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Abstract—Necessary optimality conditions for Call Admission of CAC policies characterized by a relatively simple stanet
Cor_nrol (CAC) problems with nonlinearly-constr_ained feasibilit_y_ and interesting properties, such as their product-forradste
regions and two classes of users are derived. The policiesgiaie gistribution [4, Chapter 4] and bounds on the persclas

are restricted to the class of coordinate-convex policies. Two blocki babiliti 51 When th . t d rese
kinds of structural properties of the optimal policies and their ocking probabilities [S]. én the service rates and resou

robustness with respect to changes of the feasibility region are requirements do not depend on the customer’s clsisgl¢
investigated: 1) general properties not depending on the revermu service), the optimal CAC policy is not coordinate-convex and
ratio associated with the two classes of users and 2) more specificis calledtrunk reservation ([6], [7]). For such a case, [8] and
properties depending on such a ratio. The results allow one to [9] provide recursive formulas to evaluate the performanice

narrow the search for the optimal policies to a suitable subset of . . . . .
the set of coordinate-convex policies any trunk reservation policy and an iterative search allyori

Index Terms—Call Admission Control, Feasibility Region, to find optimal policies. They exploit such an algorithm to

Coordinate Convex Policies. find coordinate optimathreshold policies (a particular kind
of coordinate-convex policies) imultiservice systems (for
. INTRODUCTION which different classes may have different and heterogesieo

Call Admission Control (CAC) represents an importantresource requirements and mean service times).
mechanism to guarantee specific Quality of Service (QoS)The stochastic knapsack model can be extended by in-
requirements. CAC determines when to accept or reject a neaducing the concept ofeasibility region [10, pp. 46-49].
connection, flow, or call request (depending on which teGhnd'his is a regionQrr in the call space where given QoS
ogy is used), thus limiting the load that enters a networks Threquirements in terms of packet-loss/packet-delay priihyab
is accomplished by verifying if enough resources are abkila are statistically guaranteed. When some formsatistical
to satisfy the performance requirements of a new call withomultiplexing is used, often this implies that the linear constraint
penalizing the ones already in progress. {>kex nebe < C} for the stochastic knapsack model is

A basic model for CAC is thestochastic knapsack [1]. replaced by a more complicated constraint for the feasibili
In this model, one ha€’ units of resources and& classes region, e.g. of the forn} -, _ .- Bx(ni) < C [4, p. 212], where
of users. The calls from each clagse {1,...,K} arrive the 5, (-) are nonlinear functions (see Figure 1).
according to a Poisson process. If accepted by the systeim, ea
of them occupiedy units of resources, which are released 72
at the end of the call. The simplest CAC policy, known as
Complete Sharing (CS), consists in accepting a call whenever
the system has sufficient resources. However CS may lead to a
monopolistic use of resources by certain classes of uders, t
to a poor resource utilization [2, Section Ill]. This motiea
the interest in different admission policies (see the eafees
in [3, Section 7.1]).

In general, finding optimal policies for the stochastic knap
sack model is a difficult combinatorial Optimization pr(]hle Figure 1. The upper boundatyQrr)* of a feasibility region . with
[4, Chapter 4]. The knowledge of structural properties @& th class or users in the case of (a) a linearly-constraifiggr (stochastic
optimal policies is useful to simplify its solution or at ktao knapsack) and (b) a nonlinearly-constrairieg .
find good suboptimal policies. For instance, for two classfes
users and an objective given by a weighted sum of per-clasdJp to our knowledge, till now the problem of finding struc-
average revenues, structural properties were derived ]in faral properties of the optimal coordinate-convex pofcie
for the optimal policies belonging to the classamiordinate- the case of general nonlinearly-constrained feasibibtyions
convex palicies. Coordinate-convex policies form a large clasbas received little attention, with the exception of [11]2]




(see Subsection 1lI-B for a comparison of our results wittvhere -
those of [12]). [T M)

The following is a summary of our contributions. For CAC ¢i(ni) := nlpl : ®)
problems with nonlinearly-constrained feasibility reug®2

and two classes of users, we provide For linearly-constrained feasibility regior@rg, [1] de-

i ) . scribes structural properties of the coordinate-convdicies
. some'general structurgl properties holdmg for any optim aximizing the objective (1) (e.g., the existence of oneisak
coordinate-convex policy (Subsection III-A); threshold, one horizontal threshold, or both kinds of thres

- more sp_ecmc strgctural properties dependent on the MSfds), which depend on the value assumed by the revenue ratio
enue ratio associated with the two classes of users; Ri=ro/r1

o Simulation results (Section 1V).

In doing so, we extend some results of [1] to nonlinearly- I1l. M AIN RESULTS
constrained feasibility regions; see Subsections Ill-Ad an |n our analysis, we allow the feasibility regidhy z to have
[1I-B. All the proofs are deferred to Section VI. a nonlinear upper boundary, denoted(B¥2x )" (see Figure
Il. PROBLEM EORMULATION 1(b)). Similarly, we denote byo?)* the (linear or nonlinear)

upper boundary of the coordinate-convex QefThe set g
11 which will b tended in Section Il i | assumed to be coordinate-convex, as it often happens for
[1], which will be extended in Section 0 anon Ineary'feasibility regions defined in terms of QoS constraints [13,

constrained feasibility regiof . I T
The state of the CAC system in [1] is described by groposmon 6.3]. Let us recall two definitions from [1].

2-dimensional vectom, whose componenty, k& = 1,2, Definitionlll.1. Thetuple (o, 8) € Qrr\Q isatype-1 corner
represents the number of connections from users of clagssnt for Q if and only if 8 > 1, (o, 8 — 1) € Q, and either
k that have been accepted by the system and are curremtly= 0 or (o — 1,5) € Q; the tuple (o, 8) € Qpr \ R isa
in progress. For each clags, the inter-arrival times are type-2 corner point for Q if and only if & > 1, (a—1, 8) € Q,
exponentially distributed with mean valug \;(n;) and the and either 5 =0 or (o, 5 — 1) € Q.

holding times of accepted connections are independent
identically distributed (i.i.d.) with mean valug/ ;.. The CAC
system accepts or rejects a request of connection accaialin

a coordinate-convepolicy. Here we recall its definition [4, p. ST C Qpp is incr tally admissible with respect to

116]. (IAq) if and only if S+NQ — ( and QUS is still a coordinate-
Definition 11.1. A nonempty set Q C Qrr C NZ is called convex set.

coordinate-convex if and only if it has the following property:
for each n € Q with n;, > 0 one has n — e, € Q, where
ey is a 2-dimensional vector whose k-th component is 1 and
the other one is 0. The coordinate-convex policy associated
with a coordinate-convex set 2 admits an arriving request of
connection if and only if after admittance the state process
remains in €.

In this section, we summarize the CAC problem studied

a[lS]gl‘inition [11.2. A nonempty set S— C Qpg isincrementally
removable with respect to 2 (IRg) if and only if S~ C Q
%nd 0 \ S~ is dtill a coordinate-convex set; a nonempty set

In the following, we shall sometimes use the term “corner
point” to refer to either a typé-or a type2 corner point. By
the coordinate-convexity @R, no two corner points can be on
the same vertical or horizontal line.

We recall from [1] that the definition of the objectivé(-)

in (1) can be extended consistently to all (not necessarily
coordinate-convex) setS C Qrr in the following way:

As there is a one-to-one correspondence between coordinate

convex sets and coordinate-convex policies, from now on we J(S) = g((g)), 4)
use the symbof2 to denote either a coordinate-convex set or
a coordinate-convex policy. with
The objective to be maximized by the CAC system in the 2
spaceP(Qx ) of coordinate-convex subsets Qf-; is given H(S) =Y (n-r)[Jan), (5)
by nes i=1
JQ) =Y (n-r)Pa(n), ) 2
7;2 G(S) = Z qu'(”i)~ (6)
nesi=1

where r is a 2-dimensional vector whose component
represents the instantaneous positive revenue generast/b  We also recall that, for a rectangular regin= {a,a +
accepted connection of clagsthat is still in progress and 1,...,b} x {¢,c+1,...,d}, by (3), (5), and (6) it follows
Pq(n) is the steady-state probability that the CAC system is

in staten. As Q is coordinate-convexPq(n) takes on the J(S) = rai(a,b) +raza(e,d), @)
product-form expression where

b .
Po(n) = Hle 6i(n:) ) zi(a,b) := M (8)

Ymea oy ai(ni) > ai(d)




A. General structural properties of the optimal coordinate- ny A
convex policies _
. . . 7% $ooos-
Let Q° denote any optimal coordinate-convex policy (or o
its associated coordinate-convex set). Proposition, Wi3ich 3 3?2 l)" """"
extends to nonlinearly-constrained feasibility regiorsmailar OIS SR
property stated in [1, Theorem 1] for linearly-constraioees, & 00008
states that the corner points@f are to be searched among the Gﬁ“ x S 0o
vertices of a suitable grid (see Figure 2). We use the foligwi = e}
notations: Cp— S AT ?SF?@@O@@@O
G : H H H
1(ny) := max{k € Ny such that (n,,k) € Q}, (9) h | I
I8 (ny) := max{h € Ny such that (h,ns) € Q}.  (10) fA / (E D ! ( )
- ' (1, o s(lu) n
= J JiJ 1
Q Q i ;
The valuedi’(ns) andl5i(n,) are, respectively, the maximum g

number of typet/type2 connections allowed if2 when we
have already:, type2/n; type-1 connections. It follows from

the definitions that the function§'(-) are nonincreasing. SetFigure 2. Potential locations of the corner points of anropticoordinate-
.— QPR .— 1QFR QrRr convex policy2°. According to Proposition 111.3, the corner points QP are

"1,max llQF (), 2,max = 17 (0), [T (n2,max + 1) + to be searched among the crosses in the figure.

1:=0andl5"%(n max + 1) +1:=0.

Q . Q . Q . u
BIPRED) = PR () = (PR ()

Proposition 111.3. (i) If (a, 8) is a type-2 corner point for

Q°, then for some j =1,...,n2 max We have N ] ) )
Proposition I11.5. (i) If («, 8) isatype-2 corner point for Q°

a=1EFE() 4+ 1. (11) and Xy(+) is nonincreasing, then for some j = 1,..., 12 max

(i) If (o, B) is a type-1 corner point for Q°, then for some (11) holds together with

=1,...,n1 max We get
: e Rag(0, Ba) > &y (27 (0) 4 1,107 (j20 — 1))

QrFR(;
p=BrrU Tl (12) —a (RGO 1)+ 1P (14)

We refer to the reader to [14] for other general structural
properties of the optimal coordinate-convex policies, det (ii) If (o, 3) is a type-1 corner point for Q° and A.(-) is
pending on the revenue rati®. nonincreasing, then for some j = 1,...,n1 max (12) holds

together with
B. Sructural properties of the optimal coordinate-convex poli- g

cies depending on the revenue ratio R

1 Qrr (10 Qrr((1,0)
Let us now consider for the optimal coordinate-convex 7 %1(0;B1) = 22(l ™ (717) + 1,177 (557 — 1))

policies structural properties obtained for suitable galwf — o (19 (0 4 1) 4 1,19 (jW)) . (15)
the revenue ratid?. We recall the following definition from

o The following theorem states that under suitable condition

Definition 111.4. Let : = 1 or 2. A coordinate-convex policy one has threshold-type optimal policies. The result is an

Q isthreshold type-i if and only if for some ¢; = 0,...,nimax  extension of [1, Theorem 1] to feasibility regions with a

we get nonlinear upper boundary. Its proof exploits Propositibrbl
Q:{(nl,ng) € Qrr:n; <ti}. (13)

Theorem I11.6. Let \;(-) be nonincreasing for i =1, 2.
Proposition 1I1.5 is our extension of [1, Lemma 4] to genergj) If % < Ly, where
nonlinearly-constrained feasibility regions. With respt® [1],

due to the different shape of the feasibility region, in gahg Li:— min

is not true thay # k impliesi$* 7 (j) # 1377 (k). As shown in DT et ma

Figure 2, in general for eveny € {0,. .., na max } there exist 2o (7R (FD) 41, 127 (51D — 1))

b < jy andj 2™ > j, such that$* % (-) is constant on the { 21(0, B1) (16)
set{j>D ... i@} C{0,...,n2max}. Similarly, for every Qrr (5(1) ’ Qrr (L)

j1 € {0,...,n1 max} there existj) < j; and (0% > 4, (N + D)+ LR ))}’

such that/{**% () is constant on the sdtj(*"), ..., j(w1 C 1(0, B1)

{0,...,71 max}. Let By := max{j(l*") — b g = ) )
0,...,m1max} and By := max{j® — j@D . j, = then Q¢ is threshold type-1, and the threshold is equal to

Q . .
0,...,n2.max}. Recall thatR := r,/r; is the revenue ratio. S0me Ly ""(j) for some j =0, ..., 79 max-



(i) If R < Lo, where ng [ Threshold 7, | J(2) |
5 502007
Loy :=  min 20 14 49.9540
J=L,-,n2,max 167 c000000e00ee9%8 13 497072
. . OOOOOOOO |.2 40.4{1{”
$1(Z¥FR(J(2’1)) + 1»Z¥FR(J(2J) - 1)) g 1 492135
22(0, Bo) (17) 8 10 48,9665
o ’ o 2 16 470714
(IR (W 1) + 1,177R (W) 6 Joo0000 17 43,5764
— g 20 42,6669
) (07 BQ) ’ 1 ;
. . 0 15 22 28 m 5 BATIS
then Q¢ is threshold type-2, and the threshold is equal to =
some 5177 () for some j =0, ..., 71 max. (a) (b)

(iii) fLcR< Lo, then Q° = Qpp Figure 3. (a) The feasibility region considered in Sectign (b)
L1 ! - )
The following corollary provides sufficient conditions for

threshold-type optimal policies. V. CONCLUSIONS

Corollary 1Il.7. - Let A;(-) be nonincreasing for ¢ = 1,2. This paper provides several structural properties of the

corner points of the optimal coordinate-convex policies in
CAC problems with nonlinearly-constrained feasibilitgiens

and two classes of users. These properties can be used to
narrow the search for the optimal coordinate-convex pasici

For certain feasibility regions characterized by a norine
constraint of the form}_, _, Br(nx) < C, the simplest
possible extension of the results to more tRarasses of users

(i) If R > x1(0,By), then Q° is threshold type-,
and the threshold is equal to some I{)7%(j) for some
j: 07"‘7”2,max-

(i) If & > 22(0,B,), then Q° is threshold type-2,
and the threshold is equal to some I577(j) for some

J =0, N1 max- consists in defining subproblems obtained by partitionimy t
L . set of classes by using subsets of cardinality at n2oand
(ii)) If 21(0, B1) < R < ;55 then Q7 = Qpg. applying to each subproblem the results obtained here for

Remark I11.8. In the particular case of a linearly-constraineglasses of users.
feasibility region with B, = 1 (i.e., the one considered in

[1]), one hasjD = j( for eachj = 0,...,71 max, and VI. PROOFs
Ly = ;5yy- S0 in this case Theorem 116 (i) reduces t0 pye to the page limits, we refer the reader to [1] for the
[1, Theorem 1] (i). statements of [1, Lemmas 1-3], which are used in some of the

Remark 111.9. Another extension of [1, Theorem 1] whichfollowing proofs. An inspection of the proofs of [1, Lemmas
is similar to Proposition 111.3 and Corollary 1117 is reged 1-3] shows that they hold for both linearly-constrained and

in [11, Section 4] and refers to a less general nonlinearljonlinearly-constrained feasibility regions.
constrained feasibility region and to a different assuorptin

the holding time distribution of the calls. Proof of Proposition I11.3. We prove only (i), since (ii) can be
obtained in the same way by exchanging the roles of the two
IV. SIMULATION RESULTS classes of users. Suppose that (11) is violated for eyery

. _ 0° _ _ _ _
In the next numerical results we show that, under th1 'O[';’ln;’j:;’)".?EOSSIngnn;éQananég+(5)%0{(2 ﬁ(ii)i)-
conditions of Corollary 111.7 (i) and (ii) resp., the optiia ’ N o :

A i=0,...,n} C Qpr\ Q° (see Figure 4), it follows that the
threshold for threshold typé-policies is indeed equal to o\ as o : . )
18277 (j) for somej = 0, ..., N2 max, and the optimal threshold Sets@2? \ §° (n) and 2% U S (n) are coordinate-convex, so

AN P
for threshold type2 policies is equal tal$*%(j) for some S (n) Is IRo- and 5% (n) is TAo.. By formula (7), we get
i =0,...,n In Figure 3 the feasibility region used 10’ ) =mla—1)+7222(8, B+ n) <riotras(B, 5+

J o c e Ml max ‘f'z,{ S*(n)), but this contradicts the optimality condition

(57(n
; . . . n)=.J
make these simulations is depicted. We assume homogene Sod (in [1, Lemma 2], so one concludes that there exists
somej = 1,...,n2 max Such that (11) holds. [ |

. . S
Poisson arrivals for both classes.

With this feasibility region we havés; = 16 and B, = 10;
for A\; = 50, Ao = 150, pu; = 0.5, 2 = 5, r1 = 0.25, and Proof of Proposition 1Il.5. Given a type2 corner point
ro = 2.5 we haveR = ry/r; = 10 and 21(0,10) ~ 9.89. («, ), we know from Proposition 1.3 (i) thatt = SR (5) 4
Then R > (0, B;) and by Corollary 111.7 (i) there exists 1 for somej = 1, ..., 72 max. Choosings = 1§ (a—1)— 3 >
an optimal coordinate-convex policy that is threshold type 0, m = min{(I37% (o) — B), n}, S~ (n) = {I8¥ 7 ;> +1)+
According to Corollary 111.7 (i), the optimal threshold loelgs  1,..., 1377 (5(2%)} x éﬁ, ...,B+n} CQ° andSt(m) =
to the set{0, 15, 22, 28}. Figure 3 (b) shows that this is indeed{/**# (D) +1,... 1377 ;@D — 1)} x {3,...,8+m} C
the case, and that the optimal threshold;is= 15. Qrr \ Q° (see Figure 5), it follows that the se@ \ S~ (n)



Proof of Theorem III.6. (i) If % < Ly, then by Proposition
.5 (i) Q° has no typet corner points, so it is a
threshold typet policy by [1, Lemma 1]. Lett; denote the
corresponding threshold. Then eithigr= 1 o = 1377 (0)
or (t; + 1,0) is a type2 corner point forQ2°. In the second
case, by Proposition 1.3 (i) we havg + 1 = I{*%(j) + 1
for somej =1,...,72 max-

(ii) is proved similarly.

Figure 4. An example of a coordinate-convex €having a type2 corner (iii) f L « R< Lo, then by parts (|) and (iino is both

© . Q . . L
point (e, ) for which o [} (7) + 1 for everyj =1,..., 12, max- threshold typet and threshold type; so it coincides with

QFR-
R R |
and Q° U ST (m) are coordinate-convex, s& (n) is I Rge.

and S+ (m) is I Aq.. By (7) we get Proof of Corollary 1ll.7. For eachj = 0,...,7 max, it

follows from the definitions ofzy(-,-) and of j(1D, (1w
that

J(57(n))
= @G+ 1)+ LGOI frng(p ) 202U LRI 1) 2B GRS 1,
and ol (G 1) + 1,0 (G0 < e (),
J(5%(m)) and iy # (j)) = 157 (D), s0 Ly > 5. Similarly,
— 1 (9FR (D) 4 1,120 (GCD 1)) 4 oz (B, B+ m).  WE haveLs > -5 [ |
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Figure 5. A description of a step in the proof of Propositidirbl



