Modeling adaptation
with a tuple-based coordination language-

Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese
Universita degli Studi di Firenze

gjondrek@dsi.unifi.it, {loreti,pugliese}@unifi.it

ABSTRACT

In recent years, it has been argued that systems and appli-
cations, in order to deal with their increasing complexity,
should be able to adapt their behavior according to new re-
quirements or environment conditions. In this paper, we
present a preliminary investigation aiming at studying how
coordination languages and formal methods can contribute
to a better understanding, implementation and usage of the
mechanisms and techniques for adaptation currently pro-
posed in the literature. Our study relies on the formal
coordination language KLAIM as a common framework for
modeling some adaptation techniques, namely the MAPE-K
loop, aspect- and context-oriented programming.

Categories and Subject Descriptors

C.1.3 [Other Architecture Styles]: Adaptable architec-
tures; F.3.1 [Theory of computation]: Specifying and
Verifying and Reasoning about Programs

Keywords

Autonomic computing, adaptive systems, aspect- and context-

oriented programming, coordination languages

1. INTRODUCTION

The increasing scale complexity, heterogeneity and dy-
namism of networks, systems and applications have made
computational and information infrastructure brittle, un-
manageable and insecure. This has called for the investi-
gation of an alternate paradigm for designing systems and
applications. One popular vision is that of autonomic com-
puting [21, 25]: computer and software systems can manage
themselves in accordance with high-level guidance from hu-
mans by relying on strategies inspired by biological systems.

*This work has been partially sponsored by the EU project
ASCENS (257414) and by MIUR (PRIN 2009 DISCO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Francesco Tiezzi
IMT Advanced Studies Lucca
francesco.tiezzi@imtlucca.it

Autonomic computing encloses the whole spectrum of ac-
tivities that a system should perform in order to be dynam-
ically and autonomously adaptive. Therefore, an autonomic
system should monitor its state and its components, as well
as the execution context, and identify relevant changes that
may affect the achievement of its goals or the fulfillment of
its requirements. The system should then plan reconfigura-
tions in order to meet the new functional or non-functional
requirements, execute them, and monitor that its goals are
being achieved once again, possibly without any interrup-
tion. All these stages make use of a common knowledge that
guides the monitoring activities and that may be enriched
by the experience earned during execution. The whole body
of activities mentioned above has been named MAPE-K loop
(Monitoring, Analyzing, Planning, and Executing, through
the use of Knowledge) by IBM [20)].

The key concept of the autonomic computing paradigm
is adaptation, namely “the capability of a system to change
its behavior according to new requirements or environment
conditions” [19]. In the literature, two main approaches have
been proposed for implementing adaptation in a software
system: architectural-level and language-level.

The architectural-level approach [24] relies on the run-
time structural modification of the software architecture of
the system. Typically, this approach is applicable whenever
the system is composed of many components, possibly inter-
acting through connectors, composing thus a network which
may also be hierarchical and distributed. Adaptation is then
achieved by modifying the way components interact and also
by adding or removing components and/or connectors or by
replacing them with others. For example, a component may
be replaced at run-time by another one that provides a sim-
ilar basic functionality but with an additional support for a
new emerging requirement of a subnet of the system.

The language-level approach extends standard program-
ming languages with primitives and mechanisms that enable
to dynamically change the behavior of (part of) a system.
In [16] the authors review the adaptation capabilities of tra-
ditional programming languages and paradigms. For exam-
ple, considering object-oriented languages, as today’s most
used ones for software programming, their analysis shows
that class inheritance and method overriding offer some de-
gree of adaptiveness, although the mechanism usually is not
dynamic (a notable exception is [6], which presents a Java-
like core language using dynamic object composition and
‘horizontal’ method overriding through delegation). New
programming techniques, however, have captured more at-
tention in the years. Until lately, the mainstream techniques

Figure 1: Modeling adaptation techniques in Klaim

have focused on Aspect-Oriented Programming (AOP), to
enforce the separation of concerns, and on Dynamic AOP,
to support run-time adaptation [18]. More recently, a new
promising technique has been specifically proposed for sup-
porting dynamic software adaptation: context-oriented pro-
gramming (COP) [26]. COP uses ad hoc explicit language-
level abstractions to express context-dependent behavioral
variations and their run-time activation.

In this paper, we show how a tuple-space-based coordi-
nation language, namely KLAIM [10], can be used to model
adaptive systems. Coordination languages based on tuple
spaces have the advantage of providing an accurate model
of systems using a small set of primitives and in a clear and
accessible way. KLAIM, in particular, is well suited for mobile
and distributed applications, characteristics that are today
well-consolidated and dominant in the software market.

Due to lack of space, here we focus on the language-
level approach to adaptation and refer the interested reader
to [17] for a more complete account. Specifically, we show
how the generic MAPE-K loop, and the techniques AOP
and COP can be easily modeled in KLAIM (see Figure 1).

Our work paves the way to a twofold application of the
know-how in the field of coordination languages and formal
methods in the context of adaptive systems. On the one
hand, KLAIM formal tools and techniques can be used to
support the verification of modeled adaptive systems. In-
deed, KLAIM’s strong mathematical foundations enable the
use of a wide range of software assisted verification methods,
from theorem proving and model checking to simulation and
probabilistic analysis (see, e.g., [12, 11]). On the other hand,
the programming language derived from KLAIM, namely X-
KLAIM [5], can be used to implement such adaptive systems.

The rest of the paper is organized as follows. Section 2
provides a brief overview of KLAIM. Sections 3 and 4 show
how the IBM’s MAPE-K loop and some language-level adap-
tation techniques can be rendered in KLAIM, respectively.
Section 5 touches upon comparisons with related work. Sec-
tion 6 concludes with some directions for future work.

2. KLAIM

In this section, we summarize the key features of KLAIM,
a formal language that we have chosen as representative of
the broader class of coordination languages (see, e.g., [9] for
a survey). KLAIM has been specifically designed to provide
programmers with primitives for handling physical distribu-
tion, scoping and mobility of processes. Although KLAIM is
based on process algebras, it makes use of Linda-like asyn-
chronous communication and models distribution via multi-
ple shared tuple spaces.

Linda [14] is a coordination paradigm rather than a lan-
guage, since it only provides a set of coordination primitives.

(Nets) | N =0 ’ s, C | Ny || No ‘ (vs)N
(Components) | C == P ’ (t) | C1|Cs
(Processes) | P =:=mil | a.P | P1| P | Py + P2 | A(p)

(Actions) | a ::= out(t)@f } in(T)Q¢ | read(7T)Q¢
| eval(P)@/¢ | newloc(s)

(Tuples) |t =€ ’ V4 ’ P ‘ t1,to

(Templates) | T z=e | €| P |z || !X | Ty, T?

Table 1: Klaim syntax

read(...)@¢
in(...)@¢

in(...)@self
read(...) @self

<t3> Tuple Space

Figure 2: Graphical description of a Klaim node and
its components

It relies on the so-called generative communication paradigm,
which decouples the communicating processes both in space
and time. Communication is achieved by sharing a com-
mon tuple space, where processes insert, read and withdraw
tuples. The data retrieving mechanism uses associative pat-
tern matching to find the required data in the tuple space.
KLAIM enriches Linda primitives with explicit information
about the locality where processes and tuples are allocated.
KLAIM syntax® is shown in Table 1 and depicted in Figure 2.
Nets are finite plain collections of nodes where compo-
nents, i.e. processes and evaluated tuples, can be allocated.
It is possible to restrict the scope of a name s by using the
operator (vs)_: in a net of the form Ni || (vs) N2, the effect
of the operator is to make s invisible from within NVj.
Nodes have a unique locality s (i.e. their address) and
an allocation environment p, and host a set of components
C. An allocation environment provides a name resolution
mechanism by mapping locality variables [, occurring in the
processes hosted in the corresponding node, into localities s.
The distinguished locality variable self is used by processes
to refer to the address of their current hosting node.
Processes are the KLAIM active computational units.
They are built up from the special process nil, which does
not perform any action, and from the basic actions by means
of action prefixing a.P, parallel composition P; | Pz, non-
deterministic choice Pi + P» and process definition. Pro-
cesses may be executed concurrently either at the same lo-
cality or at different localities and can use the distinguished

!We use here the syntax introduced in [7] rather than that
of the original paper [10].

Autonomic Element

Sensor

I
v v

<S, sensor_name, sensed_values >
<E, effector_name, parameters >

\/ v

Figure 3: An autonomic element in Klaim

locality variable self to refer to the address of their current
hosting node. They can perform five different basic actions:
the Linda actions out, in and read to insert, withdraw and
read tuples, action eval to send a process for execution to
a (possible remote) node, and action newloc to create a
new locality (i.e. network node). Actions in and read are
blocking and exploit templates as patterns to select data in
shared repositories. A template is a sequence of actual and
formal fields, the latter, written as !z, !l or !X, being used to
bind variables to values, locality names or processes, respec-
tively. Notationally, e will range over expressions, whose
exact syntax is intentionally left unspecified, while ¢ ranges
over locality names s and locality variables [.

3. AUTONOMIC COMPUTING IN KLAIM

In this section, we first enter a little more in the details
of the architectural blueprint for autonomic computing pro-
posed by IBM, then we present our modeling in KLAIM.

Autonomic element

According to the IBM’s view, an autonomic element is com-
posed of the managed resource, which is the actual func-
tional (may be computational, storage, etc.) unit of the sys-
tem, and the touchpoint, that “wraps” the resource by pro-
viding a manageability interface to the autonomic manager
and other mechanisms implementing the interface’s opera-
tions. The manageability interface is composed of a sensor
and an effector. The sensor exposes information about the
current state of a managed resource and may raise an event
to capture the attention of the autonomic manager. The
effector, instead, enables the manager to change the state
of the managed resource, as well as allows the managed re-
source to make requests to its manager.

In KLAM, we can model an autonomic element through a
node (see Figure 3) as follows:

e the managed resource is rendered in KLAIM by dis-
tinguishing between the computational part, i.e. pro-
cess MR, which interacts only with the node’s tuple
space, and the communication part (with other nodes),
i.e. process Com (this is not strictly necessary, but we
think it may help the system management);

e the sensor process Sensor measures relevant parame-
ters in the tuple space and raises events (represented
by tuples) caught by the autonomic manager;

e the effector process Effector implements, on the el-
ement, the adaptation commands received from the
manager.

MAPE-K
Monitor
L
T X ,,,,, /,,,,,,,,,,,_‘
. Knowledge |
Sensor Effector

measurements commands

Figure 4: The MAPE-K manager in Klaim

Some tuples in the tuple space (the S-tagged tuples) carry
the sensor’s measurements (or the events); others (the E-
tagged tuples) describe the installed effectors.

The MAPE-K loop

The autonomic manager controls the autonomic element
through the manageability interface by implementing the
MAPE-K loop. In KLAIM, the manager is implemented by a
node (see Figure 4). The monitoring phase (i.e. the Monitor
process) reads the measurements from the sensor and upon
recognizing a symptomatic situation it sends the relevant
information to the analyze phase. To this aim, the Monitor
writes “symptom” tuples in the tuple space, which trigger
the execution of the Analyze process. The symptom is an-
alyzed and, if needed, an adaptation should be performed.
An “adaptation request” tuple is produced, specifying what
should be adapted, and triggering the execution of the Plan
process. When the manager decides how should the adap-
tation be performed, it executes the adaptation on the au-
tonomic element through its effector. So, the Plan process
performs an eval to launch the appropriate Execution pro-
cess which carries out the planned adaptation.

Each of these steps is coordinated by the information
stored in the knowledge, represented in KLAIM by a sub-
set of the tuple space. For example, the range of values of
a particular measurement considered to be symptomatic is
such an information. The analyze phase is the only one that
can actually modify the knowledge (notice the bidirectional
arrow between the Analyze process and the Knowledge),
since it is aimed at a vaster temporal view of the system,
e.g. it may look in the history to see if a symptom occurs
too often and thus undertake more drastic (or expensive)
adaptations on the system in order to avoid it.

4. MODELING LANGUAGE-LEVEL AD-
APTATION WITH KLAIM

As mentioned in the Introduction, two main language-
level techniques have been developed: (dynamic) aspect-
oriented programming and context-oriented programming.
We now show how they both can be modeled in KLAIM.

4.1 Aspect-Oriented Programming

Aspect-oriented programming entails breaking down pro-
gram logic into distinct parts called concerns, namely co-
hesive areas of functionality. Some of these concerns defy
traditional forms of encapsulation abstractions (procedures,

classes, functions, etc.) and are called crosscutting concerns
since they “cut across” multiple abstractions in a program.

Aspect-oriented programming is a paradigm that man-
dates for defining the code of the crosscutting concerns sep-
arately from the rest of the application. Without wanting
to enter in too much details, the following are the main con-
cepts used in AOP:

e A join point is a point in a running program where ad-
ditional behavior, from different crosscutting concerns,
can be usefully joined. They are typically implicit in
the language (e.g.: method calls, field read or write
access, exception handlers).

e A pointcut groups a set of join points according to some
of their characteristics (e.g. a pointcut may group all
calls of a given method within a given class).

e An advice specifies the code to run at a join point.
For example, when the join point is a method call, the
advice can wrap the called method.

e An aspect defines the combination between a pointcut
and an advice.

Adaptation can be seen as a crosscutting concern, since
it doesn’t fall within the normal behavior of the applica-
tion and different adaptations may apply at the same (join)
point, depending on the decisions of the adaptation man-
ager. We can, then, identify an adaptation with an aspect,
since this specifies the advice to execute and the pointcut
where to execute it.

In an autonomic computing environment, we know that
we need to perform dynamic adaptations. Dynamic AOP
enables to dynamically weave an aspect into a running appli-
cation. This can be used to implement autonomic systems,
as shown in [18].

In KLAIM, we can model join points by mandating the ap-
plication to check, at a given point, if there is any externally
defined advice to be performed. Advices are represented
by processes that the autonomic manager provides at the
aspect weaving. The pointcut is specified by what the pro-
gram checks for in each join point. Notably, the application
only specifies the pointcuts (i.e. the adaptation “hooks”),
whereas the advices are defined elsewhere and known only
by the autonomic manager. Aspects instead are defined by
the manager which can dynamically weave them on the ap-
plication.

For example, the following fragment models an application
that can be adapted each time process A calls B:

AE L
read(“pointcut”, “call”, “B”, “caller”, “A”,
!X _advice)@self. eval(X _advice)@Qself

+ read(“no_pointcut”, “call”, “B”, “caller”,
“A”)@self. B

Above, the autonomic manager can provide an ad-
vice P_advice for the pointcut by inserting a tuple
(“pointcut”, “call”, “B”, “caller”, “A”, P_advice) in the tu-
ple space local to process A, while it can provide no advice by
means of tuple (“no_pointcut”, “call”, “B”, “caller”, “A”).

We refer the interested reader to [27] for an extension of
KrAmM with primitives and mechanisms for directly dealing
with aspects.

4.2 Context-Oriented Programming

Context-oriented programming enables the expression of
behavioral variations dependent on the context. Context is
treated explicitly and the application can dynamically adapt
its behavior in response to context changes. The essential
language features to support the COP paradigm are:

e behavioral variations: consist of (possibly partial) def-
initions of behaviors (expressed, e.g., as procedures,
functions or methods in the underlying programming
model) that can substitute or modify a portion of the
basic behavior of the application;

e layers: are first-class entities that group related
context-dependent behavioral variations;

e dynamic activation: the application can decide to ac-
tivate or deactivate layers dynamically at runtime ac-
cording to the current context;

e scoping: specific constructs can be used to explicitly
control the scope within which layers are activated.

Depending on the current execution context, specific lay-
ers may be activated and composed at runtime. So, when the
application uses the affected functionality, the appropriate
variations belonging to the active layers will be executed. In
this way, the application’s behavior dynamically adapts it-
self to the current context. Notably, COP does not provide
any specific support to model context information, which
typically refers to application domain data represented with
standard constructs of the underlying programming model.

When COP is used to implement adaptation in an au-
tonomic computing setting, an adaptation manager may be
exploited to recognize a change of context, which then causes
the activation of those layers specifically designed to cope
with the emerged situation.

In KLAIM, a layer can be rendered as a set of tuples, each
containing the name of the layer, the name of the function-
ality to be adapted and a process corresponding to the vari-
ation. Thus, when the application requires a certain func-
tionality, it simply takes from the tuple space the process
corresponding to the variation of the required functionality
for the currently active layer, and executes it.

More layers can be active at a given moment, which may
also provide different variations for the same functionality;
the mechanism for choosing the variation to execute may
depend on the implementation. In this case, variations can
also be composed, e.g. a variation from a given layer can call
the corresponding variation on the enclosing layer.

We present below how the main features of COP can be
expressed in KLAIM, by relying on ContextJ [3] as reference
COP language. ContextJ is a context-oriented extension to
the Java language, where layers are defined within classes,
and classes thereby carry their own context-specific varia-
tions. An example of layers definition is:

public class someClass{
layer 11{
public static void m1(){
public static void m2(){

...} //variation of m1 in [1
...} //variation of m2 in [1
}
layer 12{

public static void m1(){...} //variation of m1 in (2

} L
}

The above definition can be rendered in KLAIM as the fol-
lowing set of tuples:

<“l1”, “ml”, Ple1>
<“l2”, c:m1777 Pml,l2>

<“l].”, 4:777/2777 Pm2,ll>

where Pp,; i; represents the code of the variation of method
ma within layer 1j.

To control scoped layer activation, ContextJ provides a
with block statement, that can be used e.g. as follows:

with (I1){ m1(); ... }

Such a method call within a with block can be rendered in
KLAIM as a process that retrieves a variation process (using
the pattern-matching mechanism of KLAIM) and executes it:

read(“I11”, “m1”,!X,,11)@self.
eval(X,,111)@self.
in(“l11”7, “m1”, “done”)Qself.

Notably, to enable sequential compositions, we assume that
each variation process for the method m within the layer
[signals its termination by adding a tuple of the form
(“0”, “m”, “done”) to the tuple space of the hosting node.

In ContextJ, to implement the dynamic layer combina-
tion [15], which consists of the activation of multiple layers,
with blocks are simply nested. In this case, if more than one
active layer provides a variation for a method, these varia-
tions are combined according to the LIFO order: the most
recently activated layer is considered first.

A variation can also make use of the variations of en-
closing layers to accomplish their functionalities, and this
is achieved through the proceed() method. Moreover, be-
fore and after modifiers can be used to execute a behavior
before or after a given method execution.

To deal with such features in KLAIM we should keep track
of the layer activation. We can maintain the LIFO order of
layer activations using a queue modeled by the tuples:

(“active_layers”, “117, “127) (“active_layers”, €127, “13”)
(“active_layers”, “lz”, “default”)

where a tuple (“active_layers”, “li”, “l5”) means that, let I3
be the layer corresponding to the variation currently consid-
ered, the layer [j is the next layer in the LIFO order.

The with statement, in this case, adds a layer to the LIFO
queue. For example, the following ContextJ code

with (I1){ with (12){ ... } }
can be rendered in KLAIM as follows:

out(“active_layers”, “I11”, “default”)Qself.
Out(“activeilayersﬂ , “l277 , “ll”)@Self.

in(“active_layers”, €127, “I11”)@self.
in(“active_layers”, 117, “default”) Qself

When a variation, e.g. from layer [2, performs a pro-
ceed (), it executes the variation on layer [1. In KLAIM we
have:

read(“active_layers”, 412”7, lx)@self.
read(z, “m1”,! X1 5)@Qself.
eval(X,,1 ,)@self.

in(z, “m1”, “done”)Qself.

Notably this variation does not directly refer to the enclos-
ing layer (I1), since in general it might not know statically
which layer is activated before 12 (see below for dynamic
layer activation). Therefore, this technique works for any
number of active layers and any proceed() from any layer.

In order to implement autonomic computing in ContextJ,
the activation of layers is not specified at compile-time,
rather an expression returning the active layer is used as
argument of the with block, e.g.

with (AdaptationM anager.getLayer()){ m1(); ... }

This is rendered in KLAIM as follows: a process playing the
role of the adaptation manager maintains up-to-date a tuple
(“active_layer”,l) containing the name of the active layer,
while the KLAIM term modeling the with block is

read(“active_layer”, z)@Qself.
read(z, “ml”,1X,1)@self.
eval(X,,1)@Qself.

in(z, “m1”, “done”)Qself.

We conclude the section by discussing an alternative way
to represent layers. Rather than using tuples to model lay-
ers, we can use nodes, and thus locality names. The appli-
cation reads from its tuple space the locality where to get
the variations from. The value of such locality is updated by
the autonomic manager, which, by doing so, activates and
deactivates layers:

read(“active_layer”, !l)Qself.
read(“ml”,!X_ml)Ql.
eval(X_m1l)@Qself.

in(“m1”, “done”)@l.

S. RELATED WORK

Our starting points are [26] and [16], where the authors
put forward Context-Oriented Programming as a new lin-
guistic technique that better fits the needs of autonomic
computing. In this paper, we briefly present a wider view at
autonomicity and adaptivity based on common approaches
found in literature, and we use the coordination language
KrLAIM to model some examples.

Other coordination languages have been considered for
implementing autonomic features. For example, [1] proposes
the language ASSIST. This language is however very spe-
cialized for grid computing, instead KLAIM is suitable for
modeling and programming any distributed system. More-
over, being based on formal methods, KLAIM enables sev-
eral verifications techniques. As another example, [4] uses
the Gamma formalism, a computing model inspired by the
chemical reaction metaphor, to develop a higher-order coor-
dination language for specifying autonomic systems. Simi-
larly, [2] presents a biochemical calculus expressive enough
to represent adaptive systems, together with a formal frame-
work for property checking. Differently from the above men-
tioned works, we consider more systematically the various
approaches found in literature and show how KLAIM can be
used to model them (for more details, please refer to [17]).

Several works have been proposed that use formal meth-
ods to model autonomic computing techniques. For ex-
ample, [8] presents an approach to develop an autonomic
service-oriented architecture. This and other examples (e.g.,

[23, 13]), however, focus on the use of formal methods for
specific target applications. Our work, instead, aims at
modeling general techniques commonly used to achieve au-
tonomicity rather than specific autonomic systems.

6. CONCLUDING REMARKS

In the coordination community many languages and for-
mal tools have been proposed to support development and
analysis of concurrent and distributed systems. One of this
language is KLAIM, a successful tuple-space-based coordina-
tion language coming with verification tools and techniques
and with a full-fledged implementation [5].

In this paper, we have shown that adaptive behaviors can
be easily rendered in a coordination language by modeling
some popular adaptation techniques with KLAaim. We point
out that tuple-based higher-order communication enables
a straightforward implementation of dynamic adaptation.
This work is a first step towards a comprehensive study of
the relationship between coordination languages and adap-
tation approaches.

As a future work, we plan to consider further approaches
to adaptation (like the rule-based one, see e.g. [22]) and,
at the same time, to provide a formal proof of relative ex-
pressiveness of the primitives provided by the considered
approaches. In particular, we intend to provide some as-
sessments of our approach by studying the relative expres-
sive power of (plain) KLAIM w.r.t. some of its extensions
equipped with different adaptation primitives. This study
aims at demonstrating that these primitives do not add ex-
pressive power to KLAIM and that its features are enough
for modeling adaptive behaviors. Finally, we also intend to
consider other traditional languages and extend them with
tuple-based higher-order communication in order to enable
the implementation of dynamic adaptations.

7. REFERENCES

[1] M. Aldinucci, M. Danelutto, and M. Vanneschi.
Autonomic QoS in ASSIST Grid-Aware Components.
In PDP, pp. 221-230. IEEE, 2006.

[2] O. Andrei and H. Kirchner. A Higher-Order Graph
Calculus for Autonomic Computing. In Graph Theory,
Computational Intelligence and Thought, LNCS 5420,
pp. 15-26. Springer, 2009.

[3] M. Appeltauer, R. Hirschfeld, M. Haupt, and
H. Masuhara. Contextj: context-oriented programming
with Java. JSSST Journal, 2011. To appear.

[4] J.-P. Banatre, Y. Radenac, and P. Fradet. Chemical
Specification of Autonomic Systems. In TASSE, pp.
72-79. ISCA, 2004.

[5] L. Bettini, R. D. Nicola, G. L. Ferrari, and
R. Pugliese. Interactive mobile agents in X-Klaim. In
WETICE, pp. 110-117. IEEE, 1998.

[6] L. Bettini and B. Venneri. Object reuse and behavior
adaptation in java-like languages. In PPPJ, pp.
111-120. ACM, 2011.

[7] L. Bettini et al. The Klaim Project: Theory and
Practice. In Global Computing, LNCS 2874, pp.
88-150. Springer, 2003.

[8] M. A. C. Bhakti and A. Azween. Formal modeling of
an autonomic service oriented architecture. In CSIT,
volume 5, pp. 23-29. IACSIT Press, 2011.

[9] P. Ciancarini and T. Kielmann. Coordination models
and languages for parallel programming. In PARCO,
pp- 3—-17. Imperial College Press, 1999.

[10] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a
Kernel Language for Agents Interaction and Mobility.
IEEE Trans. Software Eng., 24(5):315-330, 1998.

[11] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and
M. Massink. Model checking mobile stochastic logic.
Theor. Comput. Sci., 382(1):42-70, 2007.

[12] R. De Nicola and M. Loreti. A modal logic for mobile
agents. ACM Trans. Comput. Log., 5(1):79-128, 2004.

[13] X. Dong et al. Autonomia: an autonomic computing
environment. In JPCCC, pp. 61-68. IEEE, 2003.

[14] D. Gelernter. Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7:80-112, 1985.

[15] C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming Language Support to Context-Aware
Adaptation—A Case-Study with Erlang. In SEAMS,
pp- 59-68. ACM, 2010.

[16] C. Ghezzi, M. Pradella, and G. Salvaneschi. An
evaluation of the adaptation capabilities in
programming languages. In SEAMS, pp. 50-59. ACM,
2011.

[17] E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi.
Modeling adaptation with a data-driven coordination
language. Technical report, Univ. Firenze, 2011.
http://rap.dsi.unifi.it/scel/pdf/MAWATBCL.pdf.

[18] P. Greenwood and L. Blair. Using Dynamic
Aspect-Oriented Programming to Implement an
Autonomic System. In DAW, pp. 76-88, 2004.

[19] M. Hsélzl, A. Rauschmayer, and M. Wirsing. Software
engineering for ensembles. In Software-Intensive
Systems and New Computing Paradigms, pp. 45-63.
Springer, 2008.

[20] IBM. An architectural blueprint for autonomic
computing. Technical report, June 2005. Third edition.

[21] J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. Computer, 36:41-50, 2003.

[22] 1. Lanese, A. Bucchiarone, and F. Montesi. A
framework for rule-based dynamic adaptation. In
TGC, LNCS 6084, pp. 284-300. Springer, 2010.

[23] Z. Li and M. Parashar. Rudder: An agent-based
infrastructure for autonomic composition of grid
applications. MAGS, 1(3):183-195, 2005.

[24] P. Oreizy et al. An Architecture-Based Approach to
Self-Adaptive Software. IEEFE Intelligent Systems,
14:54-62, 1999.

[25] M. Parashar and S. Hariri. Autonomic computing: An
overview. In Unconventional Programming Paradigms,
pp- 247-259. Springer, 2005.

[26] G. Salvaneschi, C. Ghezzi, and M. Pradella.
Context-oriented programming: A programming
paradigm for autonomic systems. CoRR,
abs/1105.0069, 2011.

[27] F. Yang, T. Aotani, H. Masuhara, F. Nielson, and
H. R. Nielson. Combining Static Analysis and
Runtime Checking in Security Aspects for Distributed
Tuple Spaces. In COORDINATION, LNCS 6721, pp.
202-218. Springer, 2011.

