Statistical analysis of chemical computational
systems with MULTIVESTA and ALCHEMIST

Abstract—The chemical-oriented approach is an emerging
paradigm for programming the behaviour of densely distributed
and context-aware devices (e.g. in ecosystems of displays tailored
to crowd steering, or to obtain profile-based coordinated visual-
ization). Typically, the evolution of such systems cannot be easily
predicted, thus making of paramount importance the availability
of techniques and tools supporting prior-to-deployment analysis.
Exact analysis techniques do not scale well when the complexity
of systems grows: as a consequence, approximated techniques
based on simulation assumed a relevant role. This work presents
a new simulation-based distributed tool addressing the statistical
analysis of such a kind of systems, which has been obtained
by chaining two existing tools: MULTIVESTA and ALCHEMIST.
The former is a recently proposed lightweight tool which allows
to enrich existing discrete event simulators with distributed
statistical analysis capabilities, while the latter is an efficient
simulator for chemical-oriented computational systems. The tool
is validated against a crowd steering scenario, and insights on
the performance are provided by discussing how these scale
distributing the analysis tasks on a multi-core architecture.

I. INTRODUCTION

The number of intercommunicating devices spread around
the world is constantly increasing: sensors, phones, tablets,
eyeglasses and many other everyday objects are carrying more
and more computational and communicational capabilities.
Such a computationally dense environment called for new
programming approaches, many of them inspired by natural
systems, e.g. biological [1]], [2]], physical [3|] and chemical [4],
[5]. In all of them, the overall system’s behaviour emerges from
local, simple and probabilistic interactions among the devices
composing the computational continuum. For this reason, most
of the work in literature focuses on modelling single devices.
When this reductionist point of view is adopted, a difficult task
in the development methodology is to assert system properties:
the system’s evolution can not be easily predicted and thus
multiple simulations runs are performed [6]-[9]]. Obvious
questions accompany these procedures: how reliable are the
obtained values? How is the number of performed simulation
chosen? And how many simulations are required in order to
state system properties with a certain degree of confidence?
Moreover, there is frequently a lack of decoupling between the
model specification and the definition of the system’s properties
of interest: they are often embedded in the model, and their
values are obtained via logging during the simulation process.

This work presents a new tool obtained chaining
ALCHEMIST [10], an efficient state-of-the-art simulator
for chemical-oriented computational systems, with MULTI-
VESTA [11], a recently proposed lightweight tool which allows
to enrich existing discrete event simulators with distributed
statistical analysis capabilities. The result is thus a statistical
analysis tool tailored to chemical-inspired pervasive systems.

To sum up, the simulator has been enriched with: (1) a
language (MULTIQUATEX) to compactly and cleanly express
systems properties, decoupled from the model specification;
(2) the automatized estimation of the expected values of
MULTIQUATEX expressions with respect to n independent
simulations, with n large enough to respect a user-specified
confidence interval; (3) the generation of gnuplot input files to
visualize the obtained results; (4) a client-server architecture
to distribute simulations. The tool is validated by analyzing a
crowd steering model reminiscent of the one presented in [[12].

Synopsis. introduces ALCHEMIST and describes the
crowd steering scenario, while §@] outlines the main features
of MULTIVESTA. Then discusses the integration of the
two tools, while §V] validates the obtained tool. Finally,
reports some concluding remarks and future works.

II. ALCHEMIST

ALCHEMIST is a simulator targeting chemical-oriented
computational systems. It is aimed at bridging the gap between:
(1) tools that provide programming/specification languages
devoted to ease the construction of the simulation process,
especially targeting computing and social simulation (e.g. as in
the case of simulation based on multi-agents [8]], [[13]-[16]);
and (2) tools that stick to foundational languages, which
typically offer better performance, mostly used in biology-
oriented applications [[17]-[20]. ALCHEMIST extends the basic
computational model of chemical reactions — still retaining its
high performance — aiming at easing its applicability to complex
situated computational systems (following the chemical-oriented
abstractions studied in [4]]). In particular, ALCHEMIST is based
on an optimised version of the Gillespie’s SSA [21] called Next
Reaction Method [22]], properly extended with the possibility
to deal with a mobile and dynamic “environment” (adding/re-
moving reactions, data-items and topological connections). The
underlying meta-model and simulation framework are built
to be as generic as possible, and as such they can have a
wide range of applications like pervasive computing, social
interactions and computational biology [23].

A detailed description of the simulator’s meta-model and
its engine’s internals are out of the scope of this work. The
interested reader can find a deeper insight in [10]. ALCHEMIST
is written in Java and is still actively developed. It currently
consists of about 630 classes for about 100’000 lines of code,
and it is released [[] as open source (GPL licensed).

A. A crowd steering scenario

Our reference scenario, depicted in Figure |1} consists of
a hall of 20 x 10 meters on whose floor a regular grid of

Ihttp://alchemist.apice.unibo.it,

http://alchemist.apice.unibo.it

Fig. 1.

200 computationally enabled sensors is deployed. In the hall,
three groups of 15 people each are located. One group, on
the left, wants to get to a point of interest (POI) on the right.
Another group, on the right, desires to get to a POI on the left.
Finally, a third group stands in the centre of the hall. Each
person is equipped with a smartphone. Devices (i.e. sensors
and smartphones) are able to communicate with devices within
their communication range (1.5 meters). Sensors can count
the people in such range, while smartphones provide real time
suggestions to the user about the direction to be taken. Users are
supposed to follow the advices of their smartphone whenever
possible, however, a pedestrian model that makes them subject
to physical interactions is used. Such model also includes the
social desire of not breaking the group, which may lead the
users to choose a direction different from the suggested one.

In such a scenario, we want to deploy a fully distributed
crowd steering system, in which the sensors automatically build
optimal paths, so that from whichever location in the hall, each
user can move towards the desired direction. We also want to
employ the local real time information about the number of
users in the surroundings in order to make less crowded paths
advantaged over those who would steer the user on a jammed
area. Finally, we want to detect the user preference about the
destination, and correctly select which route to follow.

1) A model based on computational fields: Our strategy
is to rely on computational fields, namely a distributed data
structure that carries, for each point in space, a contextualized
information. A very notable example of computational field is
the gradient, in which each device is in charge to estimate its
distance from the closest device designated as source of the
gradient (e.g. the POIs). Figure |2 shows intuitively how the
spatial gradient structure works. If we consider each of the two
POIs of our scenario as a source of a different gradient, and
we program our sensors properly, we will have each device
instructed on its distance from each of the POIs. Along with the
distance information, also the next hop towards each of the POIs
can be stored. Consequently, if descended, the gradient guides
the user towards its POI along an optimal path. This strategy
has been used before in crowd simulations, with the gradient
statically computed at the beginning of the simulation in order
to obtain information about the scenario and the obstacles [24].

For our purposes, however, a static gradient is not enough. In
fact, we want to dynamically modify this spatial data structure
in order to take into account the crowding level of each area:
this means that each sensor must dynamically manipulate its
local information, and propagate it coherently. Even if not
considered in our reference scenario, similar requirements arise
in case we deal with unpredicted events, such as network
nodes failures, addition or movement. In order to obtain such

BEEER

Three snapshots of the reference scenario showing: the system at the initial stage (left), an intermediate state (centre), and the final situation (right).

dynamicity, gradients must then provide a feature commonly
identified as self-healing ability. Fortunately, nice algorithms
have already been proposed for self-healing gradients [25],
[26]. Similar manipulations of self-healing gradients have been
used in other works, by aggregating multiple gradients [27]],
by combining them with local information [28]], or both [29].

2) The pedestrians model: ALCHEMIST provides a realistic
pedestrian model, based primarily on [30]. We relied on such

model to obtain a realistic physical interaction among people.
A deep analysis of this model is out of the scope of this work.

3) Implementation with a chemical metaphor: In this
scenario we propose a solution relying on the SAPERE concepts
of “live semantic annotation” (LSA) and “eco-law” [4]. LSAs
are “semantic annotations” in the sense that they can carry
semantic information, and they are “live” in the sense that they
are in charge of reflecting the perceived status of the world
for every device. All the data in the system are encoded as
LSA, for instance in the considered scenario both the spatial
gradient and the crowd level detection are reified in form of
LSAs. The eco-laws are a particular class of rewriting rules
that manipulate, aggregate, create and delete LSAs.

environment 0 1.5

Isa source <source, Type, Distance>

Isa source_template <source, Type, Distance>

Isa gradient_template <grad, Type, Distance>

Isa gradientl <grad, target, Distance>

Isa gradient2 <grad, target2, Distance>

Isa crowd <crowd, L>

/************************ Sensors ************************/

place 200 nodes in rect (0,0,19,9) interval 1
containing
in point (16, 4) <source, target, 0>

in point (3, 4)

with reactions

reaction SAPEREGradient params "ENV, NODE, RANDOM,
source_template,gradient_template, 2, ((Distance+#D)
+(0.5+«L)),crowd,10000,10" []1-->[]

eco-law compute_crowd []-1-> [agent CrowdSensor params "ENV,
NODE"]

[A A A A A A A A A A A A A A Group on the left side sx#xx#skssshtsrr/

place 15 nodes in circle (3, 4, 3)

containing in all <person> <groupl>

with reactions

[1-100->[agent SocialForceEuropeanAgent params "ENV,NODE,
RANDOM, gradientl, 2,1, false"]

[k ko ok ok k ko Kk ok ok Group on the right SIAE *kkhkkkkkkkk kA A k)

place 15 nodes in circle (16, 4, 3)

containing in all <person> <group2>

with reactions

[1-100->[agent SocialForceEuropeanAgent params
RANDOM, gradient2, 2,2, false"]

/ %%+ Group standing still in the center of the hall x#*#*/

place 20 nodes in circle (10, 4, 2)

containing in all <person>

<source, target2, 0>

"ENV, NODE,

Listing 1. SAPERE-DSL Specification for our experiment

The details on the implementation of the crowd steering
algorithm are not reported in this paper, but are available in

Fig. 2.

()
(]
”0

A spatial gradient in a simple network in which the nodes are at distance 1 from their neighbours. The grey node is the source, and nodes are labelled

with the known distance from the source. From left: (i) the initial status of the network; (ii) the network once the gradient stabilised (iii) the re-shaping of
the gradient due to a node movement and subsequent link breaking; (iv) the re-shaping of the gradient due to node movement and subsequent new link creation

[12]. For the sake of reproducibility, in Listing [T we show the
code snippet used to model the scenario in ALCHEMIST.

III. MULTIVESTA

MULTIVESTA E] is a recently proposed statistical analyzer
for probabilistic systems [11]], extending VESTA [31] and
PVESTA [32]. The analysis algorithms of MULTIVESTA are
independent of the used model specification language: it is
only assumed that discrete event simulations can be performed
on the input model. As described in [[11]], the tool offers a
clean interface to integrate existing discrete event simulators,
enriching them with a property specification language, and with
efficient distributed statistical analysis capabilities.

MULTIVESTA performs a statistical (Monte Carlo based)
evaluation of MULTIQUATEX expressions, allowing to query
about expected values of observations performed on simulations
of probabilistic models. A MULTIQUATEX expression may
regard more than a measure of a model, in which case the
same simulations are reused to estimate them, thus improving
the performance of the analysis tasks. Moreover, the tool has a
client-server architecture allowing to distribute the simulations
on different machines. A detailed description of MULTIQUA-
TEX and of the procedure to estimate its expressions, omitted
in this work due to space constraints, is given in [[L1]], [33].
The tool also supports the transient fragment of probabilistic
computation tree logic (PCTL) [34] and continuous stochastic
logic (CSL) [35], [36], for which statistical model checking
algorithms based on the invocation of a series of inter-dependent
statistical hypothesis testing are implemented [37]. However,
this work focuses on MULTIQUATEX, as it generalizes the two
mentioned logics [33]].

Before defining a MULTIQUATEX expression, it is nec-
essary to specify the state characteristics to be observed.
This model-specific step “connects” MULTIQUATEX with the
simulated model. In particular, the state observations are offered
via the rval (7) predicate which returns a number in the real
domain for each observation i. As sketched in Section [IV]
for the crowd steering scenario s.rval (0) corresponds to
the current simulated time, s.rval (3) counts the number of
LSAs in the system, while s.rval (11), s.rval (12) and
s.rval (13) count, respectively, the number of people that
have reached the POI on the right, the one on the left, and
both. Finally, s.rval (14) returns the average connectivity
degree of the devices (i.e. sensors and smartphones).

A MULTIQUATEX expression consists of a set of definitions
of parametric recursive temporal operators, followed by a list of

Zhttp://code.google.com/p/multivesta/,

time@POI () = if{s.rval(13) == 30.0} then s.rval (0)
else #time@POI() fi;

eval E[time@POI()] ;

Listing 2. The simple MULTIQUATEX expression (1

eval clauses. Each eval clause relies on the defined temporal
operators, and specifies a system property whose expected
value must be evaluated. As an example, Listing [2| depicts
the simple MULTIQUATEX expression (); which intuitively
reads as: “compute the expected value of the time necessary to
let all the individuals reach their target”. More in particular,
lines 1-2 define a recursive temporal operator, composed by
the name of the operator (time@POTI ()), and by a path
expression representing its body, i.e. a real-typed predicate
possibly evaluated after performing steps of simulation. Line
3 provides one eval clause, specifying that we are interested
in evaluating the expected value of time@POT ().

In order to evaluate a MULTIQUATEX expression, MULTI-
VESTA performs several simulations, obtaining from each a list
of samples (real numbers). One sample for each eval clause is
obtained, thus all the queried measures are evaluated using the
same simulations, improving performance. When evaluating the
samples of a simulation, s is associated to the initial state of
the system, and then the eval clauses are evaluated. Consider
the simple case of ()1, having just one eval clause: at the
first step of the simulation the guard of the if statement
(s.rval (13) == 30) is evaluated: “does in s all the 30
individuals have reached their target?”. If the guard is evaluated
to true, then s.rval (0) is returned, i.e. the current simulated
time. Otherwise the expression is evaluated as #time@POT () :
MULTIVESTA orders the simulator to advance of one step,
updates s, and then recursively evaluates t ime@POT (). Note
that the operator # (named next) triggers the execution of a step
of simulation, thus if it is used in recursive temporal operators
(like in ()q), it allows to query properties of states obtained
after an unspecified number of steps. The evaluation evolves as
described until a state satisfying the guard of the i f statement
is reached (which always happens in the considered model).

The case of expressions with more eval clauses is similar,
the only difference is that, at each step of the simulation, all the
eval clauses are evaluated: for each of them, either a real value,
or the # operator followed by a temporal operator is returned.
In the first case, the sample relative to the eval clause is
obtained, and thus the eval clause is ignored for the rest of the
simulation, in the second case a step of simulation is required.
The evaluation of the samples in a simulation terminates when
all the eval clauses completed their evaluation.

—_

http://code.google.com/p/multivesta/

L R R S

if {s.rval (0) >= z} then s.rval (13)
else #people@POI (z) fi;

people@POI (x) =

eval E[people@POI (30.0) 1 ;

Listing 3. The MULTIQUATEX expression (QQ2

Basing on the samples obtained from simulations, MUL-
TIVESTA estimates the expected values of MULTIQUATEX
expressions with respect to two user-defined parameters: «
and ¢. Considering the case of simple expressions with just
one eval clause, the estimations are computed as the mean
value of the n samples obtained from n simulations, with n
large enough to grant that the size of the (1 — «) x 100%
Confidence Interval (CI) is bounded by 4. In other words, if
a simple MULTIQUATEX expression is estimated as 7, then,
with probability (1 — «), its actual expected value belongs to
the interval [T — §/2,7 + 6/2].

Again, the case of expressions with multiple eval clauses
is similar. Note that the eval clauses may regard values of
different orders of magnitude, and thus the user may provide a
list of § rather than just one. After having obtained a sample
for every eval clause from a simulation, these values are used
to update the means of the samples obtained from previous
simulations (one mean per eval clause). If the ClIs have been
reached for every eval clause, the evaluation of the expression
is terminated, otherwise further simulations are performed.
Note that each eval clause may require a different number
of simulations to reach the required CI. Once the CI of an
eval clause has been reached, such eval clause is ignored in
eventual further simulations performed for other eval clauses.

Another interesting expression is ()2 of Listing [3] reading:
compute the expected number of people reaching the target after
30 units of simulated time. Q3 shows that temporal operators
can have parameters (variables). Variables have to be bounded,
i.e. if they are in the right-hand-side of a temporal operator
definition (i.e. after the equals sign), then they also have to
be in its left-hand-side, so that a value can be assigned to
them. Noteworthy, if rval (13) would evaluate to 1.0 in case
a certain event happens in a simulation, and to 0.0 otherwise,
then)2 would estimate the probability of such event.

The simple expressions ()1 and ()2 query a measure of the
system (i.e. rval (0) in @1, or rval (13) in @Q2), while
one may be interested in more. As said, MULTIQUATEX
expressions may have lists of eval clauses, each studying a
different measure. We refer to expressions having more eval
clauses as multi-expressions. Intuitively, a multi-expression
with n eval clauses corresponds to n expressions sharing the
same temporal operators but having each one of the eval
clauses. However, the multi-expression is more compact and
is evaluated performing less simulations: just the maximal
number of simulations required by the single simple expressions.
Listing [provides the multi-expression MQ;_,. It is not

if {s.rval (0) >= z} then s.rval (13)

else #people@POI (x)
; eval E[people@POI (15.0)] ;
; eval E[people@POI (25.0)] ;
; eval E[people@POI (35.0)] ;

people@POI (x) =
fi;
eval E[people@POI (10.0)]
eval E[peoplelPOI (20.0)]
eval E[peoplelPOT (30.0)]

Listing 5. The MULTIQUATEX expression M Q2

if {s.rval (0) >= x} then s.rval (13)
else #people@POI (z) fi;

1,%,10.0,5.0,35.0) ;

people@POI (x) =

eval parametric (E[people@POI (x)

time@POI() = if{s.rval(13) == 30.0} then s.rval(0)
else #time@POI () fi;
people@POI (z) = if{s.rval (0) >= z} then s.rval (13)

else #people@POI (z) fi;

eval E[time@POI()] ; eval E[people@POI (30.0)] ;

Listing 4. The MULTIQUATEX expression MQ1_2

Listing 6. MQ2 as a parametric multi-expression

difficult to see that M) _o corresponds to @)1 and Q.

Listing [5] provides another interesting multi-expression
(M@)2), that estimates the excepted number of people reaching
their target at the varying of the simulated time (i.e. at time 10,
15, 20, 25, 30 and 35). In order to ease the writing of multi-
expressions like M(Q2, MULTIQUATEX provides parametric
multi-expression (or parametric expression in short), i.e. some
syntactic sugar (a macro) that allows to concisely write multi-
expressions evaluated at the varying of a parameter. Listing [6]
depicts a parametric expression corresponding to M. In
line 3, the keyword parametric is used: provided a path
expression (people@POI (x)), a variable (z) and a range
of values specified as min (10.0), increment (5.0) and max
(35.0), the keyword is unrolled in the corresponding list of
eval clauses (in this case those of Listing [5). Noteworthy,
parametric takes as first parameter a list of path expressions,
allowing to study more measures at the varying of a parameter.

It is assumed that expressions are properly typed: the guards
of if statements must be booleans, while the path expressions
in the eval clauses must be real. Moreover, we restrict to
bounded expressions, i.e. the subset of expressions which can
be evaluated performing a finite number of steps of simulation.

IV. INTEGRATING MULTIVESTA AND ALCHEMIST

This section describes the integration of MULTIVESTA and
ALCHEMIST. Some steps (Section [[V-A), have been tackled
once and for all, while others are model-specific, and are thus
related to the crowd steering scenario (Section [[V-B).

A. Simulator-specific integration

Essentially, in order to allow the interaction with MUL-
TIVESTA, ALCHEMIST has to fulfill two requirements: (1)
the ability to advance the simulation in a step-by-step man-
ner (which is provided by the playSingleStepAndWait
method in ISimulation interface); (2) the ability to
analyse the model status after each simulation step, providing
measures in form of real numbers about properties of interest.

Since both MULTIVESTA and ALCHEMIST are Java-
based, their interaction has been easily realized by subclass-
ing the NewState class of MULTIVESTA. The obtained
AlchemistState class is sketched in Listing where
unnecessary details are omitted. The new class contains some
ALCHEMIST-specific code, providing MULTIVESTA with the
simulation control and proper entry points for the analysis.

L e R S

N R W

public class AlchemistState<N extends Number, D extends
Number, T> extends NewState ({
private final EnvironmentBuilder<N, D, T> eb;
private final long maxs;
private final ITime maxT;
private ISimulation<N, D, T> sim;
public AlchemistState (final ParametersForState params)
throws ...{
super (params) ;
final StringTokenizer otherparams = new StringTokenizer (
params.getOtherParameters());
// Initialization of Alchemist-specific parameters and
execution environment resorting to otherParams

}

public void setSimulatorForNewSimulation (fimal int seed) ({
/% Stop current simulation, create a new one. #*/

sim.stop();
sim.waitForCompletion () ;

env = getFreshEnvironment (seed);
sim = new Simulation<> (env, maxS, maxT);

}

public void performOneStepOfSimulation() {
sim.playSingleStepAndWait () ;
}

public double rval(final int obs) {
if (obs >= 0 && obs < StandardProperty.RESERVED_IDS) {
switch (StandardProperty.fromInt (obs)) {
case TIME:
return getTime () ;
case STEP:
return sim.getStep();
default:
return getStateEvaluator () .getVal (obs,
}

this);

}
}

Listing 7. AlchemistState extending MULTIVESTA’s NewState class

In the constructor (lines 7—-11), the superclass initialization
is done by a simple super () call. The remaining code ini-
tializes ALCHEMIST specific parameters such as the maximum
time or number of steps to simulate. It is worth noting that those
are in general not required, since MULTIVESTA is generally
able to detect when the analysis requirements has been met,
and consequently stop the simulation flow.

The setSimulatorForNewSimulation () method is
depitcted in lines 13-22. The goal of the method, invoked
by MULTIVESTA before performing a new simulation, is
to (re)initialize the status of the simulator, generating a new
simulation with the specified seed.

In lines 24-26, performOneStepOfSimulation ()
is provided: resorting to the ALCHEMIST method
playSingleStepAndWait (), it allows MULTIVESTA to
order the execution of a single simulation step.

In order to inspect and analyse the simulation state, the
rval () method defined in lines 28-41 is invoked. The
argument specifies the observation of interest. This method
inspects the simulation state for all aspects common to any
ALCHEMIST model, e.g. in Listing[7]lines 31-35 are sketched
the current simulated time and the number of performed
simulation steps. Clearly, each ALCHEMIST model will have its

public double getval (final FourPADProperties prop, final
ISimulation sim) {
final IEnvironment env = sim.getEnvironment ();
int count = 0;
switch (prop) {
case PEOPLE_RIGHT:
for (final INode<...> node : env) {
if (isInRightArea(node, env)) {
count++;
}
}
return count;
case CONNECTIVITY:
for (final INode<...> n : env) {
count+=env.getNeighborhood (n) .getNeighbors () .size();
}
return ((double) count) / env.getNodesNumber ();
default:
return 0;
}
}
Listing 8. AlchemistStateEvaluator for the crowd steering model

own observations of interest. These are managed resorting to
the default branch (lines 36-37), as described in Section |[I[V-B

The resulting integrated tool has been packaged within
the standard ALCHEMIST distribution. Simply by downloading
ALCHEMIST version 4 or newer, the user is enabled to exploit
the analysis capabilities of MULTIVESTA.

B. Model-specific integration

Depending on the model at hand, it may be necessary
to refine the model-independent observations exposed by
AlchemistState with a set of model-specific ones. This
can be done by simply instantiating the IStateEvaluator
interface provided by MULTIVESTA, constituted by the method
getVal (int observation, NewState state).

Listing |§| sketches AlchemistStateEvaluator, de-
fined for the crowd steering scenario. For the sake of brevity,
only two among all the properties of interest are reported: the
number of people that have reached the POI on the right side
and the average connectivity of the devices.

V. ANALYSIS OF THE SCENARIO

This section discusses the analysis performed on our crowd
steering scenario, resorting to the integration of MULTIVESTA
and ALCHEMIST. The outcome of the analysis is summarized
in the three charts of Figure 3] showing, at the varying of the
simulated time, the expected values of: the number of people
which have reached their POI (top), the average number of
connections of the devices (middle), and the number of LSAs
in the system (bottom).

The three charts have been obtained by evaluating
MainMQ@ of Listing[9] having 5 parametric temporal operators
(lines 1-10). people@RPOI and people@LPOI regard the
number of people which have reached, respectively, the POI
on the right and the one on the left. people@POI counts
instead how many people have reached their destination. The
fourth temporal operator (avgConn) regards the connectivity
degree of the devices. Finally, LSAs regards the number of
LSA in the system. The temporal operators are analysed at the

People on their target zone

30 T T T T [—
T o5l Right to left i
‘g Left to right
F o0 L Total B
[0
©
2 15¢ e
o 10 - _
Q
o
[}
a5 B
w
0 | = | |
0 5 10 15 20 25 30 35
Time (simulated seconds)
Average connectivity
1
10.8
=
2 106
o
[}
=4
& 104
o
8
o 10.2
h=4
[
10
9.8 . | | | | | |
0 5 10 15 20 25 30 35
Time (simulated seconds)
LSAs in the system
§ 700 [— [[[
T 600 -]
2
= 500 B
£
(2]
P 400 - B
-
s 300 _
5
£ 200 B
2
5 100 B
E 0 I I I I I I
« 0 5 10 15 20 25 30 35

Time (simulated seconds)

Fig. 3. Analysis of the crowd steering scenario: (top) number of people at the
POIs, (middle) average number of connections per device, (bottom) number
of LSAs in the system.

varying of the simulated time from 0 to 50 seconds, with step
1 (line 11). Thus the analysis consisted in the estimation of
the expected values of the 5 temporal operators instantiated
with 50 parameters, for a total of 250 expected values.

A high degree of precision has been required: o has been
set to 0.01, while the § values (the size of the CIs) have been
chosen considering the orders of magnitude of the measures: 0.5
for the instances of people@POI (x), people@RPOI (x)
and people@LPOTI (x); 0.05 for avgConn (x); and 3 for
LSAs (x). To reach such a level of confidence, the tool ran
approximately 2500 simulations, requiring less than a hour.

The discussed confidence intervals are depicted in the
aforementioned charts: the two lines drawn above and below
the central lines represent the obtained Cls of the expected

if {s.rval (0) >= z} then s.rval (13)

else #people@POI (z) fi;

people@POI (x) =

people@RPOI (x) = if{s.rval(0) >= x} then s.rval(11)
else #people@RPOI (z) fi;
people@LPOI (x) = if{s.rval(0) >= z} then s.rval (12)

else #people@LPOI (z) fi;

avgConn (z) = if{s.rval(0) >= x} then s.rval (14)
else #avgConn(z) fi;
LSAs (x) = if{s.rval(0) >= z} then s.rval (3)

else #LSAs (x) fi;
eval parametric (E[people@POI (z)],E[people@RPOI (z)],
E[people@LPOI (z)],E[avgConn (z)]1,E[LSAs(x)],
z,0.0,1.0,50.0) ;

Listing 9. The evaluated parametric multi-expression (M ainM Q)

values, thus indicating the intervals in which the actual expected
values lie with probability 0.99.

A. Comments on the obtained results

The top chart regards the first 3 temporal operators: the
top plot refers to the number of people in total which have
reached their target POI, while the two almost over-imposed
lower plots regard the number of people at the right POI and
at the left POL. All the three measures under analysis produced
monotonically increasing sigmoid curves. We can deduce from
this behaviour that there are no systemic errors in the crowd
steering system, such as people with no or wrong suggested
final destination, in which case we would have noticed one or
more flatted zones flawing the sigmoid curve. We note also
that after around 30 simulated seconds all the people have
reached their target, and that it takes around 10 seconds for the
fastest walkers to get to their destination. Note that, despite
the analysis has been performed for 50 simulated seconds, the
charts presented in Figure [3 have been cut at time 35 to better
show the most relevant results: in fact, the system reaches
stability after this time, and no event of interest happens later.
Moreover we can also notice that people going from left to
right are slightly faster than the other group. This difference,
due to the asymmetric positioning of people in the centre of
the scenario, is hardly visible and would have been impossible
to spot with a lower precision analysis.

The middle chart shows the evolution with time of the
average number of connections of the devices (i.e. both sensors
and smartphones). Since each device is considered to be
connected to all those within a range of 1.5 meters, it also
gives us a hint about the crowding level. There is a noticeable
peak at around 8 seconds: it is due to a high number of people
approaching the central group. After that, the peak disappears
when most people overtook the obstacle and are walking
towards their POI. Finally, there is a growth: progressively,
people reach their destination and tend to create a crowd.

The bottom chart shows the number of LSAs in the whole
system, indirectly giving hints on the global memory usage.
Once the system is started, there is a very quick growth, due
to the gradient being spread from the sources to the whole
sensors network and to the LSAs produced by the crowd-
sensing. The system reaches a substantial stability after a couple
of seconds. From that point on, the number of LSAs has very
little variations: the system has no “memory leak”, in the sense
that it does not keep on producing new LSAs without properly
removing old data.

— =0 00 J W B W=

Performance scaling

@
60000 ‘ ‘ ‘ ‘ ‘ 225 B

@ 55000 |- 10 8
2 50000 - . a
8 45000 - Total execution time —4 175 %
3 Total time / simulations number 2
£ 40000 ft 115§
£ 35000 7 4125 o
S 30000 (| S
£ 25000 | 410 g
8 >
g 20000 - 175 g
& 15000 -\ 15 &
S 10000 - N\ o
P 5000 - ~—— 125 E
0 | | | | | | | | | 0 E

5 10 15 20 25 30 35 40 45 i

Number of servers

Fig. 4. Performance scaling with of the number of running servers.

B. Performance assessment

All our experiments have been run on an a machine equipped
with four Intel® Xeon® E7540 and 64GB of RAM, running
Linux 2.6.32 and Java 1.7.0_04-b20 64bit.

In order to measure the performance scaling of the tool,
we ran our analysis multiple times varying the number of
MULTIVESTA servers deployed. Results are summarized by
the dark line of Figure [showing that with only 1 server, the
analysis required almost 17 hours, while with more than 30
servers it required less than a hour. For the considered scenario,
by distributing simulations we have thus obtained a more than
18 times faster analysis.

It is worth to note that such comparison of performance
is affected by the statistical nature of the analysis procedure.
Indeed, MULTIVESTA may need to run a sightly different
number of simulations in order to obtain the same precision
in different evaluations. Intuitively, when evaluating a MULTI-
QUATEX expression resorting to x or to x + y servers, in both
cases we initialize the first x servers with the same = seeds,
generating thus the same x simulations. However, the remaining
y servers are initialized with new seeds, and thus produce
new simulations. Clearly, by having different simulations, we
may obtain different sample variances, requiring a different
number of simulations. For this reason, the bright line of
Figure [depicts the time analysis normalized wrt the number of
simulations (obtained dividing the overall analysis time by the
number of performed simulations). The two lines of Figure
evolve accordingly, thus confirming the great performance gain
brought by the distribution of simulations.

As discussed in Section other than distribution of
simulations, MULTIVESTA has a further important feature
which dramatically reduces the time necessary to perform
analysis tasks: the tool is able to reuse the same simulations to
estimate many expected values. The reusage happens on two
levels: (1) expressions can be made parametric, and thus the
same simulations can be used for computing the same property
at the varying of a parameter (e.g. at different time steps). An
example is M Q) of Listing[6} (2) it is possible to write multi-
expressions (e.g. MQ;_o of Listing , and thus use the same
simulations to obtain the expected values of multiple properties.
Moreover, by combining these two features, it is possible to
reuse simulations for multiple parametric properties. MainM Q)

Expressi Parametric expr Parametric multi-expression
people@POI 39999.32 2567.26 n.a.
people@RPOI 15891.13 1114.86 n.a.
people@LPOI 15560.83 950.30 n.a.
avgConn 90111.29 1372.64 n.a.
LSAs 58630.45 2504.33 n.a.
[Total ime | 220193.02 | 8509.39 [321595
Fig. 5. Time performance improvements reusing simulations (seconds).

of Listing [0 analysed in this section, is an example of
parametric multi-expression. As explicitated by Figure 5| (whose
reported analysis have been performed resorting to 48 servers),
the parametric expressions (second column) allowed us to save
a stunning 96% of execution time wrt the simple expressions
case without reuse of simulations (first column). Moreover, the
parametric multi-expression feature (third column) allowed us
to further cut down this time to a third. We can thus advocate
that, by exploiting the feature of reuse of simulations, for the
scenario under investigation we obtained a more than 68 times
faster analysis.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel statistical analysis tool tailored
to chemical-inspired pervasive systems. The tool has been
obtained by combining ALCHEMIST, an efficient state-of-the-
art simulator for chemical-oriented computational systems, with
MULTIVESTA, a recently proposed lightweight tool which
allows to enrich existing discrete event simulators with efficient
distributed statistical analysis capabilities.

By integrating ALCHEMIST with MULTIVESTA, the former
has been enriched with capabilities far from those usually
offered by simulation tools. Mainly, it is now possible to
define in a clean and compact way the properties of interest,
to decouple them from the model definition, and to automatize
their evaluation. The analysis tasks can be performed efficiently,
as the distribution of simulations is supported. Furthermore,
another important benefit is the ability of evaluating more
properties at once via parametric multi-expressions, thus
reducing the number of required simulations and speeding
up greatly the analysis operations.

The analysis capabilities and performance of the newly
obtained tool have been evaluated in a crowd steering scenario
regarding 45 smartphone-equipped people moving to a POI,
immersed in an environment with a grid of 200 computationally
enabled sensors. The analysis consisted in the estimation, with
high degree of precision, of 250 expected values, and required
less than an hour in total.

MULTIVESTA already supports several simulators (as
discussed in [11]). From now on MULTIVESTA is also part
of the ALCHEMIST distribution, and will be used in future for
performing analysis on complex scenarios, giving to all the
ALCHEMIST users the benefits described in this paper.

ACKNOWLEDGMENT

Acknowledgements: Work supported by the European projects FP7-
FET 256873 SAPERE, FP7-FET 257414 ASCENS, and FP7-STReP
600708 QUANTICOL, and by the Italian PRIN 2010LHT4KM CINA.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

R. Doursat, “Organically grown architectures: Creating decentralized,
autonomous systems by embryomorphic engineering,” in Organic
computing. Springer, 2008, pp. 167-199.

M. Viroli and M. Casadei, “Biochemical tuple spaces for self-organising
coordination,” Coordination Models and Languages, pp. 143-162, 2009.
M. Mamei, F. Zambonelli, and L. Leonardi, “Cofields: a physically
inspired approach to motion coordination,” Pervasive Computing, IEEE,
vol. 3, no. 2, pp. 52-61, 2004.

F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. Di
Marzo, M. Risoldi, A.-E. Tchao, S. Dobson, G. Stevenson, Y. Ye,
E. Nardini, A. Omicini, S. Montagna, M. Viroli, A. Ferscha, S. Maschek,
and B. Wally, “Self-aware pervasive service ecosystems,” Procedia
Computer Science, vol. 7, pp. 197-199, Dec. 2011, proceedings of the
2nd European Future Technologies Conference and Exhibition 2011
(FET 11). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050911005667

S. Mariani and A. Omicini, “Molecules of knowledge: Self-organisation
in knowledge-intensive environments,” Intelligent Distributed Computing
VI, pp. 17-22, 2013.

A. Molesini, M. Casadei, A. Omicini, and M. Viroli, “Simulation in
agent-oriented software engineering: The SODA case study,” Science
of Computer Programming, Aug. 2011, special Issue on Agent-
oriented Design methods and Programming Techniques for Distributed
Computing in Dynamic and Complex Environments. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642311001778

E. Babulak and M. Wang, “Discrete event simulation: State of the art,”
iJOE, vol. 4, no. 2, pp. 60-63, 2008.

S. Bandini, S. Manzoni, and G. Vizzari, “Agent based modeling
and simulation: An informatics perspective,” Journal of Artificial
Societies and Social Simulation, vol. 12, p. 4, 2009. [Online]. Available:
http://EconPapers.repec.org/RePEc:jas:jasssj:2009-69- 1

C. M. Macal and M. J. North, “Tutorial on agent-based modelling and
simulation,” Journal of Simulation, vol. 4, no. 3, pp. 151-162, 2010.

D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with Alchemist,” Journal of Simulation, 2013.
[Online]. Available: http://www.palgrave-journals.com/jos/journal/vaop/
full/jos201227a.html

S. Sebastio and A. Vandin, “MultiVeStA: Statistical Model Checking
for Discrete Event Simulators,” submitted to ValueTools 2013.

M. Viroli, D. Pianini, S. Montagna, and G. Stevenson, “Pervasive
ecosystems: a coordination model based on semantic chemistry,” in
27th Annual ACM Symposium on Applied Computing (SAC 2012),
S. Ossowski, P. Lecca, C.-C. Hung, and J. Hong, Eds. Riva del
Garda, TN, Italy: ACM, 26-30 Mar. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2245276.2245336

M. Schumacher, L. Grangier, and R. Jurca, “Governing environments
for agent-based traffic simulations,” in Proceedings of the 5th
international Central and Eastern European conference on Multi-
Agent Systems and Applications V, ser. CEEMAS ’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 163—172. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75254-7_17

S. Bandini, S. Manzoni, and G. Vizzari, “Crowd Behavior Modeling:
From Cellular Automata to Multi-Agent Systems,” in Multi-Agent
Systems: Simulation and Applications, ser. Computational Analysis,
Synthesis, and Design of Dynamic Systems, A. M. Uhrmacher and
D. Weyns, Eds. CRC Press, Jun. 2009, ch. 13, pp. 389-418. [Online].
Available: http://crcpress.com/product/isbn/9781420070231

M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “A declarative
model assembly infrastructure for verification and validation,” in
Advancing Social Simulation: The First World Congress, S. Takahashi,
D. Sallach, and J. Rouchier, Eds. Springer Japan, 2007, pp. 129-140.

E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial
Life, vol. 13, no. 3, pp. 303-311, 2007.

C. Priami, “Stochastic pi-calculus,” Comput. J., vol. 38, no. 7, pp. 578-
589, 1995.

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, pp. 541-580, Apr. 1989. [Online]. Available:
http://dx.doi.org/10.1109/5.24143

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

A. M. Uhrmacher and C. Priami, “Discrete event systems specification
in systems biology - a discussion of stochastic pi calculus and devs,” in
Proceedings of the 37th conference on Winter simulation, ser. WSC ’05.
Winter Simulation Conference, 2005, pp. 317-326. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=1162708.1162767

R. Ewald, C. Maus, A. Rolfs, and A. M. Uhrmacher, “Discrete
event modeling and simulation in systems biology,” Journal of
Simulation, vol. 1, no. 2, pp. 81-96, 2007. [Online]. Available:
http://dx.doi.org/10.1057/palgrave.jos.4250018

D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp.
2340-2361, December 1977. [Online]. Available: http://dx.doi.org/10
1021/j100540a008

M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of
chemical systems with many species and many channels,” J. Phys. Chem.
A, vol. 104, pp. 1876-1889, 2000.

S. Montagna, D. Pianini, and M. Viroli, “A model for drosophila
melanogaster development from a single cell to stripe pattern formation,”
in Proceedings of the 27th Annual ACM Symposium on Applied
Computing. ACM, 2012, pp. 1406-1412.

S. Bandini, S. Manzoni, and G. Vizzari, “Crowd modeling
and simulation: Towards 3d visualization,” in Recent Advances
in Design and Decision Support Systems in Architecture and
Urban Planning, J. P. Leeuwen and H. J. Timmermans, Eds.
Springer Netherlands, 2005, pp. 161-175. [Online]. Available:
http://link.springer.com/chapter/10.1007/1-4020-2409-6_11

J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin, “Fast self-healing
gradients,” in Proceedings of the 2008 ACM symposium on Applied
computing. ACM, 2008, pp. 1969-1975.

J. Beal, “Flexible self-healing gradients,” in Proceedings of the 2009
ACM symposium on Applied Computing. ACM, 2009, pp. 1197-1201.

J. L. Fernandez-Marquez, G. D. M. Serugendo, S. Montagna, M. Viroli,
and J. L. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, pp. 1-25, 2013.

S. Montagna, M. Viroli, M. Risoldi, D. Pianini, and G. Di Marzo
Serugendo, “Self-organising pervasive ecosystems: a crowd evacuation
example,” Software Engineering for Resilient Systems, pp. 115-129,
2011.

S. Montagna, D. Pianini, and M. Viroli, “Gradient-based self-organisation
patterns of anticipative adaptation,” in Self-Adaptive and Self-Organizing
Systems (SASO), 2012 IEEE Sixth International Conference on. IEEE,
2012, pp. 169-174.

M. Chraibi, M. Freialdenhoven, A. Schadschneider, and A. Seyfried,
“Modeling the desired direction in a force-based model for pedestrian
dynamics,” arXiv preprint arXiv:1207.1189, 2012.

K. Sen, M. Viswanathan, and G. Agha, “Vesta: A statistical model-
checker and analyzer for probabilistic systems,” in Quantitative Evalua-
tion of Systems, 2005. Second International Conference on the, 2005,
pp. 251-252.

M. AlTurki and J. Meseguer, “Pvesta: A parallel statistical model
checking and quantitative analysis tool,” in CALCO, ser. Lecture Notes
in Computer Science, A. Corradini, B. Klin, and C. Cirstea, Eds., vol.
6859. Springer, 2011, pp. 386-392.

G. A. Agha, J. Meseguer, and K. Sen, “PMaude: Rewrite-based
specification language for probabilistic object systems,” in QAPL 2005,
ser. ENTCS, A. Cerone and H. Wiklicky, Eds., vol. 153(2). Elsevier,
2006, pp. 213-239.

H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Asp. Comput., vol. 6, no. 5, pp. 512-535, 1994.

A. Aziz, V. Singhal, and F. Balarin, “It usually works: The temporal
logic of stochastic systems,” in CAV, ser. Lecture Notes in Computer
Science, P. Wolper, Ed., vol. 939. Springer, 1995, pp. 155-165.

C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate symbolic model
checking of continuous-time markov chains,” in CONCUR, ser. Lecture
Notes in Computer Science, J. C. M. Baeten and S. Mauw, Eds., vol.
1664. Springer, 1999, pp. 146-161.

K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in CAV, ser. Lecture Notes in Computer Science,
K. Etessami and S. K. Rajamani, Eds., vol. 3576. Springer, 2005, pp.
266-280.

http://www.sciencedirect.com/science/article/pii/S1877050911005667
http://www.sciencedirect.com/science/article/pii/S1877050911005667
http://www.sciencedirect.com/science/article/pii/S0167642311001778
http://EconPapers.repec.org/RePEc:jas:jasssj:2009-69-1
http://www.palgrave-journals.com/jos/journal/vaop/full/jos201227a.html
http://www.palgrave-journals.com/jos/journal/vaop/full/jos201227a.html
http://dl.acm.org/citation.cfm?doid=2245276.2245336
http://dx.doi.org/10.1007/978-3-540-75254-7_17
http://crcpress.com/product/isbn/9781420070231
http://dx.doi.org/10.1109/5.24143
http://dl.acm.org/citation.cfm?id=1162708.1162767
http://dx.doi.org/10.1057/palgrave.jos.4250018
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://link.springer.com/chapter/10.1007/1-4020-2409-6_11

	Introduction
	Alchemist
	A crowd steering scenario
	A model based on computational fields
	The pedestrians model
	Implementation with a chemical metaphor

	MultiVeStA
	Integrating MultiVeStA and Alchemist
	Simulator-specific integration
	Model-specific integration

	Analysis of the scenario
	Comments on the obtained results
	Performance assessment

	Conclusions and future works
	References

