
p ()
URL: http://www.elsevier.nl/locate/entcs/volume55.html 14 pages

Trail-Directed Model Checking

Stefan Edelkamp, Alberto Lluch-Lafuente and Stefan Leue

Institut f�ur Informatik

Albert-Ludwigs-Universit�at

Georges-K�ohler-Allee

D-79110 Freiburg, Germany

eMail: fedelkamp,lafuente,leueg@informatik.uni-freiburg.de
URL: www.informatik.uni-freiburg.de/~fedelkamp,lafuente,leueg

Abstract

HSF-SPIN is a Promela model checker based on heuristic search strategies. It

utilizes heuristic estimates in order to direct the search for �nding software bugs in

concurrent systems. As a consequence, HSF-SPIN is able to �nd shorter trails than

blind depth-�rst search.

This paper contributes an extension to the paradigm of directed model checking

to shorten already established unacceptable long error trails. This approach has

been implemented in HSF-SPIN. For selected benchmark and industrial commu-

nication protocols experimental evidence is given that trail-directed model-checking

e�ectively shortcuts existing witness paths.

1 Introduction

The formal methods of model checking [4] have various applications in software

veri�cation[2]. Through the exploration of large state-spaces model checking

produces either a formal proof for the desired property or a detailed description

of an error trail. We concentrate on explicit state model checking and its

application to the validation of communication protocols.

In the broad spectrum of techniques for tackling the huge state space

that are generated in concurrent systems, heuristic search is one of the new

promising approaches for failure detection. Early precursors execute explicit

best-�rst exploration in protocol validation [18] and symbolic best-�rst search

in the model checker Mur� [22]. Symbolic guided search in CTL model check-

ing is pursued in [3] and bypasses intense symbolic computations by so-called

hints. Last but not least, the successful commercial UPPAAL veri�er for real-

time systems represented as timed automata has also been e�ectively enriched

by directed search techniques [1].

c
2001 Published by Elsevier Science B. V.

Our own contributions to directed model checking integrate heuristic esti-

mates and search algorithms to the �cke model checker [21], to a domain in-

dependent AI-planner [8], and to a Promela model checker [9,10]. The global

state space is interpreted as an implicitly given graph spanned by a succes-

sor generator function, in which paths corresponding to error behaviors are

searched. The length of the witness path is crucial to the designer/programmer

to debug the erronous piece of software; shorter trails are easier to interpret

in general.

In the model checker SPIN [13] safety properties are checked through a

simple depth-�rst search of the system's state space, while liveness properties

require a two-fold nested depth-�rst search. The error trail in the �rst case is

a simple path from the start state to an error state, while in the second case

we have a seeded cycle, that is a path composed by a pre�x that leads to a

seed state, followed by a cycle that is closed at this state.

Our experimental tool HSF-SPIN 1 provides AI heuristic search strategies

like A*, IDA* and best-�rst for �nding safety errors [10], and an improved

version of nested depth-�rst search [9], based on exploting the never-claim

representation of the required temporal property to simplify the checking pro-

cess.

In this paper we concentrate on error trail improvement, an apparent need

in practical software development. We expect that a possibly long witness for

an error is already given. This trail might be found by simulation, test, random

walk, or depth-�rst model checking. The witness is read as an additional input,

reproduced in the model and then signi�cantly improved by directed search.

HSF-SPIN tries to �nd errors faster than traditional tools by employing

heuristic search strategies for non-exhaustive, guided state space exploration.

While HSF-SPIN can be used for full veri�cation through exhaustive state

space search, this is not its primary objective and we note that other model

checkers, like Spin or SMV, are likely to be more time and space e�cient for

this purpose.

The paper is structured as follows. First we give some background on the

AI technique we use. In a next section we introduce the HSF-SPIN model

checker and its usage in terms of its command line options. In the following

sections we address the facets of trail-directed search, based on the hamming

distance and the FSM distance. We distinguish between single-state trail

directed search for safety errors and cycle-detection trail-directed search for

liveness errors. Both approaches have been implemented in HSF-SPIN and in

the experimental section we present �rst results. We close with some conclud-

ing remarks.

1 Available from http://www.informatik.uni-freiburg.de/~lafuente/hsf-spin

2

2 Heuristic Search

Depth-�rst search and breadth-�rst search are call blind search strategies,

since they use no information of the concrete state space they explore. On the

other hand, heuristic search algorithms take additional search information in

form of an evaluation function into account. This function is used to rank the

desirability of expanding a node u.

A* [11] uses an evaluation function f(u) that is the sum of the generating

path length g(u) and the estimated cost of the cheapest path h(u) to the goal.

Hence f(u) denotes the estimated cost of the cheapest solution through u. If

h(u) is a lower bound then A* is optimal, i.e. it �nds solution paths of optimal

length.

Table 1 depicts the implementation of A*, where g(u) is the length of the

traversed path to u and h(u) is the estimate distance from u to a failure state.

A*(s)

Open f(s; h(s))g; Closed fg

while (Open 6= ;)

u Deletemin(Open); Insert(Closed,u)

if (failure(u)) exit Goal Found

for all v in �(u)

f 0(v) f(u) + 1+h(v)� h(u)

if (Search(Open; v))

if (f 0(v) < f(v))

DecreaseKey(Open; (v; f 0(v))

else if (Search(Closed ; v))

if (f 0(v) < f(v))

Delete(Closed ; v); Insert(Open; (v; f 0(v))

else Insert(Open; (v; f 0(v))

Table 1

The A* Algorithm.

The algorithm divides the state space in three sets: the set Open of visited

but not expanded states, the set Closed of visited and expanded states, and

the set of not already visited states. Similar to Dijkstra's single source shortest

path exploration [7], starting with the initial state, A* extracts states from the

Open set, move them to the Closed set and insert their successors in the Open

set until a goal state is found. In Table 1 the di�erences between Dijkstra's

algorithm and A* are underlined. In each expansion step the state with best f

value is selected to be expanded next. Nodes that have already been expanded

might be encountered on a shorter path. Contrary to Dijkstra's algorithm, A*

deals with the problem by re-inserting the corresponding nodes from the set of

3

already expanded nodes into the Open set. This scheme is called re-opening.

3 HSF-SPIN

HSF-SPIN merges the model checker Spin 2 and the heuristic search frame-

work HSF 3 . It is basically an extension of HSF for searching state spaces

generated by Promela models.

Like in Spin, two steps must be performed prior to the veri�cation process.

The �rst step generates the source code of the veri�er for a given Promela

speci�cation. In the second step, the source code is compiled and linked for

constructing the veri�er. The veri�er then checks the model. Among other

parameters the user can specify the error type, the search algorithm, and the

heuristic estimate as command line options. It is also possible to perform

interactive simulations similar to Spin. When veri�cation is done, statistic

results are displayed and a solution trail in Spin's format is generated.

HSF-SPIN is based on Spin and its speci�cation language Promela. How-

ever, HSF-SPIN is not 100% Promela compatible. Promela speci�cations with

dynamic or non-deterministic process creation are not yet accepted in HSF-

SPIN. HSF-SPIN can check all the properties that Spin can validate with

the exception of non-progress cycles. HSF-SPIN supports sequential bit-state

hashing, but not partial order reduction.

3.1 A First Example

The HSF-SPIN distribution includes a set of test models. For example, the

�le deadlock.philosophers.prm implements a Promela model of a deadlock

solution to Dijkstra's dining philosophers problem. The executable check is

a veri�er of the model, similar to Spin's executable �le pan. Deadlocks are

checked by running the veri�er with argument -Ed resulting in the output of

Table 2.

The veri�er runs depth-�rst search, since it is the default search algorithm.

It �nds a deadlock at depth 1,362. Following such a long trail is tedious. The

A* algorithm (option -AA) and a simple heuristic estimate for deadlock detec-

tion (option -Ha) �nds a deadlock at optimal depth 34, expanding and storing

less states (17 and 67, respectively), and performing less transitions (73).

3.2 Compile and Run-Time Options

The HSF-SPIN veri�er accepts only a reduced subset of Spin's compile-time

options, for example -DVECTORSZ and -DGCC. The only speci�c compile-time

option is -DDEBUG, to report debug information when running. Each command

line argument of HSF-SPIN has the form -Xx, where X is the option to be

2 http://netlib.bell-labs.com/netlib/spin/whatispin.html
3 http://www.informatik.uni-freiburg.de/~edelkamp/Hsf

4

HSF-SPIN 1.0

A Simple Promela Verifier based on Heuristic Search Strategies.

This tool is based on Spin 3.4.5 (by G.J. Holzmann) and

on HsfLight 2.0 (by S. Edelkamp)

Verifying models/deadlock.philosophers.prm...

Checking for deadlocks with Depth-First Search...

invalid endstate (at depth 1362)

Printing Statistics...

State-vector 120 bytes, depth reached 1362, errors: 1

1341 states, stored

431 states, matched

1772 transitions (transitions performed)

25 atomic steps

1341 states, expanded

Range of heuristic was: [0..0]

Writing Trail

Wrote models/deadlock.philosophers.prm.trail

Length of trail is 1362

Table 2

Running HSF on the Philosophers Problem.

set and x is the value for the option. For example, argument -Ad sets the

option search algorithm to the value depth-�rst search. By giving an option

no value, the list of available values for that option is printed. For example,

executing check -A prints all available search algorithms.

Executing the HSF-SPIN veri�er without arguments outputs all available

run-time options, e.g. -Ax, where x is the search algorithm (A*, IDA*, DFS,

NDFS, etc.); -Ex, where x is the error to be checked (Deadlock, Assertion,

LTL, etc.); and -Hx, where x is the heuristic function (Formula-based, Ham-

ming distance, FSM distance, etc.).

4 Improvement of Trails

Since various explicit on-the-
y model checkers like Spin search the superim-

posed global state space in depth-�rst manner, they report the �rst error that

has been encountered even if it appears at a high search depth. One natural

option to improve the trail is to impose a shallower depth on the depth-�rst

search engine. However, there are two severe drawbacks to this approach.

The �rst one is that bounds might increase the search e�orts by magni-

tudes, since a �xed traversal ordering in bounded depth-�rst exploration in

large search depths might miss the lasting error states for a fairly long time.

Therefore, even if the �rst error is found fast, improvements are possibly di�-

cult to obtain. Moreover, to �nd shorter trails by manual adjusting bounds is

time consuming, e.g., trying to improve an optimal witness will fail and result

5

in a full state exploration.

The second drawback, which we call Anomaly in Depth-Bounded Search

(cf. Figure 1) is even more crucial to this approach. It can be observed when

experimenting with explicit state model checkers that allow the search depth

to be limited to a maximum, such as it can be done in SPIN, and in which

visited states are kept in a hash-table to avoid an exponential increase in

the number of expanded nodes due to the tree expansion of the underlying

graph. This implicit pruning result in the fact, that duplicate errors in smaller

depths will not necessarily be detected anymore, since they might be blocked

by nodes that are already stored. This anomaly emerges frequently in practice

when atomic transitions are used, which correspond to potentially long non-

branching paths in the search tree. In other words, depth-bounded search

with node caching is not complete for error detection in shallower depths than

the given bound 4 .

visited

depth-bound

V

V

error

error

Fig. 1. Anomaly in Depth-Bounded Search.

We have observed this behavior in some of our models. For example, in

a model of a telephony system after establishing a witness of length 756, the

search with a new bound 755 fails to �nd one of the remaining error states.

For the same Promela model, error detection alternates with di�erent search

depths bound: up to bound 67 no error is found, from bound 68 to 139 an

error is found, from bound 140 to 154 no error is found, from 155 onwards an

error is again found, and so on.

A simple method to correct this anomaly is to enforce revisiting of some

states. More precisely, a state is revisited (reexplored) when it is reached on

a shorter path. Therefore, each state is stored in the hash-table together with

its smallest depth value. In fact, this observation was already made for the

Spin model checker, in which the anomaly is �xed with the -DREACH directive.

However, since entire subtree structures for revisited states are re-explored,

this method causes a possibly exponential increase in time complexity.

4 Note that to the contrary, the iterative-deepening variant of A* (IDA*) is complete, since
it invokes the depth-�rst search process starting with the smallest available bound and
increasing this bound the smallest possible amount.

6

Therefore, we aim at a di�erent aspect of trail improvement; namely heuris-

tic search. The idea is to take the failure state or some of its de�ning features

to set up a heuristic estimate that guides the search process into the direction

of that particular state. In contrast to heuristic search strategies described in

previous work [9,10], we exhibit re�ned information. The main argument is

that it is easier to �nd a speci�c error situation instead of �nding any member

according to a general error description. We distinguish two heuristics and two

search algorithms. The �rst heuristic is designed to focus exactly the state

that was found in the guidance trail, while the second heuristic relaxes this re-

quirement to important aspects for the given failure type. The two algorithms

divide in trail-directed search for safety property violation and trail-directed

search for liveness property violation.

4.1 Hamming Distance Heuristic

Let S be a state of the search space given in a suitable binary encoding, i.e.

as a bit vector S = (s1; : : : ; sk). Further on, let S 0 be the error state we are

searching for. One coarse estimate for the number of transitions necessary to

get from S to S 0 is the number of bit-
ips necessary to transform S into S 0.

The estimate is called the Hamming distance HHD(S; S
0), determined by

HHD(S; S
0) =

kX

i=1

jsi � s0

i
j

Obviously, jsi � s0

i
j 2 f0; 1g for all i 2 f1; : : : ; kg. Note that the estimate

HHD(S; S
0) is not a lower bound, since one transition might change more than

one bit in the state description at a time. Moreover, the Hamming distance

can be re�ned by taking the binary encoded values of the state variables and

their modi�ers into account. Nevertheless, the Hamming distance reveals a

valuable ordering of the states according to their goal distances.

4.2 FSM Distance Heuristic

Another distance metric centers around the local states of the �nite state ma-

chines, which together with the communication queues and variables generate

the system's global state space.

Let (pc1; : : : ; pcl) be the vector of all FSM locations in a state S, i.e. pci,

i 2 f1; : : : ; lg, denotes the corresponding program counter. The FSM distance

metric HFSM(S; S
0) according to the goal state S 0 with FSM state vector

(pc0

1
; : : : ; pc0

l
) is calculated in each FSM separately. When assuming indepen-

dence of the execution in each �nite state machine we can approximate

HFSM(S; S
0) =

kX

i=1

Di(pci; pc
0

i
)

7

The distances Di(pci; pc
0

i
) are calculated as the minimal graph theoretical

distance from pci to pc
0

i
, i 2 f1; : : : ; lg. These values are computed beforehand

for each pair of local states with the all-pairs shortest-path algorithm of Floyd-

Warshall, so that the retrieval of each value Di(pci; pc
0

i
) is a constant time

operation. In contrast to the Hamming distance, the FSM distance abstracts

from the current queue load and from values of the local and global variables.

We expect that the search will be then directed into equivalent error states

that could potentially be located at smaller search tree depths (see Figure 3).

4.3 Safety Errors

Trail-directed search for safety errors, as visualized in Figure 2, takes a trail

as an additional input for the model-checker and searches for improvements

of its length, especially for a concise and transparent bug-�nding process.

S S

S0S0

Fig. 2. Safety Error Trail is Shortened by Trail-Directed Search.

In our case we extract the error state S 0 to focus the search by the above

heuristics HHD(S; S
0) and HFSM(S; S

0). These estimates are integrated in

the heuristic search algorithm A*. Recall that is complete, and that, if the

estimate is a lower bound, the path is optimal.

S
00

S
0

S
0

S
00

S
0

S
0

S
00

S
0

S
0

Fig. 3. Search Trees of Ordinary Search, Full-State Trail-Directed Search, and

Partial-State Trail-Directed Search.

Figure 3 depicts the search tree inclusive the established trail according

to ordinary search, A* with the Hamming distance heuristic HHD, and A*

with the FSM distance heuristic HFSM . Since HHD uses the entire error state

description, we call this search full-state trail-directed search, while in case of

8

HFSM only a part of the error state description is used, such that this approach

is referred to as partial-state trail-directed search.

4.4 Liveness Properties

Remember that a trail to a violated liveness property consists of a path with

an initial pre�x to a seed state and a cycle starting from that state. Therefore,

we can improve the witness trail by trail-directed A*-like search in both parts

(cf. Figure 4).

seedseed seed

Fig. 4. Liveness Error Trail Shortened in Two Phases.

In a �rst improvement phase we search for shortcuts of the path to the seed

state. In an independent second phase we perform a cycle-detection search, i.e.

a search guided by the seed state from which it has started. In both cases the

proposed estimate that we propose is the Hamming distance heuristic HHD,

since we are searching for the exact seed state, and not for an equivalent one.

5 Experiments

In our experimental study selected examples for trail improvements are used.

We apply the above algorithms to trails obtained by our depth-�rst search

algorithm, producing the same or very similar results to SPIN's depth-�rst

search traversal.

First we consider deadlock detection. As an example we choose the in-

dustrial GIOP protocol [15] with a seeded bug and a model of a concurrent

program that solves the stable marriage problem [19] 5 . Table 3 shows that

the witness trail is improved to about a half of its original length. The values

67 and 65 in the GIOP model are close to the optimal trail length of 58. In the

second case the solution path obtained when using the FSM-based heuristic

is near to the optimum of 62 and notably better of the length provided by

5 The Promela sources and further information about these models can be obtained from
www.informatik.uni-freiburg.de/~lafuente/models/models.html

9

the algorithm with the Hamming distance heuristic. However, in both exam-

ples the search e�orts are signi�cantly higher in the case of the FSM-based

heuristic than in the case of the Hamming distance heuristic.

DFS TDA*,HHD TDA*,HFSM

GIOP Stored States 326 988 30,629

(N=2,M=1) Transitions 364 1,535 98,884

Expanded States 326 432 24,485

Witness Trail 134 67 65

Marriers Stored States 407,009 26,545 225,404

(N=4) Transitions 1,513,651 56,977 467,704

Expanded States 407,009 16,639 192,902

Witness Trail 121 99 66

Table 3

Improving Trails of Deadlocks with Trail-Directed Search in the GIOP and

Marriers models.

In the second set of examples we examine another safety property class,

namely state invariants. The two protocols we consider are a Promela model

of an Elevator system 6 and the POTS telephony protocol model [16]. Table 4

shows that the witness trail is shortened by trail-directed search from 510

to 203 and from 756 to 67, respectively. In this case there is no signi�cant

di�erence between the two heuristic estimates.

A bad sequence corresponds to a violation of a liveness property. How-

ever, it does not re
ect a cyclic witness but a simple path. The results in

Table 5 shows the impact of trail improvement in this scenario for a model of

a Fundamental-Mode Circuit (FMC [20]).

The last example is trail improvement for liveness properties that include

cycles at seed states in their witness paths. Once more we use the Elevator

protocol as a representative example.

Table 6 depicts the results of trail-directed search applied to trails ob-

tained by nested depth-�rst search (NDFS) and the improved version of this

algorithm (INDFS). It is shown that cycle seeds are found at smaller depths

for the error trails of both algorithms, while the cycle length has not been

improved. On the other hand considerable work is necessary to improve the

length of the trail. Since this is only a single data point more protocols with

liveness properties are required for a better judgment.

6 Available from www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html

10

DFS TDA*,HHD TDA*,HFSM

Elevator Stored States 292 38,363 38,538

(N = 3) Transitions 348 146,827 147,277

Expanded States 292 38,423 38,259

Witness Trail 510 203 203

POTS Stored States 506,751 2,668 2,019

Transitions 1,468 106 6,519 4,889

Expanded States 506,751 2,326 997

Witness Trail 756 67 67

Table 4

Improving Trails of Invariants Violation with Trail-Directed Search in the Elevator

and POTS models.

DFS TDA*,HHD TDA*,HFSM

FMC Stored States 270 438 419

(N = 3) Transitions 364 664 624

Expanded States 279 437 412

Witness Trail 259 73 73

Table 5

Improving the Trail of a Bad Sequence in the FMC model.

6 Conclusions

While previous work on directed model checking concentrates on detecting

unknown error states, the paradigm of trail-directed model checking contem-

plates the improvement of trails result from error detections, simulations, etc.

On the other hand, although paths to errors could be improved with directed

model checking, the new paradigm proposes richer heuristics based on the in-

formation of a singleton given error states. Moreover directed model checking

is restricted to safety properties, while trail-directed model checking is able to

improve error trails corresponding to such type of properties.

Trail improvement in our directed model checking tool HSF-SPIN turns

out to be an e�ective aid in software design of concurrent systems. With an

acceptable overhead already existing paths are reduced by heuristic search for

the established error. The �rst results are promising and put forth the idea

of trail-directed model checking, that might include more information than the

mere description of the error state.

11

NDFS TDA*,HHD INDFS TDA*,HHD

Elevator Stored States 171 11,205 166 10,930

(N = 2) Transitions 259 38,307 194 37,656

Expanded States 208 10,901 166 10,764

Seed at Depth 187 173 177 163

Cycle Length 90 90 90 90

Total Length 277 263 267 253

Table 6

Improving the Trail of Liveness Property Violation in the Elevator Protocol.

One early approach for focusing trail information is diagnostic model check-

ing for real-time systems [17]. It also shifts attention to highlight failure detec-

tion, but does not clarify why the established traces are improved compared

to ordinary failure trails. Another line of research aims not only to report

what went wrong, but explain why it went wrong. However, most approaches

in this class such as assumption truth-maintenance systems implemented in

the General Diagnostic Engine (GDE [6]) turn out to scale badly.

At the moment we concentrate on SPIN's Promela speci�cation language,

but in future we are interested in verifying real software in Java and C. The

Bandera tool [5] developed at Kansas University allows slicing of distributed

Java-Programs with an export to either SPIN or SMV. The same research line

is pursued by the Automated Software Engineering group at NASA Ames Re-

search Center that apply a Java byte code veri�er, called Java Path Finder [12].

On the other side, Holzmann [14] has pushed the envelope for actual C-Code

veri�cation with the SPIN validator.

References

[1] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Petterson, and J. Romijn.

Guiding and cost-optimality in UPPAAL. In AAAI-Spring Symposium on

Model-based Validation of Intelligence, pages 66{74, 2001.

[2] B. B�erard, A. F. M. Bidoit, F. Laroussine, A. Petit, L. Petrucci, P. Schoenebelen,

and P. McKenzie. Systems and Software Veri�cation. Springer, 2001.

[3] R. Bloem, K.Ravi, and F.Somenzi. Symbolic guided search for ctl model

checking. In Conference on Design Automation (DAC), pages 29{34, 2000.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

1999.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcli�, S. Laubach, C. S. Pasareanu, Robby,

12

and H. Zheng. Bandera: Extracting �nite-state models from Java source code.

In International Converence on Software Engineering (ICSE), 2000.

[6] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Arti�cial

Intelligence, pages 1340{1330, 1987.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269{271, 1959.

[8] S. Edelkamp. Directed symbolic exploration and its application to AI-planning.

In AAAI-Spring Symposium on Model-based Validation of Intelligence, pages

84{92, 2001. Precursor S. Edelkamp, Directed Symbolic Exploration in Planning

published in European Conference on Arti�cial Intelligence (ECAI), Workshop

on New Results in Planning, Scheduling and Design (PUK-2000).

[9] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in

HSF-SPIN. In 8th International SPIN Workshop on Model Checking Software,

Lecture Notes in Computer Science 2057, pages 57{79. Springer, 2001.

[10] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Protocol veri�cation with

heuristic search. In AAAI-Spring Symposium on Model-based Validation of

Intelligence, pages 75{83, 2001.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic

determination of minimum path cost. IEEE Transactions on on Systems

Science and Cybernetics, 4:100{107, 1968.

[12] K. Havelund and T. Pressburger. Model checking java programs using java

path�nder. International Journal on Software Tools for Technology Transfer,

2(4), 2000.

[13] G. J. Holzmann. The model checker Spin. IEEE Transactions on Software

Engineering, 23(5):279{295, 1997.

[14] G. J. Holzmann and M. H. Smith. Software model checking: Extracting

veri�cation models from source code. In Formal Description Techniques

for Distributed Systems and Communication Protocols, Protocol Speci�cation,

Testing and Veri�cation (FORTE/PSTV), pages 481{497. Kluwer, 1999.

[15] M. Kamel and S. Leue. Formalization and validation of the General Inter-

ORB Protocol (GIOP) using PROMELA and SPIN. International Journal on

Software Tools for Technology Transfer, 2(4):394{409, 2000.

[16] M. Kamel and S. Leue. Vip: A visual editor and compiler for v-promela. In

Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

Lecture Notes in Computer Science, pages 471{486. Springer, 2000.

[17] K. G. Larsen, P. Pettersson, and W. Yi. Diagnostic model-checking for real-

time systems. In Workshop on Veri�cation and Control of Hybrid Systems III,

number 1066 in Lecture Notes in Computer Science, pages 575{586. Springer,

1995.

13

[18] F. J. Lin, P. M. Chu, and M. Liu. Protocol veri�cation using reachability

analysis: the state space explosion problem and relief strategies. ACM, pages

126{135, 1988.

[19] D. McVitie and L. Wilson. The stable marriage problem. Communications of

the ACM, 14(7):486{492, 1971.

[20] B. Rahardjo. Spin as a hardware design tool. In First SPIN Workshop, 1995.

[21] F. Re�el and S. Edelkamp. Error detection with directed symbolic model

checking. In World Congress on Formal Methods (FM), Lecture Notes in

Computer Science, pages 195{211. Springer, 1999.

[22] C. H. Yang and D. L. Dill. Validation with guided search of the state space. In

Conference on Design Automation (DAC), pages 599{604, 1998.

14

