
Formalisation and Implementation of the
XACML Access Control Mechanism?

Massimiliano Masi12, Rosario Pugliese2, and Francesco Tiezzi3

1 Tiani “Spirit” GmbH, Guglgasse, 6 - 1110 Vienna, Austria
2 Università degli Studi di Firenze, Viale Morgagni, 65 - 50134 Firenze, Italy
3 IMT Advanced Studies Lucca, Piazza S. Ponziano, 6 - 55100, Lucca, Italy

Abstract. We propose a formal account of XACML, an OASIS stan-
dard adhering to the Policy Based Access Control model for the specifica-
tion and enforcement of access control policies. To clarify all ambiguous
and intricate aspects of XACML, we provide it with a more manageable
alternative syntax and with a solid semantic ground. This lays the basis
for developing tools and methodologies which allow software engineers to
easily and precisely regulate access to resources using policies. To demon-
strate feasibility and effectiveness of our approach, we provide a software
tool, supporting the specification and evaluation of policies and access
requests, whose implementation fully relies on our formal development.

Keywords: PBAC, XACML, formal semantics, CASE tools

1 Introduction

Nowadays, web services are increasingly used by enterprises and organizations
to expose their data to business partners. In this context, resources and services
are spread among different administrative domains, thus controlling accesses to
them has become a crucial issue. Access control mechanisms are currently used to
mitigate the risks of unauthorized access to resources and systems, which could
jeopardise the secrecy of sensitive data and cause loss of competitive advantages.
These mechanisms may take several forms, use different technologies and involve
varying degrees of complexity. Anyway, they are implementations of one of the
several access control models proposed in the literature (see, e.g., [1,2]).

We focus on the Policy Based Access Control (PBAC) model [2], that is by
now the de-facto standard model for enforcing access control policies in service-
oriented architectures. In this model, a resource is governed by a document that
exactly specifies what subject credentials and requirements must be fulfilled in
order to obtain access. A widely used implementation of PBAC is given by the
eXtensible Access Control Markup Language (XACML) [3], an OASIS standard
now at version 2.04. It defines a language for the definition of policies and access
requests, and a workflow to achieve policy enforcement. XACML is currently

? This work has been partially sponsored by the EU project ASCENS (257414).
4 We will refer from now on to [3] as the standard.

2 M. Masi, R. Pugliese and F. Tiezzi

used as a basis for enforcing access control in many large scale projects (see,
e.g., [4,5]) and standards (see, e.g., [6,7]).

However, designing XACML access control policies is a difficult and error-
prone task. The language has an XML syntax which makes writing XACML
policies awkward by using common editors. To make the definition of XACML
policies easier also for those end users that are not accustomed with the complex-
ity of the overall policy language, many companies have equipped their products
with ad-hoc policy editors (e.g. [8,9]). Such editors are certainly suitable to de-
velop simple and repetitive policies, but might turn out to be cumbersome and
ineffective when dealing with complex policies as indeed they tend to hide all
the possibilities available in the policy language. Most of all, XACML comes
without a formal semantics. The standard is written in prose and contains quite
a number of loose points that may give rise to different interpretations and lead
to different implementation choices. Some of these loose points are due to an ex-
tensive use of the keyword “SHOULD”, as per the IETF rfc2119 [10], to indicate
recommended requirements that can be for some reason ignored. This leaves the
difficult task of understanding the full implications of the various choices to the
implementers. Of course, this has to be avoided, since otherwise the portability of
XACML policies across different platforms would be considerably undermined.

In this paper we introduce a formal semantics of XACML 2.05 that clarifies
all ambiguous and intricate aspects of the standard. To hide the complexity in-
troduced by XML, we propose an alternative syntax. This way, we get a tiny
language with solid mathematical foundations that lays the basis for develop-
ing tools and methodologies that can be easily used by software engineers to
precisely define access controls policies on resources. To demonstrate feasibility
and effectiveness of our approach, by relying on the formal semantics, we have
implemented our language using Java. We have thus obtained a software tool
that supports the specification and evaluation of policies and access requests.

Related work. As a result of the widespread use of XACML in (web) service-
oriented systems and international projects, many attempts of formalisation have
been made. A largely followed approach is based on ‘transformational’ seman-
tics, where XACML policies are translated into terms of some formalism. For
example, [11] uses description logic expressions as target formalism, [12] exploits
the process algebra CSP [13], and [14] the model-oriented specification language
VDM++ [15]. The main advantage of this approach is the possibility of analysing
policies by means of off-the-shelf reasoning tools that may be already available
for the considered formalisms. From the semantics point of view, this approach
provides some alternative high-level representations of policies, which in their
turn have their own semantics. This makes it more difficult to understand the
formal meaning of policies with respect to our formal semantics, which directly
associates mathematical objects (i.e. 4-tuples of request sets) to policies. These
concepts are easier and more understandable than terms, like e.g. description

5 At the time of writing, the new version XACML 3.0 is under first review and, hence,
is continuously changing. We suppose that a full adoption of this new version in
production projects will take quite some time.

Formalisation and Implementation of XACML 3

logic expressions, resulting from automatic translations, also because such trans-
lations unavoidably produce terms more complex than necessary. Therefore, our
semantics can be conveniently exploited by software engineers to drive XACML
implementations. At the same time, its mathematical foundations enable the
development of reasoning tools (as we briefly discuss in Section 6).

A similar approach is proposed in [16], where the policies are first specified
by means of the description language RW [17], then are analysed through a
model checking technique, and finally are translated in XACML. Advantages
and disadvantages with respect to our approach are as before.

Other formalisation approaches, more similar to ours, defines the semantics
of XACML policies in a more direct way. For example, [18] proposes a semantics
based on (multi-terminal) binary decision diagrams, which permit efficiently car-
rying out the proposed analysis techniques (i.e. property verification and change-
impact analysis), but are not suitable as an implementation guide. Instead, [19]
formalises a subset of XACML, called Core XACML. The semantics is given
through an inductively defined policy evaluation function. Differently from our
approach, each policy is evaluated only w.r.t. a single request and, most of all,
Core XACML ignores some important XACML features, such as rule conditions,
matching functions, some combining algorithms, and the indeterminate value.

There are by now many XACML implementations (see e.g. [20]). In partic-
ular, SUN XACML [21] and HERASAF [22], that are widely used in software
in production, implement a Policy Decision Point (PDP) and a library for the
development of Policy Enforcement Point (PEP)s. Differently from our imple-
mentation, they parse policies in XML format deployed in the policy repository.
Moreover, they evaluate each request by visiting parts of the generated DOM
tree, while we evaluate the requests by executing Java classes implementing
the semantics representations of the policies. XEngine [23] is another notable
implementation. It aims at highly efficient request processing, achieved by con-
verting XACML policies into numerical representations. Instead, our main goal
is the development of an XACML implementation driven by a formal seman-
tics. Another implementation of an access control mechanism is PERMIS [24],
a modular infrastructure specifically devised for Grid systems and integrated
in modern toolkits (like, e.g., [25,26]). However, PERMIS relies on an ad-hoc,
non-standard policy language which is less expressive than XACML [27].

To sum up, differently from related works, our formalisation has a twofold
aim: it serves as a guide for implementers and, at the same time, paves the way
for the development of analysis tools.

Summary of the rest of the paper. In Section 2, we give a glimpse of the XACML
standard by describing the underlying access control model and the main fea-
tures of the policy language. In Section 3, we introduce an alternative syntax
for XACML, which we then use in Section 4 as the basis to define the formal
semantics. We illustrate our approach through an example from an healthcare
project. In Section 5, we describe our Java-based implementation of the formal
semantics. Finally, in Section 6, we touch upon directions for future work.

4 M. Masi, R. Pugliese and F. Tiezzi

2 The XACML standard

In the access control model underlying XACML, each resource can be paired
with one or more policies, namely XML documents expressing the capabilities
that a requestor needs to have for accessing the resource. Specifically, policies
and policy sets are retrieved from a Policy Administration Point (PAP) by a
PDP, which is on duty to decide whether to give access to resources or not. The
policies and policy sets retrieved by the PDP represent the complete policy for
the specified resources.

A request to access a resource is created by a PEP, which reuses claims within
the service invocation made by an access requester. PEPs can have many different
forms, e.g. they may be part of a remote-access gateway, a Web server, an email
user-agent, etc. Thus, we cannot expect that in an enterprise all PEPs issue
access requests to a PDP directly in a common format. Therefore, the requests
and responses handled by the PDP must be converted in a canonical form, i.e. the
so-called XACML context. The obvious benefit of this approach is that policies
may be written and analyzed independently of the specific environment in which
they have to be enforced.

The authorization decision is made by the PDP by checking the matching
between values of the request and values from the retrieved policies. The decision
taken by the PDP can be one among permit, deny, not-applicable and indetermi-
nate: the meaning of the first two values is obvious, while the third means that
the PDP does not have any policy that applies to the request and the fourth
means that the PDP is unable to evaluate the access request (reasons for such
inability include, e.g., missing attributes, network errors, evaluation errors).

Let us now consider the languages for expressing policies and requests pro-
vided by the standard. The basic element of the policy language is Policy. A
Policy is composed of a Target, which identifies the set of capabilities that the
requestor must expose, and some Rules. Every Rule contains the facts for the
access control decision and has an Effect, which can be either Permit or Deny. A
Policy also specifies a combining algorithm that defines what is the final decision
for a request when there are (permit/deny) conflicts in the rule decisions.

A Target is composed of four sub-elements: Subjects, Actions, Resources, and
Environments. Each category is composed of a set of target elements, each of
which contains an attribute identifier, a value and a matching function. Such
information is used to check whether the policy is applicable to a given request.
Specifically, the matching function retrieves a value from the designed attribute
in the request and matches it with the values specified in the target element, ac-
cording to the function’s semantics. If, for all four categories, at least a matching
of a target element succeeds, then the policy is applicable to the request.

Besides the Effect, a Rule may specify a Target and some Conditions, i.e. a set
of standardly-defined functions that operate on values coming from the request.
The Effect is propagated to the upper level policy if the Target of the rule matches
and if the Conditions are satisfied.

Policies can be combined together into a PolicySet, which specifies an algo-
rithm that defines the policy set decision in case the contained policies cause

Formalisation and Implementation of XACML 5

permit/deny conflicts. A PolicySet also contains a Target, which is checked for
matching with the access request before the targets of the included policies are.

A Policy/PolicySet can also contain a set of Obligations indicating the actions
that the PEP shall enforce after receiving the response. However, since such
actions do not play any role in the evaluation procedure, Obligations are not
considered in this paper.

An XACML Request, instead, is the request in a canonical form (created by
the PEP or the context handler) made of attribute/value pairs. The elements
specifying such pairs are grouped according to the same four categories used for
the policies, i.e. Subject, Action, Environment and Resource.

3 An alternative syntax of XACML

The XACML standard, as explained in the previous section, defines an XML-
based language that permits both writing policies [3, Section 5] and representing
contexts (i.e. access requests and responses) [3, Section 6] in a way independent
of the specific formats used by PEPs. However, the XML syntax of this language,
on the one hand, can make the task of writing policies difficult and error-prone,
and, on the other hand, is not adequate for formally defining the semantics
of the language and reasoning on it. Therefore, in this section, we provide an
alternative syntax of the XACML policy language through a BNF-like grammar
(a similar grammar for context representation can be found in [28]).

Our alternative syntax of the XACML policy language is reported in Table 1.
As usual, square brackets are used to indicate optional items (that is, everything
that is set within the square brackets may be present just once, or not at all).

The manipulable values, ranged over by value, can have simple types (e.g.
boolean, string, integer) or complex types (i.e. the values are XML elements
that may contain other elements and/or attributes). For the sake of simplicity,
we present an untyped version of the language, because the treatment of types
would be standard and, anyway, their addition is not relevant for our studies.

To base an authorization decision on some characteristics of the request, like
e.g. the subject’s identity or the resource’s identifier, XACML provides facilities
to identify specific values (called attribute values) contained in the request con-
text. This approach is supported by means of attribute designators and attribute
selectors. The former ones are pointers to specific attributes of targets (e.g. sub-
jects or resources) in the request context, while the latter ones provide a more
general retrieval mechanism based on XPath [29] expressions over the request
context. For the sake of presentation, in our XACML’s syntax, we represent both
designators and selectors by means of (structured) names, ranged over by name.
For example, the following designator (drawn from [28])

<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#string" />

is represented by the name subject.role.
To permit specifying conditions, the language is also equipped with expres-

sions, ranged over by expression, which are defined by functions that operate

6 M. Masi, R. Pugliese and F. Tiezzi

Table 1. XACML policies syntax

PDPpolicies ::= {Palg ;Policies} (Retrieved policies)

Palg ::= only-one-applicable | Ralg (Policy-combining alg.)

Ralg ::= deny-overrides | permit-overrides (Rule-combining alg.)
| first-applicable
| ordered-deny-overrides
| ordered-permit-overrides

Policies ::= (Policies)
{Palg ; target :{ [Targets] } ;Policies} (policy set)

| 〈Ralg ; target :{ [Targets] } ; rules :{Rules}〉 (policy)
| Policies Policies

Targets ::= MatchId(value,name) (Targets)
| Targets ∨ Targets
| Targets ∧ Targets | Targets u Targets

MatchId ::= string-equal | integer-equal (Match functions)
| string-regexp-match
| integer-greater-than | . . .

Rules ::= (Effect [; target :{Targets }] (Rules)
[; condition :{expression}])

| Rules Rules

Effect ::= permit | deny (Effects)

on values and names. The complete list of functions provided by XACML is
reported in [3, Appendix A.3], while the examples shown in the rest of the paper
will exploit the syntax of expressions (reported in [28]) implemented by the tool
described in Section 5.

For efficiency of evaluation and ease of management, the overall security
policy in force across an enterprise is expressed as multiple independent compo-
nents. Then, the top-level term {Palg ;Policies} of the XACML policy syntax
is a simplified form of policy set (i.e. without target). Given a request, the PDP
evaluates the policies in Policies (possibly retrieved from a repository or a PAP)
as if they are organised as a single policy set, according to a specified policy-
combining algorithm Palg. The algorithms provided by XACML for combining
the values resulting from policies evaluation – which can be permit, deny, not-
applicable and indeterminate – are the following (we refer to [28] for a more precise
account):

– deny-overrides: if any policy in the considered set evaluates to deny, then the
result of the policy combination is deny;

– permit-overrides: it is similar to the previous algorithm, but this time permit
takes precedence over the other results;

– first-applicable: the combined result is that resulting from the evaluation the
first policy whose target is applicable to the request;

– ordered-deny-overrides/ordered-permit-overrides: like deny-overrides/permit-
overrides, but policies are evaluated in the same order as they occur;

– only-one-applicable: it only applies to policies/policy sets and ensures that
one and only one policy is applicable by virtue of its target.

Formalisation and Implementation of XACML 7

The policies that can be evaluated by the PDP, and hence aggregated by a
policy set, can be simple policies of the form 〈Ralg ; target :{ [Targets] } ; rules :
{Rules}〉 or, recursively, policy sets of the form {Palg ; target :{ [Targets] } ;
Policies}. Both polices and policy sets specify the algorithm for combining the
results of the evaluation of the contained elements and a target to which the
policy/policy set applies. The algorithms for simple policies are the same as
those for policy sets (but for only-one-applicable) and behave similarly.

A target permits identifying the set of access requests that a rule, a pol-
icy or a policy set is intended to evaluate. Specifically, a target specifies the
set of subjects, resources, actions and environments to which the corresponding
rule/policy/policy set applies. In the original XML-based syntax of XACML,
the target element may contain four elements, one for each of the above cate-
gories. However, the evaluation of these separate blocks of information shall be
performed in the same way. In fact, in the XACML specification document, the
evaluations of subjects, resources, actions and environments are defined by the
same ‘match table’ [3, Section 7.6] and, also, the set of designators for each cat-
egory is not fixed in advance. Therefore, to obtain a more compact notation, we
have decided to represent a target as an expression built from match elements,
i.e. terms of the form MatchId(value,name), by exploiting an operator for logical
disjunction, ∨, and two operators for logical conjunction, ∧ and u. Each match
element spells out a specific value that the subject/resource/action/environment
in the decision request (identified by a name) must match, according to a given
matching function. Anyway, this target representation does not lead to a loss of
information, because names can be structured and hence, as shown before in the
designator example, can include the corresponding category. In a match element,
MatchId specifies the (boolean) matching function to be used to compare the
given literal value with the value of the attribute identified by the given name.
XACML supports a wide range of (standard) matching functions (we refer to
[3, Appendix A.3] for a complete account and to [28] for the list of functions
supported by the tool described in Section 5). Notably, if the target of a policy
(resp. policy set) is empty, the policy (resp. policy set) applies to any request
context. Instead, if the target of a rule is absent, the rule inherits the target of
its enclosing policy.

The three logical operators used for expressing targets are defined over the
set {match, no-match, indeterminate}. Basically, they behave as standard con-
junction and disjunction operators over {match, no-match} (where match and
no-match are dealt with as true and false, respectively) and the behaviours of
the two conjunction operators ∧ and u only differ for the treatment of the value
indeterminate. The decreasing order of precedence among them is as follows: ∧,
∨ and u. A disciplined use of structured names and these logical operators per-
mits properly expressing XACML targets: a target must be a term of the form
Subjects u Resources u Actions u Environments, where each subterm,
say Subjects, must have the form Subject1 ∨ Subject2 ∨ . . . ∨ Subjectn
and, finally, each Subjecti must have the form MatchId1(value1,name1) ∧ . . .∧

8 M. Masi, R. Pugliese and F. Tiezzi

MatchIdm(valuem,namem). We believe our approach has many advantages like,
e.g., a more compact syntax and a more intuitive and clearer semantics.

A single policy contains a (non-empty) set of rules of the form (Effect
[; target :{Targets }][; condition :{expression}]), each specifying: 1. an effect,
which indicates the rule-writer’s intended consequence of a positive evaluation
for the rule (the allowed values are permit and deny), 2. a rule target, which re-
fines the applicability established by the target of the enclosing policy, and 3. a
condition, which is a boolean expression that may further refine the applicability
of the rule. Notably, in a rule, target and condition may be absent.

Regarding context requests, they are represented as terms of the form
request :{Attributes }, where Attributes consists of a set of (name,value) pairs.
Such information indicate the subjects associated to the request, the resources
for which the access is being requested, the action to be performed on the re-
sources and the environmental properties. Again, to avoid dealing with separate
blocks of information, we exploit structured names. As a matter of notation, we
will use Rall to denote the set of all possible requests.

We conclude by showing the syntax of a policy6, which expresses the patient
privacy consent [30] for the EU Project epSOS [4]. In this project, each role (e.g.
doctor, nurse, pharmacist) has permissions for performing a certain coded ac-
tion [31] for a certain purpose (e.g. healthcare treatment, statistics, emergency).

〈permit-overrides ;
target :{ string-equal(“medical doctor”, subject.role)

∧ string-equal(“TREATMENT”, subject.purposeofuse)
u string-equal(“34133-9”, resource.resource-id) } ;

rules :{(permit ; target :{ string-equal(“Read”, action.action-id) } ;
condition :{ string-subset(

string-bag(“PRD-003”,“PRD-005”,“PRD-010”,“PRD-016”),
subject.permission) })

(deny) } 〉

The policy specifies a subject and a resource in its target, according to which the
policy applies to requests issued by a medical doctor with the purpose of accessing
to a resource with a code identifier 34133-97 for an healthcare TREATMENT. If
these capabilities are met, the rules enclosed in the policy are evaluated. The
first rule has effect permit if the requestor aims at performing a Read action
and has at least the permissions PRD-003, PRD-005, PRD-010 and PRD-0168 for
accessing the resource. The second rule has always effect Deny and is combined
with the previous one in such a way that if the first rule evaluates to Permit then
the policy permits the access to the resource, otherwise the access is denied.

6 Due to lack of space, the corresponding XML description is relegated to [28].
7 In the international code system LOINC [32], 34133-9 identifies a patient summary.
8 These permissions are values from the Hl7 RBAC catalogue [31] grouped together

by using a bag, i.e. an unordered collection that may contain duplicate values.

Formalisation and Implementation of XACML 9

4 XACML formal semantics

We present in this section a semantics of XACML policies that formalises the
informal one provided by the the standard.

Our semantics is given in a denotational style, i.e. it is defined by a function
[[·]]R that, given a policy/policy set (or a PDPpolicies term) and a set R of
context requests (with R ⊆ Rall), returns a decision tuple of the form

(permit : Rp ; deny : Rd ; not-applicable : Rn ; indeterminate : Ri)

where Rp∪Rd∪Rn∪Ri = R. Intuitively, R is partitioned into four sets according
to the results of the requests evaluation. Notably, R is a subset of the set Rall

of all requests, thus it can contain e.g. all possible requests, only requests with a
given structure or a single request. The definition of [[·]]R relies on an auxiliary
function (| · |)R that, given a target, returns a matching tuple of the form

(match : Rm ; no-match : Rn ; indeterminate : Ri)

where Rm ∪ Rn ∪ Ri = R, i.e. R is partitioned according to the results of the
target evaluation. We will use a projection operator · ↓v that, given a tuple,
returns the set corresponding to the value v. Moreover, we will use r to denote
a context request and, when convenient, we shall regard r as a set, writing
e.g. (name,value) ∈ r to mean that (name,value) is an attribute of the request
r. As shown in [28], this representation of requests easily permits dealing with
multivalued attributes and with the fact that attribute designators and selectors
may select bags of values from a request context.

The semantics of a match element MatchId(value,name) of a target is a
matching tuple determined by comparing value with the values within the re-
quest attributes by means of the matching function MatchId .

(|MatchId(value,name)|)R =
(match : {r ∈ R | ∃ (name,value′) ∈ r : MatchId(value,value′) = true};

no-match : {r ∈ R | ∀ (name,value′) ∈ r :
MatchId(value,value′) = false};

indeterminate : {r ∈ R | ∃ (name,value′) ∈ r :
MatchId(value,value′) = indeterminate

∧ 6∃ (name,value′) ∈ r :
MatchId(value,value′) = true})

Notably, the use of the universal quantification in the definition of the no-match
set implies that requests that do not contain attributes named name are inserted
into the no-match set9. The definitions of the matching functions supported by
XACML are reported in [3, Appendix A.3]. For example, the function string-equal
returns true if and only if both argument values are strings of equal length and are

9 We assume that the MustBePresent parameter of every selector/designator has al-
ways the default value false, which prescribes to return an empty bag when the
specified attribute is absent from the request.

10 M. Masi, R. Pugliese and F. Tiezzi

equal byte-by-byte according to the function integer-equal (defined by the IEEE
standard [33]); otherwise the function string-equal returns false. The matching
tuples returned by the evaluation of the match elements within a given target
are then combined according to the semantics of the operators ∨, ∧ and u, as
e.g. in

(|Targets1 ∨ Targets2|)R =
(match : (|Targets1|)R ↓match ∪ (|Targets2|)R ↓match;

no-match : (|Targets1|)R ↓no-match ∩ (|Targets2|)R ↓no-match;

indeterminate : ((|Targets1|)R ↓indeterminate \ (|Targets2|)R ↓match)
∪ ((|Targets2|)R ↓indeterminate \ (|Targets1|)R ↓match))

The semantics of a rule with effect permit is defined as follows:

[[(permit ; target :{Targets }; condition :{expression})]]R =

(permit : {r ∈ (|Targets|)R ↓match | expression · r = true} ;
deny : ∅ ;
not-applicable : {r ∈ (|Targets|)R ↓match | expression · r = false}

∪ (|Targets|)R ↓no-match ;
indeterminate : {r ∈ (|Targets|)R ↓match | expression · r = indeterminate}

∪ (|Targets|)R ↓indeterminate)

where expression · r denotes the evaluation of the expression expression w.r.t. the
request r according to the function definitions reported in [3, Appendix A.3].
The semantics of a rule with effect deny is similar, except that in the decision
tuple the permit and deny sets are swapped. Notably, in a rule, the target and the
condition are optional; if one or both of them are absent, the semantics of the
rule is determined by the above definitions where expression · r is true for any r if
the expression is omitted, and (|Targets|)R ↓match= R, (|Targets|)R ↓no-match= ∅
and (|Targets|)R ↓indeterminate= ∅, if the target is omitted.

The semantics of a policy is defined as follows:

[[〈Ralg ; target :{Targets } ; rules :{Rules}〉]]R =

(permit : Ralg(Rules)Rm
↓permit ;

deny : Ralg(Rules)Rm
↓deny ;

not-applicable : Ralg(Rules)Rm
↓not-applicable ∪ (|Targets|)R ↓no-match ;

indeterminate : Ralg(Rules)Rm ↓indeterminate ∪ (|Targets|)R ↓indeterminate)

where Rm stands for (|Targets|)R ↓match. Basically, the requests for which the
policy’s target does not match are evaluated as not-applicable, while those for
which the policy’s target is indeterminate are evaluated as indeterminate. The re-
maining requests, i.e. those for which the policy’s target matches, are partitioned
by applying the algorithm Ralg specified by the policy to the policy’s rules. Sim-
ilarly to the evaluation of rules, if the policy’s target is empty then the policy is
evaluated as above by letting (|Targets|)R ↓match= R, (|Targets|)R ↓no-match= ∅
and (|Targets|)R ↓indeterminate= ∅. Functions Ralg(Rules)R, given a set Rules of

Formalisation and Implementation of XACML 11

rules and a set R of requests, return decision tuples of the form

(permit : {r ∈ R | Ralg(Rules, r) = permit} ;
deny : {r ∈ R | Ralg(Rules, r) = deny} ;
not-applicable : {r ∈ R | Ralg(Rules, r) = not-applicable} ;
indeterminate : {r ∈ R | Ralg(Rules, r) = indeterminate})

Basically, such tuples are calculated by relying on the auxiliary functions
Ralg(Rules, r) whose definitions are given in [3, Appendix C].

The semantics definition of a policy set is similar to that of a single policy:

[[{Palg ; target :{Targets } ;Policies}]]R =

(permit : Palg(Policies)Rm ↓permit ;
deny : Palg(Policies)Rm ↓deny ;
not-applicable : Palg(Policies)Rm

↓not-applicable ∪ (|Targets|)R ↓no-match ;
indeterminate : Palg(Policies)Rm

↓indeterminate ∪ (|Targets|)R ↓indeterminate)

where Rm stands for (|Targets|)R ↓match, and function Palg(Policies)R returns
a decision tuple calculated by applying the algorithm Palg to the enclosed poli-
cies. It is worth noticing that the definitions of the policy combining algorithms
slightly differ from the corresponding rule combining algorithms.

Finally, given a set R of access requests, the semantics of a top-level term
{Palg ;Policies} is determined by applying the definition for policy sets and by
letting Rm = R, (|Targets|)R ↓no-match= ∅, and (|Targets|)R ↓indeterminate= ∅.

We conclude the section by showing how the semantics definitions presented
so far apply to the policy example from the epSOS project, introduced in Sec-
tions 3. Given a set R of requests, the permit set of the decision tuple returned
by the application of function [[·]]R to this policy is as follows:

{r ∈ R | (subject.role,“medical doctor”) ∈ r
∧ (subject.purposeofuse,“TREATMENT”) ∈ r
∧ (resource.resource-id,“34133-9”) ∈ r
∧ (action.action-id,“Read”) ∈ r
∧ (string-subset(string-bag(“PRD-003”,“PRD-005”,“PRD-010”,“PRD-016”),

subject.permission)) · r = true }

As expected, these are all those requests in R that are issued by a medical
doctor, with appropriate permissions, for read accessing a patient summary for
treatment purpose. The deny set of the decision tuple consists of all requests in
R that match with the policy’s target but are not in the set above, i.e. they do
not satisfy the target and condition of the first rule. The remaining requests in R
belong to the not-applicable set, since the policy never evaluate to indeterminate.
We refer the interested reader to [28] for a step-by-step computation of the above
decision tuple and further examples.

5 Tools

The implementation of the formalisation presented in the previous sections is
made in Java, by also using the ANTLR tool [34] for parsing generation. Our

12 M. Masi, R. Pugliese and F. Tiezzi

tool “compiles” a policy written in the syntax proposed in Section 3 into a Java
class following the semantics rules defined in Section 4. Thus, a repository storing
some policies consists of a Java archive containing all the Java classes generated
from the policies. A policy decision is then computed by executing the generated
code with the requests passed as parameters to an entry method.

For long-lasting repositories where policy changes are infrequent, this ap-
proach is convenient, since no policy’s XML Document trees need to be loaded
in memory and parsed for each request. Instead this approach does not fit well
in situations where the policy repository changes on-the-fly.

Specifically, we have defined two separate parsers: one for the proposed
XACML syntax and another one for the rule condition expressions. Each parser
is defined so that, every time a syntactic category is identified within a policy
term, the corresponding Java method is included into the class under genera-
tion. The generated class exploits three lists for representing the matching tuples
computed during the evaluation of targets. Indeed, when a target is found, the
corresponding matching function is retrieved from a specific data structure, i.e. a
‘function table’ containing the code implementing all functions defined by the
standard. The operators ∧, ∨, and u are used to maintain the lists of requests.

Rules are created according to the corresponding rule combining algorithm:
if targets and conditions are satisfied, the algorithm is applied and the deci-
sion tuples are returned to the caller. Here, to deal with conditions, a factory
method is used to load the current implementation of the expression evaluator.
The strategy used in this version of the tool follows the same paradigm as the
XACML syntax implementation: when a new condition is satisfied, a Java file
is created on-the-fly and compiled. Policies and policy sets are implemented in
a way similar to the implementation of rules, relying on the policy-combining
algorithms. When targets, rules, and policies are evaluated, the resulting lists
representing the decision tuples will be returned to the caller.

A web interface to the tool is available online at http://rap.dsi.unifi.it/
xacml_tools. It permits to practice with the implementation by using sample
policies. The web interface gives the possibility to create XACML requests and,
then, to obtain the decision computed by the engine.

6 Concluding remarks

We defined a formal semantics of XACML that aims at clarifying all ambigu-
ous and intricate aspects of the XACML standard and, hence, at conveniently
driving implementations. To demonstrate the feasibility and effectiveness of our
approach, we fully implemented the semantics as a Java tool.

Another significant advantage of our formalisation is that it paves the way for
the development of reasoning tools supporting the analysis of XACML policies.
For example, equivalences and preorders among (syntactically) different policies
could be defined based on their semantics denotations and then used to more
compactly store the policies or to more efficiently compute a decision. Thus,
two policies could be considered as equivalent if their associated decision tuples

http://rap.dsi.unifi.it/xacml_tools
http://rap.dsi.unifi.it/xacml_tools

Formalisation and Implementation of XACML 13

coincide or, simply, have the same permit set (indeed, sometimes it does not
matter the reason why the access is not permitted, as e.g. with a deny-biased
PEP [3, Section 7.1.2] that allows the access if the decision taken by the PDP
is permit and denies the access in all other cases). We leave the investigation of
policy relations as a future work.

We also intend to develop techniques, based on our formal semantics, for
studying the application of the least-privilege concept [35], in order to deter-
mine the requests using the least amount of privilege necessary to satisfy a given
XACML policy. To this aim, we will consider an approach where weights (indi-
cating the access privilege level10) are associated to request data and are used
to identify, within the permit set of the decision tuple associated to the consid-
ered policy, the requests with minimum total weight. We will also exploit our
semantics as a basis for studying separation of duty aspects of XACML policies.

We also plan to extend our Java-based framework with other tools, e.g. for
translating XACML policies written in the original XML format into polices
written in our syntax, and vice versa, and for generating XACML requests, as
variations of a template, to be input by the evaluation tool already available.
We intend to determine the performances of our tool and to compare them with
those of the most notable XACML implementations.

References

1. Ferraiolo, D., Kuhn, R.: Role-based access control. In: NIST-NCSC National
Computer Security Conference. (1992) 554–563

2. NIST: A survey of access control models (2009) http://csrc.nist.gov/news_

events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf.
3. OASIS XACML TC: eXtensible Access Control Markup Language

(XACML) version 2.0 (2005) http://docs.oasis-open.org/xacml/2.0/XACML-2.
0-OS-NORMATIVE.zip.

4. The epSOS project: A european ehealth project http://www.epsos.eu.
5. The Nationwide Health Information Network (NHIN): an American eHealth

Project (2009) http://healthit.hhs.gov/portal/server.pt.
6. OASIS: Cross-Enterprise Security and Privacy Authorization (XSPA) Profile of

XACML v2.0 for Healthcare v1.0 (2009) http://www.oasis-open.org.
7. OASIS Security Services TC: Assertions and protocols for the OASIS security

assertion markup language (SAML) v2.02 (2005) http://docs.oasis-open.org/

security/saml/v2.0/saml-core-2.0-os.pdf.
8. Namli, T., Dogac, A.: Implementation Experiences On IHE XUA and BPPC. Tech-

nical report, Software Research and Development Center, Middle East Technical
University Ankara (December 2006)

9. Universidad de Murcia: UMU-XACML-Editor (2008) http://sourceforge.net/

projects/umu-xacmleditor/.
10. Bradner, S.: Key words for use in rfcs to indicate requirement levels (1997)
11. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:

WWW, ACM (2007) 677–686

10 For example, the privilege level corresponding to datum “head physician” would be
higher than the level of “nurse”, which would be higher than that of “anonymous”.

http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://www.epsos.eu
http://healthit.hhs.gov/portal/server.pt
http://www.oasis-open.org
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://sourceforge.net/projects/umu-xacmleditor/
http://sourceforge.net/projects/umu-xacmleditor/

14 M. Masi, R. Pugliese and F. Tiezzi

12. Bryans, J.: Reasoning about XACML policies using CSP. In: SWS, ACM (2005)
28–35

13. Hoare, C.: Commmunicating Sequential Processes. Prentice-Hall (1985)
14. Bryans, J., Fitzgerald, J.S.: Formal engineering of xacml access control policies in

vdm++. In: ICFEM. Volume 4789 of LNCS., Springer (2007) 37–56
15. Fitzgerald, J., Larsen, P., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs

for Object-oriented Systems. Springer (2005)
16. Zhang, N., Ryan, M., Guelev, D.P.: Evaluating access control policies through

model checking. In: ISC. Volume 3650 of LNCS., Springer (2005) 446–460
17. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems in

XACML. In: FMSE, ACM (2004) 56–65
18. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and

change-impact analysis of access-control policies. In: ICSE, ACM (2005) 196–205
19. Tschantz, M.C., Krishnamurthi, S.: Towards reasonability properties for access-

control policy languages. In: SACMAT, ACM (2006) 160–169
20. OASIS XACML TC: Available XACML Implementations (2011) http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#other. Last visited
21 September 2011.

21. Proctor, S.: SUN XACML (2011) http://sunxacml.sf.net. Last visited 21
September 2011.

22. The Herasaf consortium: HERASAF http://www.herasaf.org.
23. Liu, A.X., Chen, F., Hwang, J., Xie, T.: Xengine: a fast and scalable XACML

policy evaluation engine. In: SIGMETRICS, ACM (2008) 265–276
24. ISSRG: The Modular PERMIS Project http://sec.cs.kent.ac.uk/permis/.
25. Foster, I.T.: Globus toolkit version 4: Software for service-oriented systems. J.

Comput. Sci. Technol. 21(4) (2006) 513–520
26. Barton, T., et al.: Identity federation and attribute-based authorization through

the globus toolkit, shibboleth, gridshib, and myproxy. Technical report, National
Center for Supercomputing Applications, University of Illinois (2006)

27. Chadwick, D.W., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.A.: Permis:
a modular authorization infrastructure. Concurrency and Computation: Practice
and Experience 20(11) (2008) 1341–1357

28. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and Implementation of a Stan-
dard Access Control Mechanism for Web Services (full version). Technical re-
port, Dipartimento di Sistemi e Informatica, Univ. Firenze (2011) Available at
http://rap.dsi.unifi.it/xacml_tools.

29. Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0 (1999) http:

//www.w3.org/TR/xpath.
30. The IHE Initiative: IT Infrastructure Technical Framework (2009) http://www.

ihe.net.
31. Health Level Seven organization: Hl7 standards (2009) http://www.hl7.org.
32. The Regenstrief Institute: Logical observation identifiers names and codes

(LOINC) http://www.loinc.org.
33. IEEE Computer Society: IEEE Standard for Binary Floating-Point Arithmetic

(1985) IEEE Product No. SH10116-TBR.
34. Parr, T.J., Quong, R.W.: ANTLR: A Predicated-LL(k) Parser Generator. Software

Practice and Experience 25 (1994) 789–810
35. Saltzer, J.H.: Protection and the Control of Information Sharing in Multics. Com-

mun. ACM 17 (1974) 388–402

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#other
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#other
http://sunxacml.sf.net
http://www.herasaf.org
http://sec.cs.kent.ac.uk/permis/
http://rap.dsi.unifi.it/xacml_tools
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.ihe.net
http://www.ihe.net
http://www.hl7.org
http://www.loinc.org

	Formalisation of an Access Control Mechanism for Web Services
	Introduction
	The XACML standard
	An alternative syntax of XACML
	XACML formal semantics
	Tools
	Concluding remarks

