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Abstract

Service Oriented Computing (SOC) has been proposed as a paradigm to describe computations of
applications on wide area distributed systems. Awareness of Quality of Service (QoS) is emerging
as a new exigency in both design and implementation of SOC applications.
We do not refer to QoS aspects related to low-level performance and focus on those high-level non-
functional features perceived by end-users as application dependent requirements, e.g., the price of
a given service, or the payment mode, or else the availability of a resource (e.g., a file in a given
format).
In this paper we present a logic which includes mechanisms to consider the three main dimensions
of systems, namely their structure, behaviour and QoS aspects. The evaluation of a formula is a
value of a constraint-semiring and not just a boolean value expressing whether or not the formula
holds. This permits to express not only topological and temporal properties but also QoS properties
of systems.
The logic is interpreted on SHReQ, a formal framework for specifying systems that handles abstract
high-level QoS aspects combining Synchronised Hyperedge Replacement with constraint-semirings.

Keywords: Service oriented computing, synchronized hyperedge replacement, quality of service,
logic, c-semirings

1 Introduction

Service Oriented Computing (SOC) is an emerging paradigm to describe com-
putations of Service Oriented Applications (SOAs) running on wide area dis-
tributed systems. Such systems are very complex and constituted by a var-
ied flora of architectures that typically are heterogeneous, geographically dis-
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tributed and usually exploit communicating infrastructures whose topology
frequently varies and to which components can, at any moment, connect to or
detach from. Web services and GRID services may be regarded as SOC and
they are receiving particular attention both from academia and industry.

An ambitious goal for SOAs is the automatization of the search-bind cycle
so that applications can dynamically choose the “best” service available dur-
ing the computation. Since the programmer does not completely control the
services that her application invokes, it is reasonable to allow her to use declar-
ative mechanisms for expressing the “minimal” requirements on the execution
environment.

Recently, awareness of Quality of Service (QoS) is emerging as a new ex-
igency in both design and implementation of SOAs. Remarkably, we do not
refer to QoS aspects related to low-level performance (as typical, e.g., in the
community of operating or communication systems). On the contrary, we are
concerned with those high-level non-functional features that might interest
applications and mainly regard the end-users who perceive QoS not only in
connection with low-level performance but as application dependent require-
ments, e.g., the price of a given service, or the payment mode, or else the
availability of a resource (e.g., a file in a given format). In the rest of the
paper, we intend the acronym QoS to denote application-level QoS.

SOC can be naturally modelled by means of graph-based techniques, where
edges represent components and nodes model the communication infrastruc-
ture. Edges sharing a node correspond to components that may interact.
System states are modelled as graphs and computations correspond to graph-
rewritings. Among other proposals, hypergraphs and Synchronised Hyperedge
Replacement (SHR, for short) have been proposed for modelling distributed
systems [9,15] as a natural declarative framework.

A framework based on SHR called SHReQ has been introduced in [19];
SHReQ handles abstract high-level QoS aspects expressed as constraint-semi-
rings [3] (c-semirings, for short). Interactions among components are ruled
by synchronising them on events that are c-semiring values too. In this way,
c-semirings provide both the mathematics for multi-criteria QoS and the un-
derlying synchronisation policies. Intuitively, the programmer declares the
behaviour of each edge L by specifying a set of productions. A production
for L imposes requirements to the attachment nodes of L in order to replace
it with a new hypergraph. Such requirements are expressed as elements of
a c-semiring and are interpreted as the contribution of L to the synchroni-
sation. Synchronising requirements is the basic coordination mechanism ac-
counting for evolution of systems and corresponds to the product operation of
c-semirings.
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In this paper we equip SHReQ with a logic which includes mechanisms to
consider the three main dimensions of our systems, namely structure of graphs,
behaviour (graph rewriting) and QoS. Structural aspects are specified using
operators inspired by a spatial logic for graphs (GL) [7], while behavioural
ones are tackled with a well-known temporal logic, namely μ-calculus [16].
The way the QoS is handled follows the approach of already existing graph
and temporal logics for reasoning about QoS in graphs [17] and transition
systems [21]. Significant fragments of both logics have been shown to be
decidable (for finite systems) and model checking algorithms presented [21].
A significant fragment consists of the case when the c-semiring is a distributive
lattice which occurs when the multiplicative operation is idempotent. In such
cases our full logic can be shown to be decidable. We have adapted the
semantics for the SHR framework of SHReQ, since the original logics are
defined for simple graphs and transition systems. Formulae are not interpreted
as boolean values, but over the domain of the c-semiring modelling the QoS.
In other words, the value of a formulae is not just true or false, but a c-
semiring value expressing the level of satisfiability of a formula. In that manner
one can express the concepts like the QoS level of a path between two given
nodes instead of simply expressing whether such a path exists or not. The
expressivity and complexity of our logic in general will be subject of future
research.

Structure of the paper: Sections 2, 3 and 4 describe SHReQ together with
a running example. Section 5 introduces the logic for SHReQ and applies it
to the running example. Final remarks are in Section 6.

2 Syntax of Graphs

Given a set of labels L ranged over by L and a set of nodes N , a hyperedge
L(x1, ..., xn) connects nodes x1, . . . , xn ∈ N , where L has rank n (written
L : n). We say that x1, ..., xn are the attachment nodes of L(x1, ..., xn). Hy-
pergraphs are built from ranked hyperedges in L and nodes in N .

Notation 2.1 In the following, given a set X ranged over by x, we write
x to denote vectors over X. The i-th component of x is denoted by xi and

{|x|}
def
=

⋃
i∈{1,...,|x|} {xi} and |x| is the length of x.

Definition 2.1 [Hypergraphs] A hypergraph is a term of the following gram-
mar

G ::= nil
∣∣ L(x)

∣∣ G | G,

where L : |x| is a hyperedge.
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Hereafter, we call hypergraphs (hyperedges) simply graphs (edges) and
write L(x) with the implicit assumption that L : |x|. The grammar in Defi-
nition 2.1 permits generating the empty graph (denoted by nil), graphs with
a single edge and graphs built by the parallel composition of graphs. We use
n(G) to denote the set of nodes of G. Differently from [19], we neglect node
restriction for the sake of simplicity and an easier introduction of the logic.

•
b

L

��������

������

•a •c
(a) A hyperedge

•
x

L

��������

����
��� M

��������

•y •z
(b) A hypergraph

Fig. 1. Hypergraphs

Example 2.2 Figure 1(a) represents the hyperedge L(a, b, c) where wires con-
necting nodes a, b and c to L are called tentacles. The arrowed tentacle in-
dividuates the first attachment node. Moving clockwise determines the other
tentacles. Figure 1(b) depicts graph G = L(y, x, z) | M(x, z).

Structural congruence over graph terms avoids cumbersome parenthesis.

Definition 2.3 [Structural Congruence] The structural congruence is the small-
est binary relation ≡ over graph terms that obeys the following axioms:

(G1 | G2) | G3 ≡ G1 | (G2 | G3), G1 | G2 ≡ G2 | G1, G | nil ≡ G

The axioms define associativity, commutativity and identity (nil) for op-
eration |, respectively.

2.1 The Ring Case Study

In the following sections we exemplify the different topics introduced by means
of a running example where “rings” of different sizes are connected by gates
yielding a network of rings. A ring consists of a number of nodes connected
by some edges forming a cycle and the size of a ring is the number of nodes
in it; we write n-ring for a ring of size n.

We assume that a network of rings can become bigger in two ways: by
increasing the size of rings or by creating new rings. A ring can augment its
size by “consuming” some resources so that the evolution of the network allows
rings to increase their size while some resources are available. Also, rings can
decide (again depending on resources availability) to create new rings allowing
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the expansion of the network. Newly created rings can initially have different
sizes.

In Figure 2, rings are represented as nodes connected by hyperedges la-
belled by R and it shows a network with three rings, where the 4-ring is
connected with two rings of size two.

R
��

R �� • R
��

R
��

• l • G�� • l • G �� • l •

R

��

l

����

l

����
R

		

R





R

��

l

•

Fig. 2. A network instance

Hyperedges labelled with l (l-edges) prohibit new gates to be attached
on the node they insist on; such nodes are called limited nodes. As will be
made clearer later, on new ring creation, l-edges will be attached to the nodes
connected by gate edges (labelled G in Figure 2) avoiding new gates from
those nodes. For example, in Figure 2 only the 2-rings can create (gates to)
new rings. The nodes with no l-edges, can be used to generate new rings and
will be weighted by the amount of resource available for their evolution (see
Section 3.3).

3 Graphs and productions for SHReQ

This section describes SHReQ [19], a calculus based on SHR where c-semiring
values are embedded in the rewriting mechanism. In [14], c-semirings have
been exploited as a mathematical abstraction for application-level QoS since
their algebraic properties can naturally describe QoS values and the usual
operations on them. In [20] SHR with mobility of nodes has been gener-
alised by parameterising the rewriting mechanism with respect to a synchro-
nisation algebra with mobility. In [19], SHReQ took advantage of the ideas
in [14,20] exploiting hypergraphs and SHR with mobility for modelling sys-
tems (as in [18,25]) and c-semirings as synchronisation algebras. Hence, the
rewriting mechanism of SHReQ is parameterised with respect to a given c-
semiring. Basically, values of c-semirings are synchronisation actions so that
synchronising corresponds to operating on c-semiring values. Moreover, a hy-

D. Hirsch et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 135–159 139



pergraph modelling a system is decorated with c-semiring values on its nodes
in order to record quantitative information on the computation of the system.
A formal connection can be traced between synchronisation algebras in the
sense of [20] and c-semirings, however, this connection is left as future work.

Here, we consider a simplified presentation of SHReQ where mobility is not
considered and, as stated in Section 2, without node restriction for graphs.
The first simplification reduces the reconfiguration expressiveness of rewriting
systems (i.e., the expressive power is reduced by disallowing node fusion) and
the second one simplifies the presentation of the inference system in Table 1
(and the derived proofs). However, these restrictions do not affect the use of
c-semiring values as synchronization actions and help in a clearer introduction
of the logic in Section 5, which is our main concern here. For the treatment
of node mobility in SHReQ and in SHR, the interested readers are referred
to [19] and to [18,20,25], respectively.

3.1 Weighted graphs

Components (i.e., hyperedges in SHR) impose requirements on their neigh-
bours when participating into a rewriting step. We use c-semirings to express
those requirements so that rewriting takes into account quantitative informa-
tion on computations. C-semirings have two distinguishing features that are
very useful in our context. First, the Cartesian product of c-semirings is still
a c-semiring, hence we can uniformly deal with different types of quantities.
Second, the operations of c-semirings provide a partial order on the values and
a mechanism of choice. These features make c-semirings suitable for reasoning
about multi-criteria QoS issues [14].

Definition 3.1 [C-semiring [3]] An algebraic structure 〈S, +, ·, 0, 1〉 is a con-
straint semiring if S is a set (0, 1 ∈ S), and + and · are operations on S
satisfying the following properties:

• + : 2S → S is defined over (possibly infinite) sets of elements of S as
follows 3 :

∑
{a} = a,

∑
∅ = 0,

∑
S = 1 and

∑
(∪Si) =

∑
{
∑

Si}, for
Si ⊆ S, i ≥ 0.

The fact that + is defined over sets of elements, automatically assumes
it to be associative, commutative and idempotent. Moreover, 0 is its unit
element and 1 is its absorbing element (i.e., a + 1 = 1, for any a ∈ S);

• · is commutative, associative, distributes over +, 1 is its unit element, and
0 is its absorbing element (i.e., a · 0 = 0, for any a ∈ S). In the rest of

3 When + is applied to a set with two elements we use + as binary operator in infix
notation, while in all other cases we use symbol

∑
in prefix notation.
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the paper we assume that · is defined over infinite sequences too and use
the symbol

∏
in postfix notation. Most of the c-semirings used in practice

satisfy this.

To enhance readability, operation + is called the additive operation and ·
is called the multiplicative operation. The additive operation of a c-semiring
induces a partial order on S defined as a ≤S b ⇐⇒ a + b = b. a ≤S b means
that a is more constrained than b (or that b ”is better than” a). Also, it can
be shown [3] that +, · are monotone over ≤S, the minimal element is 0 and
the maximal 1, and 〈S,≤S〉 is a complete lattice.

In some instances of a c-semiring, the multiplicative operation is idempo-
tent. This implies, among other things, that + distributes over · and 〈S,≤S〉
is a distributive lattice [3]. In this case, the greatest lower bound (noted as�

) corresponds to the multiplicative operation of the c-semiring (the additive
operation already corresponds to the least upper bound of a complete lattice).

Example 3.2 The following examples introduce some c-semirings together
with their application as the formal structure of many QoS attributes.

• The boolean c-semiring 〈{true, false},∨,∧, false, true〉 can be used to model
network and service availability.

• The optimization c-semiring 〈R+, min, +, +∞, 0〉 and the tropical c-semiring
〈N+, min, +, +∞, 0〉 apply to a wide range of cases, like prices or propaga-
tion delay.

• The max/min c-semiring 〈R+, max, min, 0, +∞〉 can be used to formalize
bandwidth, or also the c-semiring over the naturals 〈N+, max, min, 0, +∞〉
can be applied for resource availability.

• Performance can be represented by means of the probabilistic c-semiring
〈[0, 1], max, ·, 0, 1〉 or the fuzzy one 〈[0, 1], max, min, 0, 1〉.

• The set-based c-semiring 〈2N ,∪,∩, ∅, N〉 (where N is a set), can be used for
capabilities and access rights.

• Security degrees are modeled via the c-semiring 〈[0, 1, . . . , n], max, min, 0, n〉,
where n is the maximal security level (unknown) and 0 is the minimal one
(public).

Example 3.3 As a special case, we can also define c-semirings specifying
specific synchronisation mechanisms (for example Hoare, Milner, or Broadcast
synchronisation 4 ). In this way, we are able to define a general synchronisation
policy as a unique c-semiring that combines (using the cartesian product)

4 See [19] for an example using a Broadcast c-semiring.
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a classical synchronisation algebra with the QoS aspects of interest. The
following c-semiring corresponds to Hoare synchronisation.

Given a set of actions Act, we define H = Act ∪ {1H , 0H ,⊥}. The Hoare
c-semiring on H is 〈H, +H, ·H , 0H , 1H〉 specified as:

∀a ∈ Act. a · a = a (1)

∀a, b ∈ Act ∪ {⊥} : b �= a =⇒ a · b =⊥ (2)

plus commutative rules and the ones for 0 and 1. (3)

The operation +H is obtained by extending the c-semiring axioms for the
additive operation with a +H a = a, for all a ∈ H and a +H b =⊥, for all
a, b ∈ Act ∪ {⊥} such that b �= a.

With Hoare synchronisation, a synchronisation can take place only when
all components attached to the corresponding synchronisation point agree on
their actions (i.e., each of these components impose an action and they are all
the same). This is reflected in the Hoare c-semiring multiplicative equations.

Hereafter, we assume a fixed c-semiring 〈S, +, ·, 0, 1〉.

Definition 3.4 [Weighted graphs] A weighted graph is a pair Γ � G of a
graph G and a weighting function Γ mapping a finite set of nodes to S such
that n(G) ⊆ domΓ.

A weighted graph is a graph having values in S associated to its nodes. We
write x1 : s1, . . . , xn : sn � G for the weighted graph whose weighting function
maps xi to si, for any i ∈ {1, . . . , n}, with the implicit assumption that nodes
xi are all distinct and n(G) ⊆ {x1, . . . , xn}. If x �∈ domΓ, function Γ, x : s is
the extension of Γ on x.

3.2 Productions for weighted graphs

The classical SHR approach is a declarative framework where the behaviour of
an edge is specified via a set of productions describing the graph to be replaced
for the edge, provided that some requirements are satisfied by the surrounding

environment. A production takes the form p : L(x)
Λ
−→ G where L(x) is a

hyperedge, G a hypergraph and Λ specifies the requirements. Roughly, p
states that, in a given graph, an edge labelled L can be replaced by G provided
that the environment satisfies requirements Λ. Productions of SHReQ have a
slightly different definition and interpretation.
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Definition 3.5 [Productions] Given a tuple of pairwise distinguished nodes

x and a graph G such that {|x|} ⊆ n(G), χ � L(x)
Λ
−→ G is a production iff

• L is an edge label of arity |x|;

• χ : {|x|} → S is the applicability function;

• Λ : {|x|} → S is the communication function.

A SHReQ production, or simply production, χ � L(x)
Λ
−→ G states that,

in order to replace L with G in a graph H , the graph H must satisfy the
conditions expressed by the applicability function χ on the attachment nodes
of L. Once χ is satisfied in H , L “contributes” to the rewriting by offering
Λ in the synchronisation with the other edges connected to its attachment
nodes. As will be made clearer later, χ expresses the minimal requirement
that the execution environment must satisfy in order to apply the production.
Finally, it is understood that the new nodes appearing in G can be freely
renamed (avoiding name-capturing of the nodes in x); moreover, nodes x

are considered local to the production and can be renamed with fresh names
through the whole production.

We remark that, in χ � L(x)
Λ
−→ G, c-semiring values play different roles

in χ and Λ: in the former, they are interpreted as the minimal requirements
that the environment must satisfy for applying the production; in Λ they are
the “contribution” that L yields to the synchronisation with the surrounding
edges.

3.3 C-semirings and productions for the ring case study

Productions for the running example of Section 2.1 rely on the c-semiring R
given by the cartesian product of the Hoare c-semiring 〈H, +H , ·H, 0H , 1H〉,
where H = {a, b, c, 1H , 0H ,⊥} and 〈N+, max, min, 0, +∞〉, the max/min c-
semiring (Example 3.3 and 3.2). The former coordinates the network rewrit-
ings and the latter represents resource availability, indeed the product of
max/min (i.e., min) computes the residual availability of resources. The
unit of the multiplication (resp. addition) of R is 1 = (1H , +∞) (resp.
0 = (0H , 0)). Moreover, weights on nodes will determine when a new ring
is created.

The idea is that the network starts from an initial graph representing a
ring with a number of (non-limited) nodes with weights (1H , u) where value
u is the maximal amount of available resource. For simplicity, all nodes in
newly created rings initially contain the same value u. The limited nodes
created during ring evolution are weighted with (b, +∞) which is constantly
maintained.
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Create Brother (n < u)

•x

• (a,n)x R





R





−→ •z l

• (α,+∞)y R





•y

x : (0H , u),y :0 � R(x,y)

(x, (a, n))

(y, (α, +∞))
−−−−−−−→ R(x,z) | R(z,y) | l(z)

Accept Syncrhonisation R Accept Syncrhonisation l

• (b,+∞)x •x

R





−→ R





• (α,+∞)y •y

• (b,+∞)x •x

l −→ l

x : (0H , +∞),y :0 � R(x,y)

(x, (b, +∞))

(y, (α, +∞))
−−−−−−−→ R(x,y) x :0 � l(x)

(x,(b,+∞))
−−−−−−→ l(x)

where α ∈ {a, b}

Fig. 3. Productions for ring evolution

Figure 3 and Figure 4 show the productions for the case study giving both
textual and graphical representation (drawings are simplified by not represent-
ing the applicability functions that appears in the textual representation). Ac-
tually, most of them are production schemas corresponding to a set of similar
productions. For example, α ranges over actions {a, b} and Create Brother

is a production schema where n < u.

Figure 3 contains productions modelling the ring evolution while Figure 4
contains productions for the creation and initialization of a gate and a new
ring. Detailed comments on the productions follow.

Schema Create Brother increases the size of the ring by adding a R-
edge as represented in the graph on the right-hand-side. The applicability
condition on x, (x :0H , u), means that the graph weight in matching node of
x must be greater than or equal to u (i.e., there is at least a resource value u
available). Then, edge R(x, y) imposes on node x an action (a, n) such that
u has to be greater than n. Action a assures that the production can only be
applied over non limited nodes since the only production for l-edges imposes
action b, which cannot synchronise with a. Notice that node z is a new limited
node since a l-edge is connected to it. These productions apply regardless of
y being a limited node or not.

Schema Accept Synchronization R is used to agree to synchronisation
with the rings in charge of creating new components. In this way, only one
of the R-edges connected to a non limited node creates a new component.
The result of synchronising on y for α = a (using Create Brother for the
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Create Gate (r > 0)

• (a,+∞)x l •
x

G �� •
z

Ru
r ������������

R





−→ R





• (b,+∞)y •y

x : (0H , u),y :0 � R(x,y)

(x, (a, +∞))

(y, (b, +∞))

−−−−−−−→ R(x,y) | l(x) | G(z,x) | Ru
r (z,z)

Init Ring

(r > 0)

•x

• (c,u)x R





Ru
r





−→ •z

• (c,+∞)y Ru
r−1





•y

• (c,u)x •x

Ru
0





−→ R





• (c,+∞)y •y l

x :0,y :0 � Ru
r (x,y)

(x, (c, u))

(y, (c, +∞))

−−−−−−−→ R(x,z) | Ru
r−1(z,y) x :0,y :0 � Ru

0 (x,y)

(x, (c, u))

(y, (c, +∞))

−−−−−−−→ R(x,y) | l(y)

Accept Synchronisation Init Accept Synchronisation Gate

• (c,+∞)x •x

R





−→ R





• (c,+∞)y •y

• (β,+∞)x •x

G





−→ G





• (b,+∞)y •y

x :0,y :0 � R(x,y)

(x, (c, +∞))

(y, (c, +∞))
−−−−−−−→ R(x,y) x :0,y :0 � G(x,y)

(x, (β, +∞))

(y, (b, +∞))
−−−−−−−→ G(x,y)

where β ∈ {b, c}

Fig. 4. Productions for creating a new ring

neighbour) will be the product (a, n)·(a, +∞) = (a·Ha, min(n, +∞)) = (a, n).
This result will be the new weight of the graph node matching y and represents
the remaining available resource. Note that the condition on x (x : (0H , +∞))
assures that x must be a limited node. Finally, Accept Synchronization l
simply avoids that limited nodes create new brothers and gates.

Create Gate (r > 0) The previous (schema of) productions are used for
ring evolution. An edge R(x, y) where x is non limited and y is limited, can
consume the remaining resource on x to create from it a gate to a new ring.
A value r is non-deterministically chosen as the size of the new ring and u
is the initial weight of its nodes (edge Ru

r ). Once a new gate is connected
to x, it is converted into a limited node by adding an edge l(x). Note that
if all resources in a node are consumed using Create Brother, we arrive to
the base case u = 1 and Create Gate will be the only applicable production
allowing component synchronisation. It is worth noticing that while a gate is
created, the rest of the ring can continue its evolution.
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Schemas Init Ring inductively initialise a new ring to the intended size
and to the initial weights of nodes (action (c, u) on node x). Action c avoids
applying rules in Figure 3 as well as Create Gate until the ring has finished
this phase. When the intended size of the ring is obtained (r = 0), Ru

0 is turned
into a R-edge and a l-edge is attached to the same node as the gate. At this
point, we have r nodes with resource u and the l-edge can only synchronise
with action b, therefore, from now on only productions on Figure 3 and Create

Gate can be used. Finally, Accept Synchronisation Init and Accept

Synchronisation Gate are used as for making R and G edges to allow ring
initialisation.

4 Synchronised Rewriting for SHReQ

SHReQ rewriting mechanism relies on c-semirings where additional structure
is defined. More precisely, we require that there is a set NoSync ⊆ S such
that ∀s ∈ S : ∀t ∈ NoSync : s · t ∈ NoSync and 0 ∈ NoSync. The intuition is
that NoSync is the set of values representing “impossible” synchronisations.
In the case of the Hoare c-semiring (Example 3.3), set NoSyncH contains 0H

and ⊥ while for the cartesian product of the max/min and Hoare c-semirings
it is NoSync = {0,⊥} ∪ {(a, 0)|a ∈ Act} ∪ {(0H , n)|n ∈ N

+}.

Before giving SHReQ semantics, we establish some notational conventions.
We let Ω be a finite multiset over N × S. We write multisets by listing the
(occurrences of their) elements in square brackets, e.g. [a, a, b] is the multiset
with two occurrences of a and one of b where the order is not important, i.e.,
[a, a, b] = [a, b, a] = [b, a, a]. Multiset membership and difference are expressed
by overloading ∈ and \, respectively; the context will always clarify if we are
referring to sets or multisets. Multiset union is denoted by �; sometimes we
also write A � B to denote the multiset [a | a ∈ A] � [b | b ∈ B], where A or
B is a set. Moreover,

• domΩ = {x ∈ N | ∃s ∈ S : (x, s) ∈ Ω};

• Ω@x = [(x, s) | (x, s) ∈ Ω];

• WΩ : domΩ → S WΩ : x �→
∏

(x,s)∈Ω@x

s;

• for σ : N → N , Ωσ = [(σ(x), s) | (x, s) ∈ Ω].

4.1 SHReQ Semantics

The semantics of SHReQ is a labelled transition system specified with inference
rules given on top of quasi-productions.
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Definition 4.1 [Quasi-productions] The set QP of quasi-productions on P is
defined as the smallest set containing P such that

χ � L(x)
Ω
−→ G ∈ QP

∧

y ∈ N \ new(G) =⇒ χ′ � L(x{y/x})
Ω{y/x}
−−−→ G{y/x} ∈ QP,

where x ∈ {|x|} and χ′ : {|x|} \ {x} ∪ {y} → S is defined as

χ′(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ(z), z ∈ {|x|} \ {x, y}

χ(x) + χ(y), z = y ∧ y ∈ {|x|}

χ(x), z = y ∧ y �∈ {|x|}.

Intuitively, quasi-productions are obtained by substituting nodes in pro-
ductions and relaxing the condition that attachment nodes of the left-hand-
side should be all different. When y is substituted for x, χ′ assigns to y either
χ(x) + χ(y) or χ(x) depending whether y ∈ {|x|}; nodes z not involved in the
substitution maintain their constraint χ(z).

Proposition 4.2 χ � L(x)
Ω
−→ G ∈ QP =⇒ domΩ = {|x|}.

Definition 4.3 [Communication and weighting] Let Ω : domΩ → S be the
communication function induced by Ω defined, for (x, s) ∈ Ω as Ω(x) = WΩ(x).
We say that Ω is defined (written as Ω ↓) iff

∀x ∈ domΩ : |Ω@x| > 1 =⇒ WΩ(x) �∈ NoSync.

Let Γ be a weighting function such that domΩ ⊆ domΓ and I ⊆ N \domΓ,
the weighting function induced by Γ and Ω is ΓI

Ω : domΓ ∪ I → S, defined as

ΓI
Ω : x �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ I

Γ(x), |Ω@x| = 1

WΩ(x), otherwise

For each x ∈ domΩ, Ω computes the requirements resulting from the syn-
chronisation of requirements in Ω@x. More precisely, it multiplies the values
according to the c-semiring multiplication. Condition (4.3) avoids synchro-
nisations (and hence rewritings) when a value in NoSync is the result of the
composition. The weighting function computes the new weights of graphs
after the synchronisations induced by Ω. New nodes (identified by set I)
are assigned with 1, nodes x upon which no synchronisation took place (i.e.,
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(ren)
χ � L(x)

Ω
−→ G ∈ QP Ω ↓ x ∈ domχ =⇒ χ(x) ≤ Γ(x)

Γ 	 L(x)
Ω
−→ ΓI

Ω 	 G

(com)

x ∈ domΓ1 ∩ domΓ2 =⇒ Γ1(x) = Γ2(x)

Γ1 	 G1
Λ1−→ Γ′

1 	 G′
1 Γ2 	 G2

Λ2−→ Γ′
2 	 G′

2 Λ1 � Λ2 ↓

Γ1 ∪ Γ2 	 G1 | G2

Λ1�Λ2
−−−→ Γ1 ∪ Γ2

I
Λ1�Λ2

	 G′
1 | G′

2

Table 1
Hypergraph rewriting rules.

|Ω@x| = 1) maintain the old weight while those where synchronisations hap-
pen (i.e., |Ω@x| > 1) are weighted according to the induced communication
function. We can now define the LTS of weighted graphs.

Definition 4.4 [Graph transitions] A SHR with QoS (SHReQ) rewriting sys-
tem consists of a pair (QP , Γ � G), where QP is a set of quasi-productions
on P and Γ � G is the initial weighted graph. The set of transitions of
(QP, Γ � G) is the smallest set obtained by applying the inference rules in
Table 1 where, I = n(G) \ domΓ.

Rule (ren) applies quasi-productions to weighted graphs provided that Ω
is defined and that the weights on the graphs satisfy conditions χ, namely,
χ(x) ≤ Γ(x), for all x ∈ domχ. Notice that the communication function
and weights in the conclusions are obtained as in Definition 4.3. Similarly,
rule (com) yields the transition obtained by synchronising the transitions of
two subgraphs, provided that the (proofs of the) subgraphs assume the same
weights on the common nodes.

4.2 SHReQ for the ring case study

Now, we show a derivation using productions in Figure 3 and Figure 4 based
on the SHReQ semantics (Table 1). This simple example shows how SHReQ
can deal with system evolution affected by multiple ”dimensions” of quality.
In section 5.3 we will use this example to present different properties using
the logic for SHReQ.

Instead of a pedantic application of the formal rules, the graphical repre-
sentation of the derivation is chosen to help intuition (the formal derivation
can easily be obtained by following the graphical representation). Figure 5
presents a derivation starting with a 2-ring and ending with the graph in
Figure 2. Tentacles are decorated with the synchronisation requirements im-
posed by productions and nodes are decorated with their weights. For the
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Fig. 5. A derivation

sake of clarity, node names are avoided as node position identifies them dur-
ing rewriting. Between graphs, the names of the applied productions are
indicated together with the instantiation of schema parameters. For the sake
of clarity, in the third and fourth graph, the center of the main ring contains
a synchronisation action (b, +∞) indicating that all edge productions in the
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main ring impose that action on the nodes.

The derivation starts from a ring of two components with resource value 5.
Both components apply production Create Brother. The first one chooses
u = 5 (satisfying condition 5 ≤ 5) and n = 2 (meaning that the resource to
be consumed is 3). Similarly, the second production chooses u = 4 (satisfying
condition 4 ≤ 5) and in this case n = 3. Synchronised rewriting results in the
second graph with four components (new nodes are limited). The resulting
synchronisation produces the new weights for the nodes (see second graph) as,

(a, 2) = (a, 2) · (a, +∞) = (a ·H a, min(2, +∞))

(a, 3) = (a, 3) · (a, +∞) = (a ·H a, min(3, +∞)).

In the second graph, the two components with the shadow box are the only
ones allowed to create brothers or gates. They use all the remaining resources
(u = 2 and u = 3, respectively) to create gates to two 2-rings (r = 1); the
other edges apply the Accept productions. The result of the rewriting step
is the third graph, where the new rings are ready to be initialised. Note that
the two nodes in the main ring where gates are connected, now are limited.

The last two rewriting steps initialize the new rings with the Init pro-
ductions, obtaining the final graph of Figure 2. Observe how the main ring
remains the same applying Accept productions, and that, in the last step,
productions Accept Synchronisation Init ensure that the weights on the
non limited nodes of the new rings are (c, 2) and (c, 3), respectively.

5 A Logic for SHReQ

In this section we describe the specification formalism of SHReQ, which con-
sists of a spatio-temporal logic interpreted over c-semiring values.

Let F be the universe containing all the c-semiring functions Si → S,
i ≥ 0. Set F obviously contains c-semiring addition and multiplication as
binary functions, and values as zero-adic functions.

5.1 Logic Syntax

Let VN be a set of node variables (disjoint from N and ranged over by u, v) and
VR be a set of recursion variables (ranged over by r). Formulae of the graph
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logic are generated by φ in the following grammar (remind Notation 2.1):

φ ::= nil | Γ(ξ) | L(ξ) | φ|φ | φ‖φ spatial operators

| f(φ, . . . , φ) c-semiring operators

| κu.φ node quantification

| u = v node equality

| [κ] φ temporal operator

| r(ξ) | (μr(u).φ)ξ | (νr(u).φ)ξ fixpoints

where L ⊆ L is a finite set of labels, ξ ranges over N ∪ VN , f ∈ F and
κ ∈ {

∑
,
∏ �

}. Obviously, we require L : |ξ| for all L ∈ L; moreover, in the
last productions for φ, |ξ| = |u|. In addition, we impose the usual restriction
of r(ξ) to occur as operand of a monotone function or under an even number of
antimonotonic functions in order to guarantee that fixpoints are well defined.

Before giving a formal definition of the semantics of our logic, which is done
in Section 5.2, we give an intuition of the different syntactic ingredients. With
nil we characterize graphs with no edges, Γ(ξ) is used to express the weight
of nodes, while L(ξ) is used to state whether or not there is an edge with ξ as
attachment nodes and with label contained in L. A decomposition of a graph
G is an ordered pair of graphs G1, G2 such that G1 | G2 ≡ G. The set of all
decompositions of a graph G will be denoted by Θ(G). It is not hard to see that
the size of Θ(G) is exponential in the number of edges of G. With φ1|φ2 we
range over all decompositions (G1, G2) of the graph multiplying the evaluation
of φ1 in G1 and the evaluation of φ2 in G2. To all such values, the additive
operation is applied. As will be made clearer later, the spatial operator ||
is dual to |. Node quantification evaluates φ for each node u of a graph
and then quantifies using κ which is semiring addition, multiplication or glb.
Node equality and c-semiring operations have a straightforward interpretation.
The temporal operator [κ]φ applies κ to the values obtained by evaluating φ
after one transition, and fixpoints with parameterized recursion have the usual
meaning (see [7], for instance). Observe that ingredients considered as duals
are necessary since the absence of a negation operator in c-semirings impedes
to derive them from their duals [21]. For instance, a least fixpoint operator
cannot be obtained via the greatest fixpoint operator.

5.2 Semantics

The set of all weighted graphs is denoted by G (recall that we assume N , L
and the c-semiring modeling QoS to be fixed). We consider a fixed SHReQ
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rewriting system (QP, Γ � G) and interpret a formula as a mapping from
G into S, i.e., from the set of all weighted graphs into the domain of the
c-semiring. Let σ : VN → N denote the name environment that maps node
variables with nodes and let ρ be the usual propositional environment mapping
recursion variables into functions V ∗

R → (G → S). With abuse of notation we
let environments to be applied to actual names and mappings resulting in
the identity, and we abbreviate their application using postfix notation. The
interpretation of formulae is as follows:

�nil�σ;ρ(Γ � G) = G ≡ nil

�L(ξ)�σ;ρ(Γ � G) =
∑

L∈L
{G ≡ L(ξσ)}

�Γ(ξ)�σ;ρ(Γ � G) = (ξσ ∈ domΓ) · Γ(ξσ)

�ξ = ξ′�σ;ρ(Γ � G) = ξσ = ξ′σ

�f(φ1, . . . , φn)�σ;ρ(Γ � G) = f(�φ1�σ;ρ(Γ � G), . . . , �φn�σ;ρ(Γ � G))

�φ1|φ2�σ;ρ(Γ � G) =
∑

(G1,G2)∈Θ(G){�φ1�σ;ρ(Γ � G1) · �φ2�σ;ρ(Γ � G2)}

�φ1‖φ2�σ;ρ(Γ � G) =
∏

(G1,G2)∈Θ(G){�φ1�σ;ρ(Γ � G1) + �φ2�σ;ρ(Γ � G2)}

�κu φ�σ;ρ(Γ � G) = κx∈domΓ
�φ�σ[x/u];ρ(Γ � G)

�[κ] φ�σ;ρ(Γ � G) = κ
Γ�G

Λ
−→Γ′�G′

�φ�(Γ′ � G′)

�r(ξ)�σ;ρ(Γ � G) = rρ(ξσ)

�(μr(u).φ)ξ�σ;ρ(Γ � G) = lfp(λr
′.λv.�φ�σ[v/u ],ρ[r�→r′])(ξσ)(Γ � G)

�(νr(u).φ)ξ�σ;ρ(Γ � G) = gfp(λr
′.λv.�φ�σ[v/u ],ρ[r�→r′])(ξσ)(Γ � G),

where κ ∈ {
∑

,
∏

,
�
}. All terms in the right hand side are interpreted over a

fixed c-semiring.

We now concisely describe the semantics of the logic described above.
First, observe that some of the ingredients are purely boolean, in the sense
that they return either 1 or 0, which are interpreted as the truth or the falsity.
This is indeed the case of nil, L(ξ), and ξ = ξ′. Formula nil characterises
graphs with no edges, namely it holds for graphs structurally congruent to
nil. Formulae like L(ξ) are used to reason about the structure of a graph: if a
graph G consists of a single edge labelled with some label L ∈ L then the for-
mula evaluates to 1 and otherwise to 0. Node equality is trivially interpreted
as 1 if both nodes are equal and 0, otherwise.

Remaining formulae might evaluate to any c-semiring value, as far as sub-
formulae of type Γ(ξ) are present. Such a formula evaluates to the QoS as-
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sociated to a node ξσ but only if the node belongs to the graph where the
formula is being evaluated, otherwise 0 is returned.

The interpretation of c-semiring functions is straightforward and notice
that the interpretation of 1 yields 1 for any graph.

The standard boolean interpretation of the spatial formula φ1|φ2 (resp.
φ1||φ2) is that it evaluates to true for graphs that can be decomposed into
two subgraphs one satisfying φ1 and the other φ2 (resp. one subgraph satisfies
φ1 or the other satisfies φ2 regardless the graph decomposition). In our logic
the semantics is given by substituting boolean conjunction (resp. disjunction)
by c-semiring multiplication (resp. addition). Thus, in a graph G, φ1|φ2 is
evaluated by considering all possible decompositions (G1, G2) of G. For each
decomposition, φ1 and φ2 are evaluated in G1 and G2, respectively, and the
result is multiplied. All the values obtained are summed up. The value of
φ1||φ2 is obtained dually with respect to the addition and multiplication oper-
ation of the c-semiring, i.e., for each decomposition, φ1 and φ2 are evaluated
in G1 and G2, and the result is summed up, and finally all the values obtained
are multiplied.

As already said, the main originality of c-semiring based logics is that
boolean operators and constants are substituted by c-semiring operations and
constants. This is also the case of node and next-time quantifiers. Boolean log-
ics typically consider two forms of node and temporal quantification, namely
existential and universal. C-semiring based logics substitute existential and
universal quantification with semiring addition and multiplication, respec-
tively. However, in addition, c-semiring based logics consider a third way
of quantifiying, namely the greatest lower bound (glb) operation of the im-
plicit lattice. The main reason is that in c-semirings where the multiplicative
operation is not idempotent the glb and the multiplicative operation do not co-
incide, but one might be interested in considering both cases. A clear example
is the tropical c-semiring, which can be used to model prices. In such systems
one could be interested, for instance, in expressing the cheapest (c-semiring
addition), the cumulation (c-semiring multiplication) or the most expensive
price (c-semiring glb) amongst a set of services. Thus, for instance the value
of [κ]φ in a graph G is obtained by considering all possible transitions from G
to the resulting graphs G′, where φ is applied. Then, all the values obtained
are quantified using κ.

We now describe the semantic of fixpoints formulae. First of all, we con-
sider closed formulae only. Therefore, when evaluating a fixpoint formula like
(μr(u).φ) or (νr(u)).φ, function λr

′.λv.�φ�σ[v/u ],ρ[r�→r′] is well defined [24] since
every variable is bound except for its two parameters which are (i) a mapping
r
′ of node vectors into functions with G as domain and S as co-domain, and
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(ii) a vector v of nodes. Thus, a fixpoint is a function whose domain is the
set of node vector and codomain is the set of mappings of G into S. The
application of a fixpoint to a vector of nodes produces a mapping of weighted
graphs into c-semiring values. We refer to [17] and [21] for a deeper discussion
on these issues.

5.3 Applying the logic

We now illustrate our logic with a set of formulae expressing properties that
are interpreted over the example derivation in section 4.2. Note that some
of the following properties are purely boolean in the sense that they evalu-
ate either to 0 or to 1. In such cases we recommend readers to read the
formulae in a boolean sense (considering 0 as False and 1 as True) and to
interpret c-semiring addition as disjunction or existential quantification and
multiplication as conjunction or universal quantification.

First, we define a formula that expresses that there is a path in a graph
between two nodes u, v made of edges labelled by elements in L.

path(u, v, L) ≡ μr(u, v).(u = v) +
∑

w

L(u, w)|r(w, v).

Formula path(u, v, L) states that, in a graph, there is a path from u to v
either when u is exactly v (i.e., u = v) or when the graph can be decomposed
in two subgraphs, one containing an arc from u to a node w and the other a

path from w to v, i.e.
∑

w

L(u, w)|r(w, v).

A pair of nodes u, v belong to a ring whenever there are two disjoint paths
from u to v made of R-edges

ring(u, v) ≡ path(u, v, {R}) | path(v, u, {R}). (4)

Looking at Figure 5, we can see that as the ring formula is defined over a set
containing label R, then its application over two nodes belonging to different
rings results in 0 because they are connected with a path that must contain
a G-edge.

A tree of rings is a tree where nodes are rings connected by G-edges. From
formula (4) we can easily derive another one that characterizes trees of rings,
by requiring that (5) every node is in a ring, (6) every node is reachable from
any other node, and (7) only two nodes in a ring can belong to a cycle:
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tree≡
∏
u

ring(u, u) (5)

·
∏
u

∏
v

path(u, v, {R, G}) + path(v, u, {R, G}) (6)

·
∏
u

∏
v

(path(u, v, {R, G}) · path(v, u, {R, G})) → ring(u, v)) (7)

where → is equivalent to ≤S interpreted in a boolean way, but we use a
different symbol to enhance the readability of the examples. For example, the
first, second and last graphs in Figure 5 satisfy the three requirements of the
formula. A graph with two gates connecting the same rings falsifies the third
requirement and a non connected graph falsifies the second one. This formula
shows how to check the configuration consistency of the network.

Previous examples refer only to structural aspects. Now we state a prop-
erty regarding temporal issues, namely that every non limited node will even-
tually have a gate attached to it. We use abbreviation summation(φ) defined
as μr.φ + [

∑
] r. Note that in a boolean context formula summation(φ) can

be thought of as eventually(φ), with its usual interpretation, i.e., it results
in 1 if φ gives 1 at least once. Thus we write:

∏
u

¬({l}(u) | 1) → summation

(∑
v

({G}(v, u) | 1)

)
(8)

where ¬ is the c-semiring function that maps 0 into 1 and every value distinct
from 0 to 0. The interpretation of formula (8) over the initial graph in Figure 5
will range over its two nodes. It is easy to see that the antecedent of the
implication is 1 (since no l-edge is present), hence the whole property holds
only if the consequent is 1 as well (because → is ≤S and 1 is the maximum
of the c-semiring). According to the first two rewriting steps in Figure 5, the
initial graph eventually evolves to a graph containing gates connected to that
nodes, namely the consequent is evaluated to 1, as required.

Up to this point, all presented formulae have been purely boolean. We now
introduce a formula concerning QoS aspects and whose interpretation might
return values different from 0 or 1. Assuming to be applied over a graph
forming a ring (i.e., a cycle over R-edges), we consider the property obtaining
the highest available resource in the ring, i.e., the maximum over the weights
of non limited nodes.(∏

v

({l}(v) | 1) +
∑

u

Γ(u) · ¬({l}(u) | 1)

)
· (0H , +∞)

In the case of a ring with all limited nodes the result is +∞ (the last part of the
formula (0H , +∞) simply selects the second component of the pair). Note that

D. Hirsch et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 135–159 155



we quantify over all nodes, but only those not being attached to a l-edge will
be relevant, since subformula ¬({l}(u) | 1) returns 1 for non limited nodes,
and 0 otherwise. Then, for every node the value of the mentioned subformula
is multiplied by the QoS of the node, i.e., by Γ(u). The first term of the

formula
∏

v

({l}(v) | 1) is necessary for the case when all nodes are limited.

For example, interpreting this formula on the left-side ring of the last graph
of Figure 5 gives (0H , 2). For the ring in the right side it is (0H , 3), and for
the middle ring it is (0H , +∞) given that all its nodes are limited.

Our last formula states a property that regards structure, behaviour and
QoS aspects. As defined by production Create Gate, a new ring is created
with a value u that will be the initial resource weight of non limited nodes
of the ring (see Figure 4). We specify a formula yielding the best value (i.e.,
the maximum) of the initial resource weight of every ring ever generated by
the derivations of an intial graph. First, we construct a formula to obtain the
resource of a newly generated ring. This can be done by (9) looking over a
graph containing a Ru

0 -edge, and (10) after the next rewriting step looking at
the weight of the first attachment node of the R-edge that has replaced it:

resource≡
∑
w,v

({Ru
0}(w, v) | 1) · (9)

([∑]
({R}(w, v) | 1) · Γ(w)

)
. (10)

Then we use the abbreviation (summation(resource) · (0H , +∞)) which,
actually, computes the best value of resource in every reachable state 5 . Thus,
it expresses the desired property, i.e., the best initial resource value of every
ring ever created. The interpretation of (summation(resource) · (0H , +∞))
only to the derivation of Figure 5, finds the two new rings over which the
maximum is chosen resulting in (0H , 3).

5.4 SHReQ logic in context

In the literature, several approaches propose spatio-temporal logics for sys-
tems involving both structural and behavioural aspects. First, there are some
approaches to reason about rewriting systems. For instance, [22] and [2] pro-
pose graph transition systems as modelling formalism for rewriting systems.
The temporal and spatial aspects are treated differently. The logic of [22] com-
bines the temporal logic LTL with second order quantification over nodes and
regular expressions to express path properties, while [2] combines a μ-calculus
with the Monadic Second-Order (MSO) logic for graphs [11]. In contrast, we

5 We restrict the schemas to obtain a finite set of finite derivations from an initial graph.
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interpret formulae directly over SHReQ rewriting systems and use a spatial
approach for the structural aspects.

Spatial logics are used to reason about the structure of models, such as
heaps [23], trees [8], processes calculi [4,5,6] and graphs [7,12]. The common
concept in such approaches is that if a notion of model composition exists
(like parallel composition in process calculi or in graph grammar) one can
reason about decompositions in the corresponding logic. The usual way is
via a composition operator |, where φ|ψ is satisfied by models that can be
decomposed in two sub-models, one satisfying φ and another one satisfying ψ.
In graphs, composition is closely related with the second-order quantification
over set of edges used in MSO. Indeed, the expressive power of the fixpoint-free
fragment of GL have been shown to be included in MSO [12]. The full logic,
on the other hand, is able to express properties unlikely to be represented in
MSO [12]. It is an open question whether GL subsumes MSO.

Spatial logics for process calculi [4,5,6] include mechanism to reason about
name restriction and behaviour. Although node restriction is part of our graph
model we neglect a mechanism to reason about hidden names for the sake of
simplicity.

There are also approaches that interpret temporal logics over domains
different than the usual boolean one, like boolean algebras [10] or probabil-
ities [13]. There is also a vast number of works regarding the analysis and
verification of systems where the focus is on probabilities and time. We cite
among others the work on CSL [1], a logic that combines these two aspects.
Contrary to such works we do not concentrate on specific issues like time or
probabilities but rather consider an abstract representation of QoS by means
of a suitable algebraic structure. More precisely, our own contribution to
this field of quantitative logics is that we propose logics to be defined over
constraint-semirings, our formalism for QoS.

In sum, the main novelty of our logic is that it includes mechanisms to
reason about structural, behavioural and (c-semiring modeled) QoS aspects.

6 Final Remarks

We have introduced a logic for reasoning about structural, behavioral and
QoS aspects of SHReQ systems [19], a formal framework for specifying sys-
tems handling abstract high-level QoS aspects. SHReQ combines SHR with
c-semirings so that the former models mobility and reconfiguration of systems
on top of the latter which provide both the mathematics for multi-criteria QoS
and the underlying synchronisation policies. The logic for SHReQ subsumes
and generalizes previous approaches for reasoning about graphs [17] and tran-
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sition systems [21] with QoS. Significant fragments of both logics have been
shown to be decidable (for finite systems) and model checking algorithms pre-
sented (see [21], for instance). A significant fragment, for instance, consists
of the special case when the c-semiring is a distributive lattice which occurs
when the multiplicative operation is idempotent. This is indeed the case of
our scenario. In such cases our full logic can be shown to be decidable for
finite state space SHReQ systems. The intuition is that, as shown in [21],
fixpoints are defined over finite lattice, even if the domain of the c-semiring
is infinite. Hence, fixpoint iteration algorithms can be applied. On the other
hand, if the c-semiring is not a distributive lattice, such algorithms cannot be
applied in general. For instance, [21] gives decidability results and algorithms
for some fragments of the logic only. However, we believe to obtain positive
results for most of the interesting properties one wishes to express in SHReQ
systems. This issues will be subject of future research. Also, we plan to de-
velop suitable verification techniques that exploit the expressivity of SHReQ
and its logic.
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