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Abstract—Sufficient conditions for the existence and Lipschitzontains various misprints, omissions, and technical nnco
continuity of optimal strategies for static team optimization problemsistencies, probably due to a too fast and inaccurate gritin

are studied. Revised statements and proofs of some results in “Kig
K.H., Roush F.W., Team Theory. Ellis Horwood Limited Publisher
Chichester, UK, 1987” are presented.

o nese drawbacks were pointed out from the very beginning in
a couple of reviews [4], [6]. We quote from [6]: “The strength

of the book lies in the power and originality of the ideas used
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'to achieve its stated goal of extending the theory of teams in
a number of new directions” but “Unfortunately, the book is
beset with a variety of technical problems that will prevent

all but the most tolerant, persistent, and experiencedersad

I. INTRODUCTION

from reaping the benefits of the later chapters”. We hope that

our work will make the revisited results more easily acdassi
In team optimization problems, a group a@dcision makers gnd usable.
(DMs), each having at disposal some information and vari- The paper is organized as follows. Section Il introduces
ous possibilities ofdecisions, is interested in maximizing a gefinitions and assumptions and formulates the family dfcsta
common goal, expressed viaeam utility function. Each DM team optimization problems under consideration. Sectibn |

takes a decision as a function, callgdategy, of its available presents revised statements and proofs of some results ap-
information. In the model that we adopt in this paper, th§eared in [3].

information is expressed via a probability density funefieo

we have astatistical information structure [3, Chapter 3]. We
considerstatic team optimization problems [5], in which the
information of each DM depends on a random variable, called
state of the world, but not on the decisions of the other DMs,
Otherwise, one has dynamic team optimization problem;
it was shown in [8] that many dynamic team optimization
problems can be reformulated in terms of equivalent statice
ones.

Closed-form solutions for both static and dynamic team
optimization problems can be derived only under quite gfron
assumptions on the team utility function and the way in which ©
each DM’s information is influenced by the state of the world
(and, in the case of dynamic teams, by the decisions of the®
other DMs) [3]. If these conditions are not met, one has to
search for approximate solutions. In such a case, knowing®
structural properties of optimal strategies (e.g., Lijtgcbon-
tinuity) is useful to find good suboptimal strategies. .

The aim of this paper is to present revised statements
and proofs of some results appeared in [3, Section 5.2] on®
existence and Lipschitz continuity of optimal strategies f
a family of static team optimization problems. Although the
book [3] offers an interesting and inspirational expositiaf
the mathematical theory of team optimization problems, it

Il. PROBLEM FORMULATION

The context in which we shall formalize the optimization
problem and state the results is the following.

Satic team of n decision makers (DMs), i = 1,...,n.

r € X C R%: vector-valued random variable, called
state of the world, describing a stochastic environment.
The vectorz models the uncertainties in the external
world, which are not controlled by the DMs.

y; € Y; C R%: vector-valued random variable, which
represents thenformation that the DM: has about.

s; : Y; — A; C R: Borel-measurablatrategy of the i-th
DM.

a; = s;(y;): decision that the DM chooses on the basis
of the informationy;.

w: X x I,V x I, A; € RY — R, where N =
Yoy di + n: real-valuedteam utility function.

The information that thes DMs have on the state of the
world z is modelled by am-tuple of random variables
Yi,---,Yn, 1€, Dy astatistical information structure [3,
Chapter 3] represented by a joint probability density
q(z,y1,...,yn) On the setX x I ,Y;.

We formulate the following static team optimization
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problem.

Problem STO (Static Team Optimization with Sta-
tistical
structure q(z,y1, . ..
u(z,yr, ...

Information). Given the statistical information
,yn) and the team utility function
., ay), find

7y’n,7a17"



IIl. LIPSCHITZ CONTINUITY OF THE OPTIMAL STRATEGIES

SSUIZ v(s1,- -, 5n), In this section, we shall give conditions that guarantee
b existence and Lipschitz continuity of optimal strategies f
where Problem STO.
The next lemma is obtained making various changes and
(51, 8m) = Baogro {0 i}, {51 (w:) Y1)} corrections to [3, Lemma 10, p. 162].
Lemma 1: Let ¢(y) be a probability density for the real
The quantitysup,, . v(s1,...,s,) is called thevalue of vector-valued random variable with values inI" C R™~,
the team. Z = R™ or Z a compact subset oR™, and{f,} a set of

functionsf, : Z — R, parameterized by, equilLipschitz with
Throughout the paper, we make the following twegonstantL and concavityr. If for every z € Z the function
assumptions. f+(2) : T — R is Borel-measurable, then the function defined
for everyz € Z as f(z) = [ q(v)f(z)dy is Lipschitz with
A1l The setX of the states of the world is compaty,,...,Y, constantL and concavityr.
are compact and convex, aid, . .., A,, are bounded closed
intervals. The team utility. is of classC?> on an open set
containingX x TI"_,Y; x II"_, A; andq is a (strictly) positive Proof. Lipschitz continuity with constant, follows by
probability density onX x II7_,Y;, which can be extended to
a function of clas§€? on an open set containing x 117", Y;.

£ (z) = f(w)]

[ anis ) - £ wldy
For = > 0, a concave functiorf defined on a convex set g
Q) C R hasconcavity (at least) 7 if for all u,v € Q and every / q(v)L||z — w|dy = L||z — w|| .
supergradientp,, of f atu one hasf (v)—f(u) < py-(v—u)— r
7|lv —ul®. If fis of classC?(f2), then a necessary conditionLet us prove the statement about concavity. By assumption,
for its concavity 7 is sup,co Amax(V2f(v)) < —7, where for everyy € I" we have

Amax(V2f(u)) is the maximum eigenvalue of the Hessian
V2 f(u). Indeed,

F) = fu) < pu- (v —w) = 7llv - ul]?

IN

F1(2) = fy(w) < ay(w) - (2 —w) = 7]z —wl®, (1)

wherea., (w) is a supergradient of,, at w.

implies By [2, Proposition 2.2.7, p. 36 and Theorem 2.7.2, p. 76]
1 1 (which can be applied since, ¥ = R™ or is a compact
f@)+ =7llo)|* = f(u) = =7|ul subset ofR™, thenZ is separable), every supergradieltv)
2 2 1 1 of f(2) = J.a(7)fy(2)dy atw can be written in the form
< pu- (0 —w) =7l —ul?+ 7llol? = 57l
= a0 -~ - ul? atw) = [ ata )y, @
< (putTu) - (v—u), wherea® (w) is @ measurable selection (with respectyjoof
e, f() + %TH . |2 is concave, then one applies thethe setdf, (w) of all supergradients of, atw. With such a

choice of the supergradient, by taking expectations in () a

characterization of concavity for a function of clags using (2) we get

A2 There existsr > 0 such that the team utility function
w: X x Y, x 11, A; — R is separately concave with f(2) = f(w)
concavityr in each of the decision variabfes

/F AN r(2) — o (w)]dy

< m d~ - o o - 2
Assumption A2 is motivated by tractability reasons and - /pq(wav (widy- (= —w) = 7llz — vl

encountered in practice. For example, in economic problems = a(w)(z —w) -7z —w|?,

it is motivated by the “law of diminishing returns”, i.e., .

the fact that the marginal productivity of an input usuallj:€-; f has concavityr. u
diminishes as the amount of output increases [5, p. 99 and p.

110]. In the proof of Theorem 1, we shall exploit the following

known result, which for completeness we report here togethe
with its proof.
IForQ C R4 convex andf : 2 — R concavep, € R? is asupergradient
of fatu € Q if for every v € Q it satisfiesf(v) — f(u) < pu - (v —u). . .
2|.e., if all the arguments of: are fixed except the decision variabe, Lemma 2: Let Z be a subset Of anormed I_'n_ear spa{:ﬁ,}
then the resulting function af; has concavityr. a sequence of real-valued functions @nequiLipschitz with



constantL. If for every z € Z their point-wise limit f(z) = Sep 1. We make the proof foﬁ{; the same arguments hold
limg .o fr(2) exists, thenf is Lipschitz with constant. for &}. Let us show that for every € N, the functionss;]
are well-defined and continuous, hence Borel-measurakle. L

Proof. By hypothesis, for every:,y € Z we have|fi(y) —

u(@)| < Lly—al. Thenlim o fu(y) — fila)| = 17y = MW 0) = Beaaly (ule1,02, 01, 52(02) -
f(@)] < Llly — || By the definition,

The following theorem, obtained making various changes §1(y1) = argmax M7 (y1,a1) . (5)
and corrections to [3, Theorem 11, p. 162], provides €
conditions guaranteeing that Problem STO has a solutionAs the probability densityy(x,y1,y2) is continuous and
made of amn-tuple of Lipschitz strategies. strictly positive on an open set containidg x Y; x Y3, the

conditional density;(z, y2|y1) is continuous onX x Y; x Ya.
Theorem 1: Under Assumptions Al and A2, Problem STGBinceq(z,y2|y1) andw are continuous on compact sets, they
admits Lipschitz optimal strategies. are uniformly continuous. Sé/{, as an integral dependent on
parameters, is continuous on the compactiet A;. Asu is
of classC! on a compact set, it is Lipschitz continuous thereon,
Proof. We detail the proof for the case of = 2 DMs, then too. Let L be an upper bound on its Lipschitz constant. For
we mention the changes required for the extension to2. everyy;, by Lemma 1M is Lipschitz in the second variable
a1 with constantZ, and has concavity in a;. _
Proof for n = 2. By the continuity and concavity properties aff{ with
respect toa;, the maximum in (5) exists and is unique, so
Consider a sequende’, s} of pairs of strategies, indexeds] is well-defined. Let)’;, v, € Y;. By the definition ofs?,

by j € N, such that exploiting the concavity- of Mj with respect taz; and taking
o the supergradierti of M/{ with respect to the second variable
lim v(s],s3) = sup v(s1,s2) at(y'y,81(v'y)) and (v, 5 (y",)), respectively, we get
Jj—o0 51,82

(such a sequence exists by the definition of supremum). From j IV P
this sequence, we generate another sequéfices’} defined M (Y1, 31y 1)) ) le (v 51y')
for everyy, € Y; and everyy, € Y, as < =75l ") - $ W)l (6)

and
éjl (yl) = argmax Ea:,yz ly1 {U(JZ, Y1,Y2,0a1, 3; (yQ))} ) (3)

a1 € . " . "
o M{(y" 1. 8(y'1) = M ("1, 8 (")
~j i < _7.§j / _§j "2 7
5%(92) = argmax E, . \yg{u(%y17y2,5]1(111)7a2)}- 4) 510) 15"l %
a2€A; By (6) and (7) we get
The proof is structured in the following steps.

/ YA
Step 1. For everyj € N, & and 3 32 are well-defined ‘Ml (yl’sl(y 1)) = Mi Yy 51(0))]
(i.e., the maxima in (3) and (4) exist and are unique) + My, 8 ) — MY (L8 ()
and Borel-measurable, so it makes sense to evaluate > 2715 (y") — 8 (v'1)?. (8)

v(8],8%). By construction, v(s],5}) > wv(s],s}), then

hmj_'oo U(éjh §%) = Supsl,sQ U(Sla 82)

By (8) we obtain
Step 2. For everyj € N,, the functionss, and 3} are 189y ) — 8] < \/f AR (9)
Lipschitz, with a constant independent pf T _
‘ which proves the Blder continuity ofs], hence its continuity.
Step 3. For everyj € N,, the functionss{ and §-2 are Continuity of 3 can be proved in the same way.
equibounded and uniformly equicontinuous, so we can
apply Ascoli-Arzeb’s theorem [1, Theorem 1.30, p. 10] to Sep 2. Let us prove thatsﬁ and s}, are Lipschitz with a
obtain convergence of a subsequence to a pair of continuduijgschitz constant mdependent 9f We make the proof for
strategies{s9, s§}. 51, the same arguments hold féf. To this end, asY; is
convex it is sufficient to prove that the restriction&fto each
Step 4. We exploit Lemma 2 and continuity of thdine joining every two pointg/; andy/ is Lipschitz, with a
functional v(si,s2) to show that the pair of strategiesconstant that depends neither pnnor on the line. Consider
{59, s9} is Lipschitz and optimal. the functions] (yi(¢)), wherey,(t) = yi + t(y{ — ;) and
0 <t < 1. There are two possible cases:



1) eithers! (y,(¢)), for all 0 < t < 1, is interior to 4,
la}, af],

2) or there existd € [0,1] such thats] (y, (7)) is one of
the two extremes),a} of A;.

Case 1. When &(y;) =
interior point of A; =

argmax, ¢ a, M (y1,a1) is an
[a},a}], we have

oM

day lai=8](y:1(t))

=0. (10)

28 rd

As M/ is of classC? and has concavity in a;, % <

—7 < 0, then we can apply the implicit function theorem to

the function

o1(t) = & (1))

Taking the total derivative with respect toof both sides of
(10), we get

+ 82]\417 8y1’k -
8018y17k 8t a

i O2MI Oy
8018y1,/€ ot

i M 9oy Oyy
=1 80’12 6y1,k ot
doy Oy i
* Oy1k ot

82M
Z

Theno(t) is locally differentiable and by (11) we have

=0. (11)

dJl Z (901 8y1 ko
<Oy Ot
-1y ,
B 82M] Zl o2 My o ).
B D012 = 0010y Yk =Yk
o2y | 1 " / .
As |53 < - and |y, — v} ;| < diameter (Yl), it

DAI

doy 6y & In

remains to find for every: an upper bound 01‘1
(12), independent of; andj. By the definition,

M (y1,a1) =

Jx v, @(@: Y1, y2)dzdys

Some elementary calculations allow to expr%sé\;— as a
ratio whose numerator is a polynomial in

/)(XYQ

0" [q(xv Y1, yQ)U(Z’, Y1, Y2, 01, S%(yQ))]
day "Iy k"

dxdys
and

/ aiQ(vaylayQ)
xXxv, 0a1*dy1 1"

for i =0,1,2, a + b =i, whereas its denominator is

3
</ q(xu y1>y2)d$dy2> 2 ) > O7
X xYs

dxdys

IXXYQ q(l', Y1, yQ)U(.T, Y1,Y2, a1, S%(yQ))dxdy2

where ¢ is a positive constant (indepedent gf), whose
existence and independence fram are guaranteed by the
hypothesisg(x, y1,y2) > 0 and the continuity ofj(x, y1, y2)
on the compact seX x Y; x Y;. Note that the change of
order between expectation and up-to-second-order partial
derivatives is justified by the fact thag(z,y:1,y2) and
u(x,y1,y2,0a1,az) are of clas? on compact sets.

Then an upper bound o afjé‘ﬁk

’ can be expressed in
terms of the finite quantities

87[q($, Y1, y2)“($7 Y1,Y2,0a1, a2)]
dar“dyy 1"

sup dxdys

Yy1EYL

/ sup
X XY as€A2

and

aiQ(x7 Y1, y2)

sup
dar“dyy 1"

Y1EYL

dxdys ,

/ sup
X XYy az€A2

where measurability of the integrands follows by [7, Proper
(c), p. 38]. This bound does not depend g@n Moreover, it
does not depend on the particular choicesdfy), so it is
also independent of.

Summing up, we obtain an upper bound independent; of
andj on |22,

Case 2. We now consider the case in which there exists
e [0,1] such thats (y, (%)) is one of the two extremes
al,a} of A;. Suppose, e.g., that (v (f)) = a}. The situation
31(y1(#)) = a} can be studied in the same way. We can limit
the analysis to the case in whigh(#) does not belong to the
boundary ofY;, which hasd;-dimensional measure equal to
0, due to the convexity and boundednesg’of There are two
possible subcases.

« Subcase 1: there exists a neighbourhood ofsuch that
y1(t) = a} does never hold (except for= 7). Then one

has
& &
o 9S0n@) _ sl 0)
t—i— dt t—it dt
hence w\t ; = 0. Indeed, 8 is continuously

differentiable with derivative (12) when the maximum is
interior to A; and the limit isO (as the maximum is not
allowed to be outsidel,);

« Subcase 2: there exists a non-constant sequefigé such
that lim;_.o t; = t and yl(fl) = all, VI € Ny. In
general, this does not allow one to deduce the existence of
Wh:g. However, if one considers the incremental
ratio %ﬁ(yl(t)) and any sequencg; } (which can
be different from{z;}) such thatim; .. ¢, = ¢, then the
lim sup on{t;} of the absolute value of that incremental
ratio is bounded from above by a constant independent
of £ andj (this can be easily proved by using the results
of Case 1).



Case 1 and Case 2 together imply t@%tis Lipschitz with a
constant independent gf

Sep 3. The functions belonging tqs?} and {3}} are
equibounded, asA; and A, are bounded intervals, and
uniformly equicontinuous, thanks to the uniform bound
on their Lipschitz constants. Then, by Ascoli-Arzel
theorem, there exists a subsequencé¢sdf 53} that converges
uniformly to a pair of countinuous strategi¢sg, s3} on the
compact set; x Ys.

Sep 4. By Lemma 2 the limit strategieqs{, s3} are
Lipschitz, with the same bound on their Lipschitz constants
Since the functional

v(s1,82) = By gy yo {0, y1, Y2, 51(Y1), 52(y2)) }
is continuous fors; € C(Y7) and so € C(Ys2) with the
respective maximum norms, we finally obtain

lim v(§,8)) = sup v(sy,s2).

v(sy,83) =
J—0 51,52

Extension to n > 2.

The only significant change in the proof consists in defining

as follows then-tuple 7, ..., 8/ of strategies:
) = _
argg}L‘aXEI»{yi}i;ﬂ ly1 {u(x, {yi}?:h art, {Sf (yl)}?:2)} )
ai 1
8 (y2) =

argmax By 4, , o {2, {yi}iza, 81 (y1), a2, {51 (y1)}ima) P}

a2€ Az

8, (yn) =

n N n—1
arggasz,{yi}m yn L0(2, {yi Yiza, {87 (yi) Fist s an) } -
an n
[ |
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