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Abstract. We present the explicit state model checker HSF-SPIN which
is based on the model checker SPIN and its Promela modeling language.
HSF-SPIN incorporates directed search algorithms for checking safety
and a large class of LTL-specified liveness properties. We start off from
the A* algorithm and define heuristics to accelerate the search into the
direction of a specified failure situation. Next we propose an improved
nested depth-first search algorithm that exploits the structure of Promela
Never-Claims. As a result of both improvements, counterexamples will
be shorter and the explored part of the state space will be smaller than
with classical approaches, allowing to analyze larger state spaces. We
evaluate the impact of the new heuristics and algorithms on a set of
protocol models, some of which are real-world industrial protocols.

1 Introduction

Model Checking [3] is a formal analysis technique that has been developed to
automatically validate functional properties for software or hardware systems.
The properties are usually specified using some sort of a temporal logic or using
automata. There are two primary approaches to model checking. First, Symbolic
Model Checking [21] uses binary decision diagrams to represent the state set. The
second formalization uses an explicit representation of the system’s global state
graph. An explicit state model checker evaluates the validity of the temporal
properties over the model by interpreting its global state transition graph as
a Kripke structure. In this paper we focus on explicit state model checking
and its application to the validation of communication protocols. The protocol
model we consider is that of collections of extended communicating finite state
machines as described, for instance, in [2] and [12]. Communication between two
processes is either realized via synchronous or asynchronous message passing on
communication channels (queues) or via global variables. Sending or receiving a
message is an event that causes a state transition. The system’s global state space
is generated by the asynchronous cross product of the individual communicating
finite state machines (CFSMs). For the description of the state machine model



we use the language Promela [17], and for the validation of Promela models we
use the model checker SPIN? [16].

The use of model checking in system design has the great advantage over the
use of deductive formal verification techniques that once the requirements are
specified and the model has been programmed, model checking validation can
be implemented as a push-button process that either yields a positive result, or
returns an error trail. Two primary strategies for the use of model checking in
the system design process can be observed.

— Complete validation is used to certify the quality of the product or design
model by establishing its absolute correctness. However, due to the large size
of the search space for realistic systems it is hardly ever possible to explore
the full state space in order to decide about the correctness of the system. In
these cases, it either takes too long to explore all states in order to give an
answer within a useful time span, or the size of the state space is too large
to store it within the bounds of available main memory.

— The second strategy, which also appears to the more commonly one used,
is to employ the model checker as a debugging aid to find residual design
and code faults. In this setting, one uses the model checker as a search tool
for finding violations of desired properties. Since complete validation is not
intended, it suffices to use hashing-based partial exploration methods that
allow for covering a much larger portion of the system’s state space than if
complete exploration is needed.

When pursuing debugging, there are some more objectives that need to be
addressed. First, it is desirable to make sure that the length of a search until
a property violation is found is short, so that error trails are easy to interpret.
Second, it is desirable to guide the search process to quickly find a property
violation so that the number of explored states is small, which means that larger
systems can be debugged this way. To support these objectives we present an
approach to Directed Model Checking in our paper.

Our model-checker HSF-SPIN extends the SPIN framework with various
heuristic search algorithms to support directed model checking. Experimental
results show that in many cases the number of expanded nodes and the length
of the counter-examples are significantly reduced. HSF-SPIN has been applied
to the detection of deadlocks, invariant and assertion violations, and to the val-
idation of LTL properties. In most instances the estimates used in the search
are derived from the properties to be validated, but HSF-SPIN also allows some
designer intervention so that targets for the state space search can be specified
explicitly in the Promela code.

We propose an improvement of the depth-first search algorithm that exploits
the structure of never claims. For a broad subset of the specification patterns
described in [8], such as Response and Absence, the proposed algorithm performs
less transitions during state space search and finds shorter counterexamples com-
pared to classical nested-depth first search. Given a Promela Never Claim A the
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algorithm automatically computes a partitioning of A in linear time with respect
to the number of states in A. The obtained partitioning into non-, fully and par-
tially accepting strongly connected components will be exploited during state
space exploration. We improve the heuristic estimate by taking the structure of
the temporal property into account.

Related Work. In earlier work on the use of directed search in model checking
the authors apply best-first exploration to protocol validation [20]. They are in-
terested in typical safety properties of protocols, namely unspecified reception,
absence of deadlock and absence of channel overflow. In the heuristics they there-
fore use an estimate determined by identifying send and receive operations. In
the analysis of the X.21 protocol they obtained savings in the number of expan-
sion steps of about a factor of 30 in comparison with a typical depth first search
strategy. We have incorporated this strategy in HSF-SPIN. While the approach
in [20] is limited to the detection of deadlocks, channel overflows and unspecified
reception in protocols with asynchronous communication, the approach in this
paper is more general and handles a larger range of errors and communication
types. While the labelings used in [20] are merely stochastic measures that will
not yield optimal solutions, the heuristics we propose are lower bound estimators
and hence allow us to find optimal solutions.

The authors of [30] use BDD-based symbolic search within the Mur¢ vali-
dation tool. The best first search procedure they propose incorporates symbolic
information based on the Hamming distance of two states. This approach has
been improved in [26], where a BDD-based version of the A* algorithm [11] for
the pcke model checker [1] is presented. The algorithm outperforms symbolic
breadth-first search exploration for two scalable hardware circuits. The heuristic
is determined in a static analysis prior to the search taking the actual circuit lay-
out and the failure formula into account. The approach to symbolic guided search
in CTL model checking documented in [25] applies ‘hints’ to avoid sections of the
search space that are difficult to represent for BDDs. This permits splitting the
fix-point iteration process used in symbolic exploration into two parts yielding
under- and overapproximation of the transition relation, respectively. Benefits
of this approach are simplification of the transition relation, avoidance of BDD
blowup and a reduced amount of exploration for complicated systems. However,
in contrast to our approach providing ‘hints’ requires user intervention. Also,
this approach is not directly applicable to explicit state model checking, which
is our focus.

Exploiting structural properties of the Biichi Automaton in explicit state
mode checking has been considered in the literature in the context of weak al-
ternating automata (WAA) [5]. WAA were invented to reason about temporal
logics, generalize the transition function with boolean expressions of the succes-
sor set, and partition the automaton structure. The classification of the states of
a WAA differs from ours, since the partitioning into disjoint sets of states that
are either all accepting or all rejecting does not imply our partitioning.

The simplification of Biichi automata proposed in [27] is inferred from an
LTL property, whereas we work on the basis of Biichi automata. This work also



considers a partitioning according to WA A-type weakness conditions and hence
differs from the approach taken in our paper.

The approach taken in [29] addresses explicit CTL* model checking in SPIN
using hesistant alternating automata (HAAs). The paper shows that the perfor-
mance of the proposed ‘LTL nonemptiness game’ is in fact a reformulation and
improvement of nested depth-first search. Both the partitioning and the context
of HAA model checking are significanty different from our setting.

In our paper we will use a number of protocols as benchmarks. These include
Lynch’s protocol, the alternating bit protocol, Barlett’s protocol, an erroneous
solution for mutual exclusion (mutex)?, the optical telegraph protocol [17], an
elevator model®, a deadlock solution to Dijkstra’s dining philosopher problem,
and a model of a concurrent program that solves the stable marriage prob-
lem [22]. Real-World examples that we use include the Basic Call processing
protocol [23], a model of a relay circuit [28], the Group Address Registration
Protocol GARP [24], the CORBA GIOP protocol [18], and the telephony model
POTS [19]*.

Precursory Work. The precursor [10] to this paper considers safety property
analysis for simple protocols. In the current paper we extend on this work by re-
fining the safety heuristics, by providing an approach to validating LTL-specified
safety properties, and by experimenting with a larger set of protocols.

Structure of Paper. In Section 2 we review automata-based model checking. Sec-
tion 3 discusses the analysis of safety properties in directed model checking and
describes the use of the A* algorithm for this purpose. In Section 4 we discuss
liveness property analysis. We present approaches to improve search strategies
for validation of LTL properties. In Section 5 we discuss how to devise informa-
tive heuristic estimates in communication protocols. The new protocol validator
HSF-SPIN is presented in Section 6. Experimental results for various protocols
are discussed in Section 7. We conclude in Section 8.

2 Automata-Based Model Checking

In this Section we review the automata theoretic framework for explicit state
model checking. Since we model infinite behaviors the appropriate formalization
for words on the alphabet of transitions sequences are Biichi-Automata. They
inherit the structure of finite state automata but with a different acceptance
condition. A run (infinite path) in a Biichi-Automaton is accepting if the set of
states that appear infinitely often in the run has a non-empty intersection with
the set of accepting states. The language L(.A) of a Biichi-Automaton .4 consists
of all accepting runs. The expressiveness of Biichi-Automata includes LTL.
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Formally, LTL specification F' (M) according to a Kripke Model M are defined
as follows: All predicates a are in F(M) and if f and g are in F(M), so are
-f,fVveg,fAngX f,F f,G f,and f U g. In LTL, temporal modalities are
expressed through the operators O for globally (G) and <© for eventually (F).

In automata-based Model Checking we construct the Biichi-Automaton A
and the automaton B that represents the system M. A is sometimes obtained
by translating an LTL formula into a Biichi Automaton. While this translation
is exponential in the size of the formula, typical property specifications result
in small LTL formulae so that this complexity is not a practical problem. The
system B satisfies A when L(B) C L(A). This is equivalent to L(B) N L(A) =
(0, where L(A) denotes the complement of L(A). Note that Biichi-Automata
are closed under complementation. In practice, L(A) can be computed more
efficiently by deriving a Biichi-Automaton from the negated formula. Therefore,
in the SPIN validation tool LTL formulae are first negated, and then translated
into a Never Claim (automaton) that represent the negated formula. As an
example we consider the commonly used response property which states that
whenever a certain request event p occurs a response event g will eventually
occur. Response properties are specified in LTL as O(p — <¢) and the negation
is G(p A O= q). The Biichi-Automaton and the corresponding Promela Never-
Claim for the negated response property are illustrated in Figure 1.
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Fig. 1. Biichi-Automaton for response property (left) and for its negation (right).

The emptiness of L(B) N L(A) is determined using an on-the-fly algorithm
based on the synchronous product of 4 and B: Assume that A is in state s and
B is in state t. B can perform a transition out of # if A has a successor state s’ of
s such that the label of the edge from s to s’ represents a proposition satisfied in
t. A run of the synchronous product is accepting if it contains a cycle through at
least one accepting state of A. L(B) N L(.A) is empty if the synchronous product
does not have an accepting run. We use the standard distinction of safety and
liveness properties. Safety properties refer to states, whereas liveness properties
refer to paths in the state transition diagram. Safety properties can be validated
through a simple depth-first search on the system’s state space, while liveness
properties require a two-fold nested depth-first search. When property violations
are detected, the model checker will return a witness (counterexample) which
consists of a trace of events or states encountered.




3 Searching for Safety Property Violations

The detection of a safety error consists of finding a state in which some property
is violated. Typically, the algorithms used for this purpose are depth-first and
breadth-first searches. Depth-first search is memory efficient, but not very fast
in finding target states. We describe how heuristic search algorithms can be used
instead in order to accelerate the exploration.

Heuristic search algorithms take additional search information in form of a
evaluation function into account that returns a number purporting to describe
the desirability of expanding a node. When the nodes are ordered so that the
one with the best evaluation is expanded first and if the evaluation function
estimates the cost of the cheapest path from the current state to a desired one,
the resulting greedy best-first search (BF) often finds solutions fast. However, it
may suffers from the same defects as depth-first search — it is not optimal and
may be stuck in dead-ends or local minima.

Breadth-first search (BFS), on the other hand, is complete and optimal
but very inefficient. Therefore, A* [13] combines both approaches for a new
evaluation function by summing the generating path length g(u) and the esti-
mated cost of the cheapest path h(u) to the goal yielding the estimated cost
f(u) = g(u) + h(u) of the cheapest solution through u. If h(u) is a lower bound
then A* is optimal. Table 1 depicts the implementation of A* to search safety
violations, where g(u) is the length of the traversed path to u and h(u) is the
estimate from wu to a failure state.

A*(s)
Open « {(s,h(s))}; Closed« {}
while (Open # 0)
u < Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Safety Property Violated
for all v in I'(u)
£'(®)  f(u) + 1+ h(v) - h(u)
if (Search(Open, v))
if (f'(v) < f(v))
DecreaseKey(Open, (v, f' (v))
else if (Search(Closed, v))
if (f'(v) < f(v))
Delete( Closed, v); Insert(Open, (v, f' (v))
else Insert(Open, (v, f' (v))

Table 1. The A* Algorithm Searching for Violations of Safety Properties.

Similar to Dijkstra’s single source shortest path exploration [7], starting with
the initial state, A* extracts states from the priority queue Open until a failure
state is found. In a uniform-cost graph with integral lower-bound estimate the f-
values are integer and bounded by a constant, such that the states can be kept in



doubly-linked lists stored in buckets according to their priorities [6]. Therefore,
given a node reference Insert and Close can be executed in constant time while
the operation DeleteMin increases the bucket index for the next node to be
expanded. If the differences of the priorities of successive nodes are bounded by
a constant, DeleteMin runs in O(1). Nodes that have already been expanded
might be encountered on a shorter path. Contrary to Dijkstra’s algorithm, A*
deals with them by possibly re-inserting nodes from the set of already expanded
nodes into the set of priority queue nodes (re-opening).

Figure 2 depicts the impact of heuristic search in a grid graph with all edge
costs being 1. If h = 0, A* reduces to Dijkstra’s algorithm, which in case of
uniform graphs further collapses to BFS. Therefore, starting with s all nodes
shown are added to the (priority) queue until the goal node ¢ is expanded. If we
use h(u) as the Euclidian distance ||u —t||2 to state ¢, then only the nodes in the
hatched region are ever removed from the priority queue.
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Fig. 2. The Effect of Heuristic Search in a Grid Graph.

Weightening scales the influence of the heuristic estimate such that the com-
bined merit function f of the generating path length g and the heuristic estimate
h is given by f(u) = ag(u) + (1 — a)h(u) for all states u and a € [0,1]. In case
a < 0.5, optimality of the search algorithms is affected, for & = 0 we exibit BF,
and for a = 1 we simulate BFS.

4 Searching for Liveness Property Violations

Liveness properties refer to paths of the state transition graph and the detection
of liveness property violations entails searching for cycles in the state graph.
This is typically achieved by a nested depth-first search (Nested-DFS) that can
be implemented with two stacks as shown in Figure 3 (cf. [3]).

One feature of this algorithm is that a state, once flagged will not be consid-
ered further on. For the correctness of the algorithm the post-order traversal of
the search tree is crucial, such that the secondary depth-first traversal only en-
counters nodes that have already been visited in the main search routine. There-
fore in the application of heuristic methods for the first traversal of Nested-DFS,
we are restricted to move ordering techniques: using a heuristic function for es-
tablishing the order in which the successors of a state will be explored. However,



Nested-DFS(s)
hash(s)
for all successors s’ of s do
if s’ not in the hash table then Nested-DFS(s’)
if accept(s) then Detect-Cycle(s)

Detect-Cycle(s)
flag(s)
for all successors s’ of s do
if s’ on Nested-DFS-Stack then exit LTL-Property violated
else if s’ not flagged then Detect-Cycle(s’)

Fig. 3. Nested-Depth-First-Search

the second search can be improved by directed cycle detection search. Since we
are aiming for those states in the first stack we can use heuristics to perform a
directed search for the cycle-closing states. The disadvantage of a pre-ordered
nested search approach (search the acceptance state in the Never-Claim and,
once encountered, search for a cycle) is its quadratic worst-case time and linear
memory overhead, since the second search has to be invoked with a newly ini-
tialized visited list. To address this drawback we developed a single pass DFS
algorithm applicable to a large set of practical property specifications.

4.1 Classification of Never Claims

Strongly connected components (SCC) partition a directed graph into groups
such that there is no cycle combining two components. A subset of nodes in
a directed graph is strongly connected if for all nodes u and v there is a path
from u to v and a path from v to u. SCCs are maximal in this sense and can
be computed in linear time [4]. In the Never-Claim of the example in Figure 1
we find two strongly connected components: the first is formed by n¢ and the
second by n,. Furthermore, there is no path from the second SCC to the first.
Therefore, accepting cycles in the Never-Claim exist only in the second SCC.
Accepting cycles in the synchronous product automaton are composed of states
in which the Never-Claim is always in state n, (second SCC). A cycle is found
if a state is encounterd on the stack. Moreover, if the local state of the never
claim in the found global state belongs to the first SCC, the established cycle is
not accepting, and if it belongs to the second SCC it is an accepting one.

In order to generalize the observation suppose that we have pre-computed
all SCCs of a given Never-Claim. Due to the synchronicity of the product of
the model automaton and the Never-Claim a cycle in the synchronous product
is generated by a cycle in exactly one SCC. Moreover, if the cycle is accepting,
so is the corresponding cycle in the SCC of the never claim. Suppose that each
SCC is either composed only of non-accepting states or only of accepting states.
Then global accepting cycles only contain accepting states, while non-accepting



cycles only contain non-accepting states. Therefore, a single depth-first search
can be used to detect accepting cycles: if a state s is found in the stack, then
the established cycle is accepting if and only if s itself is accepting.

The restriction on the SCC partitioning given by the above rules can be
relaxed according to the following classification of the SCCs.

— We call an SCC accepting if at least one of its states is accepting, and non-
accepting (N-SCC) otherwise.

— We call an accepting SCC fully accepting (F-SCC) if all of its cycles contain
at least one accepting state.

— We call an accepting SCC partially accepting (P-SCC) if there is at least one
cycle that does not contain an accepting state.

If the Never-Claim contains no partially accepting SCC, then acceptance cycle
detection for the global state space can be performed by a single depth-first
search: if a state is found in the stack, then it is accepting, if the never state
belong to an accepting SCC. A special case occurs if the never claim has an
endstate. If this state is reached the never claim is said to be violated; a bad
sequence is found. We indicate the presence of endstates with the letter S. Bad
sequences are tackled similarily to safety properties by standard heuristic search.

The classification of patterns in property specifications [8] reveals that a
database of 555 LTL properties partitions into Absence (85/555), Universality
(119/555), Ezistence (27/555), Response (245/555), Precedence(26/555), and
Others (53/555). Using this pattern scheme and the modifiers Globally, Before,
After, Between, and Until we obtain a partitioning into SSCs according to Ta-
ble 2.

Pattern Globally| Before |After| Between Until

Absence S+N S+N S+N S+N S+N+P
Universality| S+N S+N S+N|[S+N+P+F| S+N+P
Existence F S+P+N |[N+F| S+N+P S+N+F

Response N+F [S+N+P+F|N+F|S+N+P+F[S+N+P+F
Precedence |S+N+P S+N N+P S+N S+N+P

Table 2. SCC Classification for LTL-Specification Patterns. S indicates the presence of
endstates in the never claim, while N, P, F indicate the presenc of at least one N-SCC,
P-SCC and F-SCC respectively.

4.2 Improved Nested Depth-First-Search

In this section we present an improvement of the Nested-DFS algorithm called
Improved-Nested-DFS. Tt finds acceptance cycles without nested search for all
problems which partition into N- or F-components. The algorithm reduces the
number of transitions required for full validation of liveness properties. Except
for P-SCCs it avoids the post-order traversal. For P-SCCs we guarantee that the



second cycle detection traversal is restricted to the strongly connected compo-
nent of the seed. The Improved-Nested-DFS algorithm is given in Fig. 5. In this
Figure, SCC(s) is the SCC of state s, F-SCC(s) determines if the SCC of state
s is of type F (fully accepting), P-SCC(s) determines if the SCC of the state is
of type P (partially accepting) and neverstate(s) denotes the local state of the
Never Claim in the global state s. The algorithms considers the successors of a
node in depth-first manner and marks all visited nodes with the label hash. If a
successor s' is already contained in the stack, a cycle C is found. If C corresponds
to a cycle in a F-SCC of the neverstate of s', it is an accepting one. Cycles for the
P-SCCs parts in the never claim are found as in Nested-DFS, with the excep-
tion that the successors of a node are pruned which neverstates are outside the
component. If a endstate in the Never Claim is reached the algorithm terminates
inmediately. Figure 4 depicts the different cases of cycles detected in the search.
The correctness of Improved-Nested-DFS follows from the fact that all cycles in
the state-transition graphs correspond to cycles in the Never-Claim. Therefore,
if there is no cycle combining two components in the Never-Claim, so there is
none in the overall search space.

Search Path

Cycle established
in 1st DFS

Cycle establised
in 2nd DFS

Never Claim

Search Tree

Fig. 4. Visualization of the Different Cases in Improved-Nested-DFS.

As mentioned above, the strongly connected components can be computed
in time linear to the size of the Never Claim, a number which is very small in
practice. Partitioning the SCCs in non-accepting, partially accepting and fully
accepting can also be achieved in linear time by a variant of Nested-DFS in the
Never Claim. In contrast to the heuristic directed search the improved nested
depth-first search algorithm accelerates the search for full validation. The ease of
implementation suggests to Improved-Nested-DFS to the SPIN validation tool.

4.3 A* and Improved-Nested-DFS

So far we have not considered heuristic search for Improved-Nested-DFS. Once
more, we consider the example of Response properties to be validated. In a
first phase, states are explored by A*. The evaluation function to focus the



Improved-Nested-DFS(s)
hash(s)
for all successors s’ of s do
if s’ in Improved-Nested-DFS-Stack and F-SCC(neverstate(s')) then
exit LTL-Property violated
if s’ not in the hash table then Nested-DFS(s’)
if accept(s) and P-SCC(neverstate(s)) then Improved-Detect-Cycle(s)

Improved-Detect-Cycle(s)
flag(s)
for all successors s’ of s do
if s’ on I'mproved — Nested — DF S-Stack then exit LTL-Property violated
else if s’ not flagged and SCC(neverstate(s)) = SCC(neverstate(s’)) then
Improved-Detect-Cycle(s’)

Fig. 5. Improved Nested Depth-First Search.

search can easily be designed to reach the accepting cycles in the SCCs faster,
since all states that we are aiming at are accepting. This approach generalizes
to a hybrid algorithm A* and Improved-Nested-DFS, A*+DFS for short, that
alternates between heuristic search in N-SCCs, single-pass searches in F-SCCs,
and Nested-Search in P-SCCs. If a P- or S-component is encounterd, Improved
Nested-DFS is invoked and searches for cycles. The heuristic estimate respects
the combination of all F-SCCs and P-SCCs, since accepting cycles are present in
either of the two components. The nodes at the horizon of a F- and P-component
lead to pruning of the sub-searches and are inserted back into the Open-List
(priority queue) of A*, which contains all horizon nodes with a neverstate in the
corresponding N-SCCs. Therefore A* + Improved-Nested-DFS continues with
directed search, if cycle detection in the F- and P-component components fails.
As in the naive approach, cycle detection search itself might be accelerated with
an evaluation function heading back to the states where it was started.

Figure 6 visualizes this strategy for our simple example. The Never Claim
corresponds to a response property. It has the following SCCs: SCCy which is a
N-SCC, and SCC, which is F-SCC. The state space can be seen as divided in
two partitions, each one composed of states where the Never Claim is a state
belonging to one of the SCCs. In a first phase, A* is used for directing the search
to states of the partition corresponding to SCC,. Once a goal state is found,
the second phase begins, where the search for accepting cycles is performed by
Improved-Nested-DFS.

5 Heuristics for Errors in Protocols

In this section we introduce search heuristics to be used in the detection of errors
in models written in Promela. We start off with precompiling techniques that
help to efficiently compute different heuristic estimates.



1st Phase
A*

Never Claim ~~

2nd Phase

Goals for A* Improved-Nested-DFS

Search Tree

Fig. 6. Visualization of A* and Improved-Nested-DFS for a response property.

5.1 Precompiling State Distance Tables

We now discuss how to calculate heuristic estimates through a precompilation
step. We assume that a transition system T' = (T, ..., T}) is given with T; being
the set of transitions within the process P;. We use S to denote global system
states. In S we have a set P of currently active processes Py, ..., P,. We write
pc; to denote the current control state for process P;. The information we infer
is the Local State Distance Table D that is defined for each process type. The
value D;(u,v) fixes the minimal number of transitions necessary to reach the
local state u € S; starting from the local state v € S; in the finite state machine
representation for P;. The matrix D; is determined cubic time [4] with respect
to the size of the number of states in the finite state representation of P;.

5.2 The Formula-Based Heuristics

The formula-based heuristics assumes a logical description f of the failure to be
searched. Given f and starting from S, H;(S) is the estimation of the number
of transitions necessary until a state S’ is reached where f(S’) holds. Similarly,
H{(S) is the minimum number of transitions that have to be taken until f is
violated. Table 3 depicts the distance measure H¢(S) of the failure formula that
we used. The estimator H ;(S) is defined analogously.

We allow formulae to contain other terms such as relational operators and
Boolean functions over queues, since they often appear in failure specifications of
safety properties: The function ¢7[t] is read as message at head of queue g tagged
with t. Another statement is the i@s predicate which denotes that a process with
a process id 4 of a given proctype is in its local control state s.



f Hy(S)

true 0

false 00

a if @ then 0 else 1

g H,(S)

gVh min{H, (5), Hy(S)}

gAh H,y(S) + Hn(S)

full(q) capacity(q) — length(q)

empty(q) length(q)

q?[t] minimal prefix of ¢ without ¢ (41 if ¢
contains no message tagged with t)

a®b if a ® b then 0, else 1

iQs Di(pei, s)

Table 3. The formula-based heuristics: a denotes a Boolean variable and ¢ and h
are logical predicates, ¢ is a transition, g a queue. The symbol ® represents relational
Opera‘tors (=7 #7 57 S7 27 Z)'

In the definition of Hyap and H gy, we can replace plus (+) with maz if we
want a lower bound. In some cases the proposed definition is not optimistic, e.g.,
when repeated terms appear in g and h. The estimate can be improved based
on a refined analysis of the domain. For example suppose that variables are only
decremented or incremented, then H,—; can be fixed as a — b.

Heuristics for Safety Properties

Invariants. System invariants are state predicates that are required to hold over
every reachable system state S. To obtain a heuristics it is necessary to estimate
the number of system transitions until a state is reached where the invariant does
not hold. Therefore, the formula for the heuristics is derived from invariant.

Assertions. Promela allows to specify logical assertions. Given that an assertion
a labels a transition (u,v), with u,v € S;, then we say a is violated if the formula
f = (iQu) A—a is satisfied. According to f the estimate H for assertion violation
can now be derived.

Deadlocks. S is a deadlock state if there is no transition starting from S and at
least one of the processes of the system is not in a valid endstate, i.e., no process
has a statement that is executable. In Promela, there are statements that are
always executable: assignments, else statements, run statements (used to start
processes), etc. For other statements such as send or receive operations or
statements that involve the evaluation of a guard, executability depends on the
current state of the system. For example, a send operation q!m is only executable
if the queue q is not full. A naive approach to the derivation of an estimator
function is is to count the number of active (or non-blocked) processes in the
current state S. We call this estimator H,,. It turns out that best-first search
using this estimator is quite effective in practice. For the formula based heuristics



H; we can devise conditions for executability for a significant portion of Promela
statements:

1. Untagged receive operation (q7x, with x variable) are not executable if the
queue is empty. The corresponding formula is — empty(q).

2. Tagged receive operations (q7t, with t tag) are not executable if the head
of the queue is a message tagged with a different tag than t yielding the
formula — ¢?[t].

3. Send operations (q!m) are not executable if q is full indicated by the predicate
= full(q).

4. Conditions (boolean expressions) are not executable if the value of the con-
dition is false corresponding to the term c.

We now turn to the problem of estimating the number of transitions necessary
to reach a deadlock state. The deadlock in state S’ can be formalized as the
conjunct

deadlock = /\ blocked(i, pc;(S'), S")
P,eP
where the predicate blocked(i, pc;(S'),S") is defined as

blocked(i, u, S) = (1Qu) A /\ — executable(t, S).

t=(u,v)€T;

Unfortunately, we do not know the set of states in which the system deadlocks
such that we cannot compute the formula at exploration time. A possible solution
to this problem is to approximate the deadlock formula. First we determine in
which states a process can block and call such states dangerous. Therefore, we
consider a process P; to be blocked if blocked(i, u, S) is valid for some u € C;,
with C; being the set of dangerous states of P;. We define blocked(i,S) as a
predicate for process P; to be blocked in system state S,i.e., blocked(i,S) =
Vuec, blocked(i,S,u) and approximate the deadlock formula with deadlock’ =
Ap,cp blocked(i, S).

Heuristics for the Violation of Liveness Properties For the validation
of LTL specifications we need a heuristics for accelerating the search into the
direction of the accepting state in the Never Claim. This can be achieved by
declaring all accepting states as dangerous and use the local distance table to
derive an estimate. An alternative is to collect all incoming transition labels for
the accepting states and build a formula-based heuristics on the disjunction of
that labeling. For the example of the response property we devise the heuristics
Hp/\—‘q-

During the second phase of the nested depth-first search we need cycle-
detection search algorithms. Since we know which accepting state to search for
we can refine Hy(S) for the given state S as

f= )\ i@pci(S)

P,eP



Designer Devised Heuristics The designer of the protocol can support the
search for failures by devising a more accurate heuristics than the automatically
inferred one. In HSF-SPIN, there are several options. First of all, the designer can
alter the recursive tabularized definition of the heuristics estimate to improve the
inference mechanism. Another possibility is to concretize deadlock occurences in
the Promela code. Without designer intervention, all reads, sends and conditions
are considered dangerous. Additionally, the designer can explicitly define which
states of the processes are dangerous by including Promela labels with prefix
danger into the protocol specification.

6 The Model Checker HSF-SPIN

We chose SPIN as a basis for HSF-SPIN. It inherits most of the efficiency and
functionality of Holzmann’s original source of SPIN as well as the sophisticated
search capabilities of the Heuristic Search Framework (HSF) [9]. HSF-SPIN uses
Promela as its modeling language. We refined the state description of SPIN to
incorporate solution length information, transition labels and predecessors for
solution extraction. We newly implemented universal hashing, and provided an
interface consisting of a node expansion function, initial and goal specification.
In order to direct the search, we realized different heuristic estimates. HSF-SPIN
also writes trail information to be visualized in the XSPIN interface. As when
working with SPIN, the validation of a model with HSF-SPIN is done in two
phases: first the generation of an analyzer of the model, and second the validation
run. The protocol analyzer is generated with the program hsf-spin which is
basically a modification of the SPIN analyzer generator. By executing hsf-spin
-a <model> several c++ files are generated. These files are part of the source
of the model checker for the given model. They have to be compiled and linked
with the rest of the implementation, incorporating, for example, data structures,
search algorithms, heuristic estimates, statistics and solution generation. HSF-
SPIN also supports partial search by implementing sequential bit-state hashing
[14]. Especially for the IDA* algorithm, bit-state hashing supports the search
for various beams in the search trees. Although the hash function does not
disambiguate all synonyms and the length of a witness is often minimal [10].

The result is an model checker that can be invoked with different parameters:
kind of error to be detected, property to be validated, algorithm to be applied,
heuristic function to be used, weightening of the heuristic estimator. HSF-SPIN
allows textual simulation to interactively traverse the state space which greatly
facilitates in explaining witnesses that have been found.

7 Experimental Results

All experimental results were produced on a SUN workstation, UltraSPARC-II
CPU with 248 Mhz. If nothing else is stated, the parameters while experimenting
with SPIN (3.3.10) and HSF-SPIN are a depth bound of 10,000 and a memory
limit of 512 MB. Supertrace is not used, but partial order reduction is used in



SPIN. We list our experimental results in terms of expanded states and witness
path length, i.e., the length of the counterexample. SPIN does not give the num-
ber of expanded states. We calculate it as the number of stored states plus one;
in SPIN all stored states except the error state are expanded due to the depth
first search traversal. Note that we apply SPIN with partial order reduction,
while HSF-SPIN does not yet include this feature.

7.1 Experiments on Detecting Deadlocks

This section is dedicated to experiments with protocols that contain deadlocks.
Table 4 depicts experimental results with these protocols. For parametrized pro-
tocols, we have used the largest configuration that a breadth-first search (BFS)
can solve. We experimented with two heuristics for deadlock detection: H,, and
H;+U: H,, is the weak heuristics, counting the number of active processes; and
Hy + U is the formula based heuristics, where the deadlock formula is inferred
from the user designated dangerous states. In A*, Hy+ U seem to perform better
than H,p. On the other hand, with best-first search the results achieved for both
heuristics are similar. Therefore, we give the results with H,, for BF only.

BFS and A* find optimal solutions, while BF finds optimal or near to optimal
solutions in most cases. To the contratry, the depth-first search (DFS) traversal
in HSF-SPIN and in SPIN generally provide solutions far from the optimum.
The most significant cases are the Dining Philosophers and the Snoopy proto-
col. SPIN finds counterexamples of length larger than 1,000, while the optimal
solution is about 30 times smaller. In some cases, A* expands almost as many
nodes as BFS, which indicates a less-informed heuristic estimate. This weakness
is compensated in best-first searches, in which the number of expanded nodes is
smaller than in other search strategies for most cases.

In [10] we analyzed the scalability of the search strategies. Evidently, BFS
does not scale. A* and DFS also tend to struggle when the protocols are parametrized
with higher values. However, best-first search seems to be very stable: in most
cases it scales linearly with the parameter tuned, offering near-to optimal solu-
tions. Table 5 depicts some experimental results with the deadlock solution to
the dining philosophers problem. These results show that directed search can
find errors in protocols, where undirected search techniques are not able to find
them. In the presented case SPIN fails to find a deadlock for large configurations
of the philosophers problem.

7.2 Experiments on Detecting Violation of System Invariants

This Section is dedicated to experiments of models with system invariants. In
the following table we summarize the models and the invariant that they violate.
Note that we simplified the denotation of invariant for better understanding.

Model | Invariant
Elevator O(—opened V stopped)
POTS —|<>(P1@81 A PyQsy A P3;Qs3 A P4@S4)




HSF-SPIN SPIN

GARP BFS DFS| A* H,,| A¥ H; + U| Best-First,H,,| DFS
Expanded States 834 62 1,145 53 33 56
Generated States 2,799 70 3,417 194 60 64
Witness Length 16 50 16 18 28 58
Philosophers (p = 8)

Expanded States 1,801 1,365 41 69 249 1,365
Generated States 10,336 1,797 97 69 646 1,797
Witness Length 34 1,362 34 34 66| 1,362
Snoopy

Expanded States 37,191 5,823 32,341 6,372 152] 1,243
Generated States 131,475 7,406| 110,156 24,766 299| 1,646
Witness Length 40 4,676 40 40 40/ 1,113
Telegraph (p = 6)

Expanded States 75,759 44 38 366 38 44
Generated States 445,434 45 108 1,897 108 45
Witness Length 38 44 38 38 38 44
Marriers (p = 4)

Expanded States 403,311 294,549 333,529 284,856 6,281| 36,340
Generated States | 1,429,380| 1,088,364| 1,176,336] 996,603 16,595/ 47,221
Witness Length 62 112 62 62 112 112
GIOP (u=1,5=2)

Expanded States 49,679 247 38,834 27,753 315 338
Generated States 168,833 357 126,789 89,491 504 377
Witness Length 61 136 61 61 83 136
Basic Call (p = 2)

Expanded States 80,137 115 4,170 36 57 117
Generated States 199,117 136 8,785 60 89 140
Witness Length 30 96 30 30 42 96

Table 4. Detection of Deadlocks in Various Protocols.

The search for the violation is performed with H_; as heuristic estimate,
where i is the system invariant. Table 6 depicts the results of experiments with
two models: an Elevator model, and the model of a Public Old Telephon System
(POTS). The latter is not scalable, and the former has been configurated with
3 floors. For the Elevator model, the meaning of the invariant is self explaining.
For the POTS model, the invariant describes the fact that not all processes are
in a conversation state. As explained in [19], we use this invariant to test whether
a given POTS model is capable of establishing a phone conversation at all.

As the Elevator model violates a very simple invariant, the results show that
A* performs like breadth-first search; an optimal solution is found, but the num-
ber of expanded nodes are almost the same. SPIN and our depth-first search al-
gorithm (DFS) yield about same results. The number of expanded nodes is small
compared to breadth-first search and best-first search expands more nodes than
DFS for a better solution quality. However, best-first search does not approxi-
mate the solution quality. The cause of these unexpected bad performances of
the heuristic search algorithms is the restricted range of the heuristic estimate:
the integer range [0..2]. The quality of the estimate and the efficiency of the
heuristic search procedures for system invariants correlates with the amount of
information that can be extracted from the invariant.



HSF-SPIN SPIN

) BFS| DFS| A%, H,,| A%, H; + U] Best-First,Hap| _ DFS
2|Expanded States 10 12 10 10 10 12
Generated States 12 14 12 12 12 14
Witness Length 10 10 10 10 10 10
3|Expanded States 18 19 16 14 32 19
Generated States 30 22 22 19 52 22
Witness Length 14 14 14 14 14 18
4|Expanded States 33 57 21 21 69 57
Generated States 77 75 33 27 155 75
Witness Length 18 54 18 18 26 54
8|Expanded States| 1,801] 1,365 41 69 249 1,365
Generated States| 10,336| 1,797 97 69 646 1,797
Witness Length 34| 1,362 34 34 66| 1,362
12[Expanded States - - 61 50 539| 278,097
Generated States - - 193 127 1,468| 46,435
Witness Length - - 50 50 98| 9,998
16|Expanded States - - 81 66 941 -
Generated States - - 321 201 2,626 -
Witness Length - - 66 66 130 -

Table 5. Number of expanded states and solution lengths achieved by A* in the dining
philosophers protocol (p=number of philosophers).

HSF-SPIN SPIN
Elevator BFS DFS A*] Best-First DFS
Expanded States| 228,479 310| 227,868 16,955 305
Generated States| 1,046,983 388| 1,045,061 53,871 363
Witness Length 205 521 205 493 521
POTS
Expanded States 49,143[ 1,465,103 409 68] 2,012,345
Generated States| 154,874| 4,460,586 1,287 185| 2,962,232
Witness Length 66 1,055 66 66 872

Table 6. Detection of Invariant Violations

The POTS protocol violates a more complicated invariant. The formula f
used for the heuristic estimate Hy is the negation of the invariant. The function
f is a conjunction of four statements about the local state of four different pro-
cesses. The heuristic estimate exploits the information of the transition graph
corresponding to each process. While SPIN has serious problems to find the vio-
lation of the invariant, A*’s performance is superior. It finds an optimal solution
with a relatively small number of expanded nodes. Best-First search achieves
even better results, since it still finds optimal solutions expanding less nodes.

7.3 Experiments on Detecting Assertion Violations

We have a small group of models containing errors such as violation of assertions
summarize as follows.



Model Assertion

Lynch’s Protocol 1=last; +1
Barlett mr = (Imr + 1)% max
Mutex in=1

Relay (k141 = (811 A _|k121)) A

(k12, = (drenstv A (=81, V k12,)))A
(](?142 = (312 A _‘k122)) A
(k|125 = (dienstv A (—s1, V k12,))) A
e (diensty = (K141 V kg ) <= =(kiay A ki)
alse

Table 7 depicts experimental results with these protocols. The results show
that directed search strategies in HSF-SPIN offer shorter counterexamples for
assertion violations than SPIN. For the GARP Protocol the number of expanded
states is considerably high, since the heuristic according to the assertion false is
very weak. In all other cases, the number of expansions for heuristic search is by
far smaller smaller than the corresponding number of expanded states in SPIN
or exceeds it by at most three times.

HSF-SPIN SPIN
Lynch BFS| DFS A*] Best-First| DFS
Expanded States 79 50 72 63| 47
Generated States 96 52 89 79 50
Witness Length 29 46 29 29| 46
Barlett
Expanded States 82] 348 61 26] 262
Generated States 99| 383 76 33| 289
Witness Length 20| 246 20 20| 251
Mutex
Expanded States 3497 202 150 247 202
Generated States 699 363 300 48| 363
Witness Length 15 54 15 15| 54
Relay
Expanded States 707 342 665 151 341
Generated States| 2,701| 719 2,292 1,069| 870
Witness Length 12| 190 12 120 190
GARP
Expanded States| 17,798] 1,040 18,968 4,727 150
Generated States| 53,001| 2,818 56,406 13,107 187
Witness Length 29 54 29 39 55

Table 7. Detection of Assertion Violations in Various Protocols.

7.4 Experiments on Detecting Violation of LTL Properties

In the following table we summarize test cases for the detection of LTL property
violations. Note that the error in the GIOP protocol has been seeded by explicit
source code annotation.

Model | LTL formula
Alternating Bit|O(p — ((Cq) V (©q))
Elevator Op = CgAr))

GIOP Op — O(gAr))



The LTL properties of the Elevator and GIOP protocols correspond to the
Response (Globally) pattern, the structure of the property in the alternating bit
is similar such that the A*+DFS algorithm for response properties can be used.

Table 8 shows experimental results on detecting the violation of LTL formu-
lae. We used a variant of the elevator model that includes a controller satisfying
the previously discussed invariant but violates a response property. This protocol
has been configurated with 4 floors, while the GIOP protocol is configured with
1 server and 3 clients. Comparing the results of the new proposed Improved-
Nested-DFS with those of the classical Nested-DFS, the new algorithm finds
shorter solutions expanding a few states less. On the other side, the ad-hoc algo-
rithm for response properties (A*+DFS) finds the shortest solution in all cases.
In the Elevator protocol it expands about 1,000 times more states than the
other algorithms, and in the GIOP example it expands about 1,000 times less
states. In the elevator case we trace the anomaly back to the heuristic estimate
which gave a poor range of values: [0..1]. Heuristic estimates can only improve
a search strategy if they have very specific knowledge of the system. A small
ranged heurisitc function cannot achieve this. In the GIOP case the range of
values was somewhat larger ([0..6]), and obviously this improves the effective-
ness of the heuristic search. This observation calls for further refinements of the
heuristic functions.

HSF-SPIN SPIN
Alternating Bit | Nested-DFS] Improved-Nested-DFS| A¥*+DFS DF'S
Expanded States 33 32 11 24
Generated States 37 36 12 32
Witness Length 64 64 22 46
Elevator
Expanded States 309 251] 217,810 253
Generated States 381 288| 1,276,391 401
Witness Length 405 391 377 405
GIOP
Expanded States 404,799 404,619 113] 53,812
Generated States 1,957,563 1,957,390 1,158| 107,987
Witness Length 430 158 158 430

Table 8. Detection of Violation of Liveness Properties in Various Protocols.

We also performed full validation experiments with a version of the elevator
protocol that satisfies the response property and observed that Improved-Nested-
DFS executes less transitions (716,715) than classical Nested-DFS (979,336).

7.5 Performance of HSF-SPIN

HSF-SPIN is still a prototype. Therefore, its performance in terms of time and
space cannot compete with SPIN. For example, an exhaustive exploration of the
state space generated by the GIOP protocol parametrized with 2 clients and 2
servers is performed by SPIN (without partial order reduction) in 226 seconds
with a memory consumption of 236 MB, while our tool requires 341 seconds and



about 441 MB of space. Further experiments show that SPIN achieves a speedup
of about 3 in comparison with HSF-SPIN.

8 Conclusion

In this paper we commenced by arguing that there is a need for improving the
efficiency of model checking. It is desirable to obtain shorter error witnesses in or-
der to more easily understand errors that the model checker reports. A reduction
in the number of visited states during state space search is also desirable since
this renders larger models executable. While in previous work the improvements
were limited to safety properties, we now present an approach to improving the
validation of a large class of non-safety properties. We view this as a step of
developing HSF-SPIN into a full-fledged model checker.

The work centers around an algorithm for LTL property checking that is an
improvement to nested depth first search. The algorithm exploits the structure of
the Never Claim and heuristic estimates in order to find cycles faster. We argued
that based on the translation of LTL formulae to Biichi Automata implemented
in SPIN we can improve LTL property checking for a large class of specification
patterns used in practice. Next we presented heuristics to be used in search
algorithms for different classes of properties. We then presented HSF-SPIN, and
illustrated its application to a number of protocol examples.

As future work we plan to analyze the proposed improvement of the nested
depth-first search algorithm. We plan to perform further experiments to verify
the reduction in the number of performed transitions by the new algorithm as
well as refinements of the heuristic estimates. It has been shown that nested-
depth first search and partial order reductions can coexist [15]. Therefore, we
currently investigate how to reconcile partial order reduction and directed search.
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