an ob-
vious meaning, while the third means that the PDP does not
have any policy that applies to the request and the fourth
means that the PDP is unable to evaluate the request.
2UWE website. http://uwe.pst.ifi.lmu.de/
3MagicDraw. http://www.magicdraw.com

Let us now consider the policy language provided by the
standard. The basic element of this language is <Policy>.
A <Policy> is composed of a <Target>, which identifies the
set of capabilities and credentials that the requestor must
expose, and some <Rule>s. Every <Rule> contains the logic
for the access control decision and has an Effect, which
can be either Permit or Deny. A <Policy> also specifies a
combining algorithm that defines what is the final decision
for a request when there are contradictory rule decisions
(e.g. both permit and deny results are returned). The most
relevant algorithms are: deny-overrides, if any rule in the
considered policy evaluates to deny, then the result of the
policy is deny; permit-overrides, it is like deny-overrides,
but permit takes precedence over the other results.

A <Target> is composed of four sub-elements: <Subjects>,
<Actions>, <Resources>, and <Environments>. Each cate-
gory is composed of a set of target elements, each of which
contains an attribute identifier, a value and a matching func-
tion. Such information is used to check whether the policy
is applicable to a given request. Specifically, the matching
function retrieves a value from the designed attribute in the
request and matches it with the values specified in the tar-
get element, according to the function’s semantics. If, for
all four categories, at least a matching of a target element
succeeds, then the policy is applicable to the request.

Besides the Effect, a <Rule> may specify a <Target>, which
refines the applicability established by the target of the en-
closing policy, and a <Condition>, i.e. a combination of
functions that operate on values coming from the request.
The Effect is propagated to the upper level policy if the
<Target> of the rule matches and the <Condition> holds.

Policies can be combined into a <PolicySet>, which spec-
ifies a combining algorithm and a <Target>. The latter is
evaluated before the targets of the included policies are.

3.2 Model Transformations to XACML
By means of our running example, we present here how to
transform UWE basic rights models into XACML policies.

Transformation of UWE models into XACML poli-
cies. As the length of the resulting XACML file for our
HospInfo example (cf. Figure 3) exceeds several hundred
lines, we sketch the rough structure of the file below (de-
tailed policies and the sources of our tool can be found at
http://uwe.pst.ifi.lmu.de/uwe2facpl).

PolicySet root element, permit-overrides
PolicySet for each role

Target role and all sub-roles
Policy for each pair of role and target

Target constrained element
Rule permission for action

Resources e.g. attributes
Actions . . . permitted action
Condition transformed constraint

Policy deny all
Intuitively, the transformation generates a <PolicySet> for
each role, each of which contains one <Policy> for any class
connected to the considered role (e.g. both <PolicySet> for
Receptionist and Physician includes one policy for the

http://uwe.pst.ifi.lmu.de/
http://www.magicdraw.com
http://uwe.pst.ifi.lmu.de/uwe2facpl

content class Patient). Furthermore, a single <Policy>
is used to deny access to all resources not specified in the
<PolicySet>, which is the default behavior of UWE’s basic
rights models.
To allow a sub-role of a given role to use the per-
mission specified by the super-role, the target of the
<PolicySet> corresponding to the super-role is extended to
also match requests from the sub-role (e.g. the target of the
<PolicySet> for receptionist specifies two subjects, with
roles receptionist and physician, respectively).
Each <Policy> for a constrained class contains one <Rule>
for each action between the role and the class. For ex-
ample, the receptionist policy comprises rules for ac-
tions «delete», «create», «read» and «updateAll» {except =
healthStatus, blood}. Attributes targeted by *All actions
are divided into a set of <Resources>, omitting those from
the {except} tag. OCL constraints inside UML comments
with «authorizationConstraint» stereotype are transformed
to a <Condition>. The condition is located within a <Rule>
representing the appropriate action. For the time being, we
implemented only a few basic OCL constraints.
Notably, XACML is more expressive than UWE, hence a
transformation from XACML to UWE is not feasible.

Implementation. Technically, our UWE2XACML trans-
formation from projects modeled with the UWE Profile v.2.2
to XACML 2.0 is implemented using the modeling frame-
work of Eclipse Juno4. We also used Xpand 1.2.15, a lan-
guage specialized on code generation based on models de-
fined by the modeling component of Eclipse. Xpand is based
on workflows, which apply templates in order to parse the
model and to produce the desired code.
To be able to use the project files of MagicDraw 16.8 for
the transformation with Xpand, they have to be exported
as Eclipse UML2 (v3.x) XMI file. For complex tasks as the
transformation to XACML, Java extensions are used from
within the Xpand templates, because Java enables us, e.g.,
to group several dependencies with equal constraints to only
one <Rule>. This is also needed for our HospInfo example
regarding both update permissions (roles and ward) from
the admins.
Our algorithm transforms not only the basic rights model,
but also states with a {roles} tag from the navigation model
(see Figure 4). The aim is to constrain whether or not a
user is allowed to navigate to a certain area.

3.3 The FACPL Policy Language
The Formal Access Control Policy Language (FACPL) [12],
which we describe in this section, provides a manageable
alternative syntax to XACML through a BNF-like grammar.
FACPL syntax is reported in Table 1. As usual, square
brackets are used to indicate optional items.

To base an authorization decision on some characteristics of
the request, like e.g. the subject’s identity or the resource’s
identifier, FACPL provides (structured) names, ranged over
by name. They permit to identify specific values (called at-
tribute values) contained in the request. The language is also
4Eclipse. http://www.eclipse.org/
5Xpand. http://wiki.eclipse.org/Xpand

Policies ::= {Alg ; target :{ [Targets] } ; Policies}
| 〈Alg ; target :{ [Targets] } ; rules :{Rules}〉
| Policies Policies

Alg ::= deny-overrides | permit-overrides | . . .

Targets ::= MatchId(value,name) | Targets ∨Targets
| Targets ∧ Targets | Targets u Targets

MatchId ::= string-equal | integer-equal | . . .

Rules ::= (Effect [; target :{Targets}][; condition :{expr}])
| Rules Rules

Effect ::= permit | deny
Table 1: FACPL syntax

equipped with expressions that permit to specify conditions.

FACPL policies can be simple policies of the form
〈Alg ; target :{ [T argets] } ; rules : {Rules}〉 or, recursively,
policy sets of the form {Alg ; target :{ [T argets] } ; Policies}.
Both policies and policy sets specify the algorithm for com-
bining the results of the evaluation of the contained elements
and a target to which the policy/policy set applies. A tar-
get identifies the set of access requests that a rule, a policy
or a policy set is intended to evaluate. Specifically, a tar-
get specifies the set of subjects, resources, actions and envi-
ronments to which the corresponding rule/policy/policy set
applies. In the XML-based syntax of XACML, the target
element may contain four separate elements, one for each
of the above categories. To obtain a more compact nota-
tion, FACPL represents a target as an expression built from
match elements, i.e. terms of the form MatchId(value,name),
by exploiting an operator for logical disjunction, ∨, and two
operators for logical conjunction, ∧ and u. Each match ele-
ment spells out a specific value that the subject/resource/ac-
tion/environment in the decision request (identified by the
given name) must match, according to the matching func-
tion MatchId. A disciplined use of structured names and the
three logical operators permits properly expressing XACML
targets. For further details on this topic, the reader is re-
ferred to our previous work [12].

A single policy contains a (non-empty) set of rules such
as (Effect [; target :{T argets }][; condition :{expr}]), each
specifying: (i) an effect, which indicates the rule-writer’s
intended consequence of a positive evaluation for the rule
(the allowed values are permit and deny), (ii) a rule target,
which refines the applicability established by the target of
the enclosing policy, and (iii) a condition, which is a boolean
expression that may further refine the applicability of the
rule. In a rule, target and condition may be absent.

Transformation of XACML policies into FACPL. The
transformation, performed by the XACML2FACPL compo-
nent in Figure 1, is straightforward. Its flow loops over
the policy sets creating the necessary data structures for
the FACPL representation. The original XML document is
read by using JAXB6. The loop over the elements is driven
by the XACML schema definitions by traversing its data
types. We show below the FACPL policies resulting from
the transformation of the HospInfo basic rights model (only
6JAXB. http://jaxb.java.net

http://www.eclipse.org/
http://wiki.eclipse.org/Xpand
http://jaxb.java.net

for roles receptionist and physician).
{permit-overrides ;
target :{ string-equal(“physician”, subject.role) } ;
〈permit-overrides ;
target :{ string-equal(“patient”, resource.id) } ;
rules :{(permit ;

target :{ string-equal(“update”, action.id)
u string-equal(“name”, resource.attr)

∨ string-equal(“birthYear”, resource.attr)
∨ . . .
∨ string-equal(“ward”, resource.attr) })

(deny) } 〉
〈permit-overrides ; target :{ } ; rules :{(deny) } 〉 }

{permit-overrides ; target :{string-equal(“receptionist”, subject.role)
∨ string-equal(“physician”, subject.role)};

. . .
〈permit-overrides ;
target :{ string-equal(“patient”, resource.id) } ;
rules :{ . . .

(permit ; target :{ string-equal(“delete”, action.id) })
. . .

} 〉 }

4. POLICY EVALUATION
In this section, we sketch the formal semantics of FACPL,
which is at the basis of the FACPL policy evaluation tool.

The semantics of FACPL policies is given in a denotational
style, i.e. it is defined by a function [[·]]R that, given a poli-
cy/policySet and a set R of access requests, returns a deci-
sion tuple of the form

(permit :Rp; deny :Rd; not-applicable :Rn; indeterminate :Ri)

where Rp, Rd, Rn and Ri form a partition of R according
to the results of the requests’ evaluation. Notably, R can
contain, e.g., all possible requests, only requests with a given
structure or a single request. The definition of [[·]]R relies on
an auxiliary function (| · |)R that, given a target, returns a
matching tuple of the form

(match :Rm; no-match :Rn; indeterminate :Ri)

where R is partitioned into Rm, Rn and Ri according to
the results of the target evaluation. We refer the interested
reader to [12] for a full account of the FACPL semantics.

As an example, let us consider the following access requests:

request :{ request :{
(subject.lastName,“House”) (subject.lastName,“Cameron”)
(subject.role,“physician”) (subject.role,“receptionist”)
.
(resource.id,“patient”) (resource.id,“patient”)
(resource.attr,“healthStatus”) (resource.attr,“healthStatus”)
(action.id,“update”) (action.id,“update”)
} }

The request on the left is made by the physician House for
updating the health record of a patient, while the request on
the right is made by the receptionist Cameron for performing
the same action. Given the above requests and the HospInfo
policies generated by the XACML2FACPL component of
our toolchain, the FACPL semantics returns a decision tuple
where the request on the left is in the permit set while the
request on the right is in the deny set (indeed, receptionists
have no permission to update patient health records).

Figure 5: FACPL Policy Decision Point
The implementation7 of the FACPL language is made in
Java. The workflow of such a tool is graphically depicted
in Figure 5. This tool “compiles” a policy written in the
syntax presented in Sec. 3.3 into a Java class following the
semantics rules defined in [12]. Thus, a repository storing
some policies, and the related PDP, consists of a Java archive
containing all the Java classes generated from the policies.
Similarly, an access request is compiled into a Java class. A
policy decision is then computed by executing the generated
policy code with the request code passed as parameter to an
entry method. The generated PDP can be then integrated
as a module into the code of the main Web application,
possibly obtained from other UWE models.

5. RELATED WORK
This work is related to engineering approaches, which ad-
dress the specification of secure systems, and to works on
XACML’s formalization. UMLsec [9] is a UML extension
emphasizing on secure protocols. Its UML profile includes
stereotypes for security concepts like authenticity, freshness,
and secure information flow. In particular, the use of con-
straints gives criteria to evaluate the security aspects of a
system design. UMLsec models compared to UWE ones are
very detailed, therefore less appropriate for modeling web
applications at a high-level of abstraction. SecureUML [11]
is a UML-based modeling language for secure, distributed
systems. It provides modeling elements for role-based access
control and the specification of authorization constraints.
In UWE, we use dependencies instead of the SecureUML
association classes, which avoids the use of method names
with an access related return type. However, UWE’s basic
rights models can easily be transformed into a SecureUML
representation. UACML [16] provides a UML-based meta-
metamodel for access control, which can be specialized into
various meta-models for, e.g., role-based access control or
mandatory access control. Conversely to UWE, the result-
ing diagrams are overloaded as subjects like users are not
modeled separately. ActionGUI [1] is a MDD approach that
uses SecureUML and ComponentUML to model access con-
trol rules, and a GUI model enriched with OCL constraints.
7Source and binary code of the FACPL implementation are
available from http://rap.dsi.unifi.it/xacml_tools

http://rap.dsi.unifi.it/xacml_tools

It provides a formal specification of functionalities and ac-
cess control policies. Compared to UWE, ActionGUI re-
stricts the web application to a smaller set of features (e.g.
menus are not available).

Regarding works on XACML’s formalization, a largely fol-
lowed approach is based on ‘transformational’ semantics
(see, e.g., [10, 4, 3]). The target formalisms have in their
turn their own semantics. This makes it more difficult to
understand the formal meaning of policies with respect to
FACPL formal semantics, which directly associates math-
ematical objects (i.e. 4-tuples of request sets) to policies.
These concepts are easier and more understandable than
terms like, e.g., description logic expressions. In fact,
FACPL semantics has been conveniently exploited to drive a
formal-based XACML implementation (cf. Sec. 4). It differs
from the many XACML implementations (see, e.g., the OA-
SIS website) because it enables the development of reasoning
tools. Besides, when policies do not change frequently, our
implementation enables a faster decision because it does not
need to parse the same XML tree at each request, but just to
instantiate a Java object already in the classpath. In more
dynamic scenarios, however, the generation of the PDP may
add a constant time to policy evaluation. Finally, the use
of a non-XML syntax for XACML is not new; e.g., a syn-
tax similar to that of FACPL is proposed in [15], while a
‘display’ notation that combines a graphical interface with
a natural language like format is introduced in [17]. But,
again, such approaches do not rely on a formal semantics.

6. CONCLUSIONS AND FUTURE WORK
To support software engineers in the task of specifying and
analyzing access control aspects of web applications, we put
forward the use of graphical tools and of a policy language
with mathematical foundations. Specifically, the main con-
tribution of this work is a toolchain comprising a graphical
editor for modeling security aspects, tools for transform-
ing access control policies from the graphical notation to
XACML and from this to FACPL, and a compiler for get-
ting Java classes from FACPL policies.

We can currently transform a subset of OCL constraints
in XACML, but we plan to exploit XACML obligations to
deal with the whole set. Such constraints will be separately
evaluated and, thus, the request will be authorized if the
policy decision is positive and all obligations (i.e. the re-
lated OCL constraints) hold. We also intend to integrate
tools for analyzing policies and generating test cases, such
as Margrave [8] and X-CREATE [2], respectively; our inter-
mediate transformation in XACML enables this possibility.
We plan to compare the performance of our tool with those
of other implementations based both on XACML, such as
Axis2’s XACMLight8 and Sun’s XACML9, and on differ-
ent approaches to access control, such as Spring Security10.
Finally, our work relies XACML 2.0, but we plan to also
support the upcoming version.
8XACMLight. http://xacmllight.sourceforge.net
9Sun’s XACML. http://sunxacml.sf.net

10Spring Security project. http://www.springsource.org/
spring-security

Acknowledgments. This work has been partially spon-
sored by the EU projects ASCENS, FP7 257414, and NES-
SoS, NoE 256980.

7. REFERENCES
[1] D. Basin, M. Clavel, and M. Egea. Automatic

Generation of Smart, Security-Aware GUI Models. In
ESSoS, LNCS 5965, pages 201–217. Springer, 2010.

[2] A. Bertolino, S. Daoudagh, F. Lonetti, and
E. Marchetti. The X-CREATE Framework - A
Comparison of XACML Policy Testing Strategies. In
WEBIST, pages 155–160. SciTePress, 2012.

[3] J. Bryans. Reasoning about XACML Policies using
CSP. In SWS, pages 28–35. ACM, 2005.

[4] J. Bryans and J. S. Fitzgerald. Formal Engineering of
XACML Access Control Policies in VDM++. In
ICFEM, LNCS 4789, pages 37–56. Springer, 2007.

[5] M. Busch, A. Knapp, and N. Koch. Modeling Secure
Navigation in Web Information Systems. In BIR,
LNBIP 90, pages 239–253. Springer, 2011.

[6] M. Busch and N. Koch. MagicUWE — A CASE Tool
Plugin for Modeling Web Applications. In ICWE,
LNCS 5648, pages 505–508. Springer, 2009.

[7] S. De Capitani di Vimercati, P. Samarati, and
S. Jajodia. Policies, models, and languages for access
control. In DNIS, LNCS 3433, pages 225–237.
Springer, 2005.

[8] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE, pages
196–205. ACM, 2005.

[9] J. Jürjens. Secure Systems Development with UML.
Springer, 2005.

[10] V. Kolovski, J. A. Hendler, and B. Parsia. Analyzing
Web Access Control Policies. In WWW, pages
677–686. ACM, 2007.

[11] T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven
Security. In UML, LNCS 2460, pages 426–441.
Springer, 2002.

[12] M. Masi, R. Pugliese, and F. Tiezzi. Formalisation
and Implementation of the XACML Access Control
Mechanism. In ESSoS, LNCS 7159, pages 60–74.
Springer, 2012.

[13] OASIS XACML TC. eXtensible Access Control
Markup Language (XACML) version 2.0, 2005.

[14] OMG. Object Constraint Language (OCL) v2.3.1,
2012. http://www.omg.org/spec/OCL/2.3.1/.

[15] OpenLiberty. Easy XACML syntax with
OpenAzPolicyReader, 2010. From OpenAz maillist.
http://lists.openliberty.org/pipermail/openaz/
2010-July/000074.html.

[16] N. Slimani, H. Khambhammettu, K. Adi, and
L. Logrippo. UACML: Unified Access Control
Modeling Language. In NTMS 2011, pages 1–8, 2011.

[17] B. Stepien, A. P. Felty, and S. Matwin. A
Non-technical User-Oriented Display Notation for
XACML Conditions. In MCETECH, LNBIP 26, pages
53–64. Springer, 2009.

http://xacmllight.sourceforge.net
http://sunxacml.sf.net
http://www.springsource.org/spring-security
http://www.springsource.org/spring-security
http://www.omg.org/spec/OCL/2.3.1/
http://lists.openliberty.org/pipermail/openaz/2010-July/000074.html
http://lists.openliberty.org/pipermail/openaz/2010-July/000074.html

	Introduction
	Modeling Access Control
	UML-based Web Engineering (UWE)
	The HospInfo Case Study
	The MagicUWE CASE Tool

	Policy Transformation
	The XACML Standard
	Model Transformations to XACML
	The FACPL Policy Language

	Policy Evaluation
	Related Work
	Conclusions and Future Work
	References

