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An additive regularization term is expressed via differential operators that model
the smoothness properties of the desired input/output relationship. Representer
theorems are given, proving that the optimization problem associated to learning
from labeled regions has a unique solution, which takes on the form of a linear
combination of kernel functions determined by the differential operators together
with the regions themselves. As a relevant situation, the case of regions given
by multi-dimensional intervals (i.e., “boxes”) is investigated, which models prior
knowledge expressed by logical propositions.
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1. Introduction

The classical supervised learning framework is based on a collection of ℓ
labeled points, L = {(xκ, yκ), κ = 1, . . . , ℓ}, where xκ ∈ X ⊆ R

d and yκ ∈
{−1, 1}. We consider the situation in which supervised learning exploits not
only labeled points but also ℓX labeled regions LX = {(Xκ, yκ), κ = 1, . . . , ℓX }
of the input space, where Xκ ∈ 2X and yκ ∈ {−1, 1}. In the limit case such
regions degenerate to single points, so we focus on a fairly general context in
which there is no distinction between the supervised entities and we deal with
ℓt := ℓ + ℓX labeled pairs. This framework and its potential impact in real-
world applications has been investigated in different contexts (see [1] and the
references therein).

A seminal work in this respect is [2], where it was proposed to embed la-
beled polyhedral sets into Support Vector Machines (SVMs). The correspond-
ing model, called Knowledge-based SVM (KSVM), has been the subject of a
number of various investigations [3, 4, 5, 6]. A particularly relevant situa-
tion corresponds to regions given by multi-dimensional intervals (i.e., “boxes”)
Xκ = {x ∈ R

d : xi ∈ [aiκ, b
i
κ], i = 1, . . . , d}, where aκ, bκ ∈ R

d collect
the lower and upper bounds, respectively. The pair (Xκ, yκ) formalizes the
knowledge provided by a supervisor in terms of logical propositions of the form
∀x ∈ R

d,
∧d

i=1

(

(xi ≥ aiκ) ∧ (xi ≤ biκ)
)

⇒ class(yκ) .
In [7], the problem of learning was extended by taking into account the su-

pervision on multi-dimensional intervals of the input space, which model prior
knowledge expressed by logical propositions. The effectiveness of such an ap-
proach was evaluated therein via simulations on real-world problems of medical
diagnosis and image categorization. Taking the hint from the numerical experi-
ments presented in [7], in this paper we give theoretical insights into the learning
paradigm proposed therein.

We formulate the problem of learning via supervision on input regions by
introducing a loss function that involves them and adopting the regularization
framework proposed in [8]. Each region Xκ is associated with its character-
istic function 1Xκ

(x) and its normalized form 1̂Xκ
(x) := 1Xκ

(x)/
∫

X
1Xκ

(x)dx
degenerates to the Dirac distribution δ(x−xκ) in the case in which Xκ = {xκ}.
We model the corresponding learning problem as the minimization, over an
infinite-dimensional space (whose elements are the admissible solutions to the
supervised learning task) of a functional, called regularized functional risk, that
consists of two terms. The first term enforces closeness to the labeled data (re-
gions and points), whereas the second one, called regularization term, expresses
requirements on the global behavior of the desired input/output functional re-
lationship. The trade-off between between such terms is achieved by a weight
parameter, as typically done in Tikhonov’s regularization [9].

We express the regularization term via differential operators, following the
line of research proposed in [8]. The loss term results from the following two
contributions: one from regions with non-null Lebesgue measure and another
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one that originates from points. As the minimization of such a functional entails
a difficult infinite-dimensional problem, we also consider learning modeled as a
more affordable variational task obtained by replacing the functional risk with
an average risk. We show that in this case the infinite-dimensional optimization
collapses to a finite-dimensional one. As ambient spaces we consider Sobolev
spaces of orders guaranteeing that they are made up of continuous functions,
in such a way that the learning functionals are well-defined when the regions
degenerate to points.

Under the hypothesis that the Greeen’s function of the regularization oper-
ator is the kernel of a Hilbert spaces of a special type, called reproducing kernel
Hilbert space1 (RKHS) [14], we prove new representer theorems (see, e.g., [15,
p. 42], [16, 17, 18, 19]), showing that the minimization problem has a unique
solution, which takes on the form of a linear combination of kernel functions
determined by the differential operators together with the labeled regions. So,
the solution to the regularized problem of learning from regions does not lead to
the kernel expansion on the available data points and the kernel is no longer the
Green’s function of the associated operator, as instead it happens from classical
results of this kind (see [20] and [21, p. 94]).

As a meaningful learning case, we investigate regions given by multidimen-
sional intervals (i.e., “boxes”), which originates the box kernels. Figure 1 shows
an example of box kernels in the case of a non-linear kernel-machine classifier.
First, the classifier is trained on a 2-class data set of points, and the separating
hyperplane is depicted in Figure 1 (a). Then, a supervision is given on two
space regions bounded by multi-dimensional intervals; Figure 1 (b) shows the
resulting separation boundary. The box kernel allows the classifier to embed
knowledge on labeled space regions, whereas classical kernels are designed to
operate merely on points.

The paper is organized as follows. In Section 2 we state the problem of
learning from labeled regions and/or labeled points as the infinite-dimensional
minimization of the functional risk. We investigate existence and uniqueness of
its solution on the Sobolev space of functions that are square-integrable together
with their partial derivatives up to a suitable order. Section 3 provides repre-
senter theorems for such a solution and considers the learning problem modeled
via the minimization of the average risk. The particular case of regions given by
multi-dimensional intervals (i.e., “boxes”) is addressed in Section 4. In Section
5 we compare the two learning problems associated with the minimizations of
the functional risk and the average risk, respectively. To make the paper self-
contained, two appendices are provided on RKHSs and functionals. Preliminary
results were presented in [7].

1Such spaces were introduced into applications closely related to learning by Parzen [10]
and Wahba [11], and into learning theory by Cortes and Vapnik [12] and Girosi [13].
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(a) (b)

Figure 1: (a) A two-class data set and the separating surface learned by a non-linear kernel-
machine classifier. Examples of class 1 are represented by red crosses, whereas examples of
class 2 are drawn with blue dots. (b) The data collection is augmented with two labeled space
regions (bounded by the blue-dotted rectangle in the case of class 1, by the red-solid box for
class 2). A kernel machine is trained using a box kernel, which allows the classifier to learn
from the whole data collection (points and regions). The resulting class-separation boundary
is shown.

2. Learning from labeled regions and points

We formulate the problem of learning from labeled regions and/or labeled
points in a unique framework, where each point corresponds to a singleton.
Given a labeled set Xκ, the characteristic function 1Xκ

(x) associated with it is
identically 1 when x ∈ Xκ, otherwise it is identically 0. Denoting by vol(Xκ) =
∫

Rd 1Xκ
(x)dx the measure of the set, the normalized characteristic function is

1̂Xκ
(x) := 1Xκ

(x)/vol(Xκ). When the region degenerates to a single point xκ

we denote by 1̂Xκ
(x) the Dirac delta δ(x− xκ).

Let w : X → R
+ be a continuous weight function (e.g., proportional to

the probability density p : X → R
+ of the inputs), V : R2 → R

+ a convex
and differentiable loss function, λ > 0 a regularization parameter, and P :=
(P 0, . . . , P r−1) a vector of r finite-order differential operators of maximum order
of derivation k and with constant coefficients, with formal adjoint P ⋆ [22, 23].
Adopting the framework described in [8], we formulate the problem of learning
from labeled regions as the minimization on a suitable class of functions F of
the functional

R(f) :=
∑

κ∈Nℓt

∫

Rd

V (yκ, f(x)) · w(x) · 1̂Xκ
(x)dx+

λ

2
‖Pf‖2 , (1)

where Nm denotes the set of the first m positive integers,

‖Pf‖2 := (Pf, Pf) = (P ⋆Pf, f) = (Lf, f) ,

(f, g) :=

∫

Rd

f(x) · g(x)dx ,
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and L := P ⋆P (which has 2k as its maximum order of derivation). We call R(·)
in equation (1) the regularized functional risk. When all the regions degenerate
to points, we get ℓt = ℓ, 1̂Xκ

(x) = δ(x− xk), and equation (1) becomes

R(f) :=
∑

κ∈Nℓ

V (yκ, f(xκ)) · w(xκ) +
λ

2
‖Pf‖2 , (2)

which is the classical form of the regularized risk [24] when supervision is per-
formed on labeled points.

We search for the minimizer f◦ in the Sobolev space F = Wk,2, i.e., the
subset of L2 whose functions have square-integrable weak partial derivatives up
to the order k. The loss term in equation (1) can be considered as resulting from
the following two contributions:

∑

κ∈NℓX

∫

RdV (yκ, f(x))·w(x)·1̂Xκ
(x)dx, coming

from a region with non-null Lebesgue measures vol(Xκ), and
∑

κ∈Nℓ
w(xκ) ·

V (yκ, f(xκ)), which originates from points. Note also that V (yκ, f(x)) measures
the error for any x ∈ Xκ of the set with respect to the target yκ (which is the
same for all points in the same set Xκ).

We make the following assumption. For the definition and the basic prop-
erties of Reproducing Kernel Hilbert Spaces (RKHSs) and their role in learning,
see Appendix A.

Assumption 1. For a positive integer k > d
2 , let (Pf, Pf)1/2 be a norm on

Wk,2, the Green’s function g(·, ·) of L a (plain) kernel of a RKHS, and for each
fixed ζ ∈ X let g(·, ζ) ∈ Wk,2.

The requirement k > d
2 guarantees that the ambient space F = Wk,2 is

made up of continuous functions (thanks to the Sobolev’s Embedding Theorem
[25, Chapter 4]), so the term

∫

RdV (yκ, f(x)) · w(x) · 1̂Xκ
(x)dx in the functional

(1) is well-defined when Xκ degenerates to a single point. Moreover, it also
guarantees the continuity of the functional. The other conditions of Assumption
1 shall be exploited in the proof of the next Theorem 1. For σ > 0, an example
of a regularization operator L that satisfies Assumption 1 (for a suitable P )
is L = (σ2I − ∇2)k, which originates the Sobolev spline kernel [26]. There is
no regularization operator L associated to a vector of differential operators P
for linear and polynomial kernels of RKHSs. See [23] for other examples of
operators P and L that satisfy Assumption 1.

3. Representer theorems

The following result guarantees existence and uniqueness of the minimizer
to the functional (1) and provides an expression for such a minimizer. See
Appendix B for some definitions and notations used in the proof.

Theorem 1 (Representer theorem for learning with the risk R).
Let F = Wk,2 and Assumption 1 be satisfied. Then the functional (1) has a
unique global minimizer f◦, which can be expressed as
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f◦(x) = − 1

λ

∑

κ∈Nℓt

∫

Rd

g(x, ζ) · V ′
f (yκ, f

◦(ζ)) · w(ζ) · 1̂Xκ
(ζ)dζ , (3)

where V ′
f (y, f) := ∂V (y, f)/∂f is the partial derivative of the loss function

V (y, f) with respect to its second argument.

Proof. The assumptions that the loss function V is convex and continuous,
that k > d

2 and that (Pf, Pf)1/2 is a norm on Wk,2 imply that the functional

(1) is uniformly convex with modulus of convexity λ
2 t2. Then, the existence

and the uniqueness of the global minimizer f◦ follow by the fact that (1) is
uniformly convex and Wk,2 is a Hilbert space.

We show that f◦ satisfies the Euler-Lagrange equation

Lf◦(x) = − 1

λ

∑

κ∈Nℓt

V ′
f (yκ, f

◦(x)) · w(x) · 1̂Xκ
(x) (4)

and that (4) has a unique solution. Let C∞0 ⊂ Wk,2 denote the set of compactly-
supported, infinitely-differentiable, and real-valued functions on R

d. For every
α ∈ R and ϕ ∈ C∞0 , we have

R(f◦ + αϕ)−R(f◦) = λ (Pf, P (αϕ)) +
λ

2
(P (αϕ), P (αϕ))

+
∑

κ∈Nℓt

∫

Rd

V (yκ, (f
◦ + αϕ)(x)) · w(x) · 1̂Xκ

(x)dx

−
∑

κ∈Nℓt

∫

Rd

V (yκ, f
◦(x)) · w(x) · 1̂Xκ

(x)dx .

As the loss function V is differentiable, we get

R(f◦ + αϕ)−R(f◦) = λα (Pf◦, Pϕ)

+
∑

κ∈Nℓt

∫

Rd

V ′
f (yκ, f

◦(x)) · w(x) · 1̂Xκ
(x) · αϕ(x)dx+ o(α) .

For every α with |α| sufficiently small we have R(f◦ + αϕ)−R(f◦) ≥ 0. Hence

lim
α→0

R(f◦ + αϕ)−R(f◦)

α
= λ (Pf◦, Pϕ)

+
∑

κ∈Nℓt

∫

Rd

V ′
f (yκ, f

◦(x)) · w(x) · 1̂Xκ
(x) · ϕ(x)dx

= 0 . (5)

As ϕ ∈ C∞0 , by the Green’s formula (see, e.g., [27, Proposition 5.6.2]) we obtain
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(Pf◦, Pϕ) =

∫

Rd

(P ⋆Pf◦(x)) · ϕ(x) dx =

∫

Rd

(Lf◦(x)) · ϕ(x) dx

and so

∫

Rd



λLf◦(x) +
∑

κ∈Nℓt

V ′
f (yκ, f

◦(x)) · w(x) · 1̂Xκ
(x)



 · ϕ(x) dx = 0 . (6)

As ϕ ∈ C∞0 is arbitrary and with a suitable topology C∞0 coincides with the
space of test functions used in distribution theory [28], it follows that (6) is
equivalent to (4), where equality between the two sides of the equation has to
be interpreted in the sense of distributions on R

d.
Now, we now show that any solution f̃◦ ∈ Wk,2 to the equation (4) coincides

with f◦. Indeed, for every α ∈ [0, 1] one has

R(f̃◦ + αϕ) ≤ αR(f̃◦ + ϕ) + (1− α)R(f̃◦) ,

so

R(f̃◦ + ϕ) ≥ R(f̃◦ + αϕ)−R(f̃◦)

α
+R(f̃◦) .

Then, taking the limit as α→ 0+ and exploiting (5), one obtains R(f̃◦ + ϕ) ≥
R(f̃◦) for every ϕ ∈ C∞0 . By the density of C∞0 in Wk,2 [25, Corollary 3.23] and
the continuity of the functional (1), it follows that f̃◦ is a global minimizer, so
it coincides with f◦ by the above-mentioned uniqueness.

Let us now derive the solution to equation (4), from which we get (3). Recall
that by the definition of the Green’s function, one has

Lg(x, ζ) = δ(x− ζ), for each ζ ∈ R
d . (7)

Note that the right-hand side of equation (4) can be written as

− 1

λ

∑

κ∈Nℓt

∫

Rd

δ(x− ζ) · V ′
f (yκ, f

◦(ζ)) · w(ζ) · 1̂Xκ
(ζ)dζ . (8)

Hence, it follows by (7) and (8) that the general solution of (4) is

f◦(x) = − 1

λ

∑

κ∈Nℓt

∫

Rd

g(x, ζ) · V ′
f (yκ, f

◦(ζ)) · w(ζ) · 1̂Xκ
(ζ)dζ + h(x) , (9)

where h is a generic element of KerL (the null space of the operator L, in-
terpreted as an operator acting on functions in Wk,2). Finally, we show that
the assumption that (Pf, Pf)1/2 is a norm on Wk,2 implies KerL = {0}. Let
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f ∈ KerL. Then Lf = P ⋆Pf = 0, so (P ⋆Pf, ϕ) = (Pf, Pϕ) = 0 for all ϕ ∈ C∞0 .
Taking the limit for ϕ→ f inWk,2 and exploiting the continuity of the operator
P on Wk,2, we obtain (Pf, Pf) = 0. Then f = 0, since (Pf, Pf)1/2 is a norm
on Wk,2. So, we conclude that h = 0 in (9) and the representation (3) holds.

Remark 1. Equation (3) is an integral equation in the unknown f◦. In the
particular case in which the loss function V is quadratic, (3) is a linear Fredholm
integral equation of the second kind.

Remark 2. Note that Theorem 1 holds also when the loss function V is contin-
uous but differentiable only on a portion of its domain, provided that the term
V (yκ, f

◦(x)) does not intersect the region of non-differentiability of V when x
varies in the set Xκ. An example of such a loss function is the linear hinge loss
V (yκ, f(x)) = max(0, 1 − yκf(x)). In such a case, the assumption of empty
intersection with the region of non-differentiability of V in the set Xκ can be
equivalently stated as follows: inside Xκ, one has

1. yκf
◦(x) > 1, for all x ∈ Xκ or

2. yκf
◦(x) < 1, for all x ∈ Xκ.

Note that, by the continuity of the linear hinge loss and of f◦, the assumption
yκf

◦(x) 6= 1 inside the set Xκ implies that either item 1 or 2 above holds.

Unfortunately, in general the minimizer f◦ cannot be easily computed by
formula (3), as in the integral representation the terms V ′

f (yκ, f
◦(ζ)) are not

known a-priori. To simplify the problem, in the following we replace the func-
tional (1) with

Rm(f) :=
∑

κ∈Nℓt

V (yκ,mXκ
(f)) +

λ

2
‖Pf‖2, (10)

where the termmXκ
(f) :=

∫

Rd f(x)·w(x)·1̂Xκ
(x)dx is the average weighted value

of f over Xκ with respect to the weight function w(x). We call Rm(·) regularized
average risk. Of course, when Xκ = {xκ} we get mXκ

(f) = f(xκ) · w(xκ).
The minimization of Rm(·) is a more affordable variational problem, as

shown in the following theorem.

Theorem 2 (Representer theorem for learning with the risk Rm).
Let F = Wk,2 and Assumption 1 be satisfied. Then the functional (10) has a
unique global minimizer f◦

m, which can be expressed as

f◦
m(x) =

∑

κ∈Nℓt

ακβ(Xκ, x), (11)

where β(Xκ, x) :=
∫

Rd g(x, ζ) · w(ζ) · 1̂Xκ
(ζ)dζ and ακ := −V ′

f (yκ,mXκ
(f◦

m))/λ
are scalar values, κ ∈ Nℓt .
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Proof. Proceeding as in the proof of Theorem 1, there exists a unique global
minimizer f◦

m. It satisfies the Euler-Lagrange equation

Lf◦
m(x) = − 1

λ

∑

κ∈Nℓt

V ′
f (yκ,mXκ

(f)) · w(x) · 1̂Xκ
(x) .

As KerL = {0}, its solution is

f◦
m(x) = − 1

λ

∑

κ∈Nℓt

∫

Rd

g(x, ζ) · V ′
f (yκ,mXκ

(f)) · w(ζ) · 1̂Xκ
(ζ)dζ

=
∑

κ∈Nℓt

ακβ(Xκ, x) .

Theorem 1 proves how the optimal solution is expressed in the case of the
regularized functional risk R. Theorem 2 focuses on the regularized average
risk Rm; it allows one to represent the solution by means of a finite numbers
of coefficients. This makes the optimization of the learning problem affordable,
opening the road to applications based on the described learning framework.

In Section 5, we shall investigate the relationships between the two mini-
mization problems associated with the functionals (1) and (10), resp.

Remark 3. Likewise (3), equation (11) is an integral equation in the unknown
f◦
m. For a quadratic loss function V , it is a Fredholm integral equation of the
second kind.

If we separate the contributions coming from points and sets, the represen-
tation (11) can be written as

f◦
m(x) =

∑

κ∈Nℓ

ακg(xκ, x) +
∑

κ∈NℓX

ακβ(Xκ, x).

For κ1, κ2 ∈ Nℓt , let

K(Xκ1 ,Xκ2) :=

∫

Rd

β(Xκ1 , x) · w(x) · 1̂Xκ2
(x)dx. (12)

The following proposition gives insights into the cases where either Xκ1
or Xκ2

degenerate into points. It extends [7, Proposition 1] to the case of possibly
not uniform weight functions w (an interesting case is a mixture of Gaussians:

w(x) =
∑kmax

k=1 η̂k exp
(

−‖x−x̂k‖
2
2

2σ̂2
k

)

, where kmax ∈ N, η̂k ≥ 0, x̂k ∈ R
d, and

σ̂k > 0 are parameters). For a uniform weight function w, Proposition 1 reduces
to [7, Proposition 1].

Proposition 1. The following hold.

i. K(Xκ1
, {xκ2

}) = w(x2) · β(Xκ1
, xκ2

) ;

ii. K({xκ1
} , {xκ2

}) = w(x1) · w(x2) · g(xκ1
, xκ2

) .
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Proof. (i) If Xκ2 = {xκ2} then 1̂Xκ2
(x) = δ(x−xκ2). So, the statement follows

by (12).
(ii) In this case 1̂Xκ1

(x) = δ(x − xκ1
). So, we conclude by the definition of

β(Xκ1
, x) and the symmetry of g(·, ·).

Exploiting the definition (12) of the function K we can devise an efficient
algorithmic scheme based on the collapsing to a finite dimension of the infinite-
dimensional minimization of the functional Rm(·) (see (10)) over the Sobolev
space Wk,2. This is investigated in the next theorem, which holds under the
same hypotheses of Theorem 2.

Theorem 3. Let F = Wk,2 and Assumption 1 be satisfied. Then Rm(f◦
m) =

R̂m(α), where α is a vector of dimension ℓt and

R̂m(α) =
∑

κ1∈Nℓt

V (yκ1
,

∑

κ2∈Nℓt

ακ2
K(Xκ2

,Xκ1
))

+
λ

2

∑

κ1,κ2∈Nℓt

ακ1
ακ2
K(Xκ1

,Xκ2
) .

Proof. By plugging the expression (11) of f◦
m into (10) and exploiting the

definition of the Green’s function g(·, ·), we get

Rm(f◦
m) =

∑

κ1∈Nℓt

V



yκ1
,

∫

Rd

∑

κ2∈Nℓt

ακ2
β(Xκ2

, x) · w(x) · 1̂Xκ1
(x)dx





+
λ

2





∑

κ1∈Nℓt

ακ1
β(Xκ1

, x), L





∑

κ2∈Nℓt

ακ2
β(Xκ2

, x)









=
∑

κ1∈Nℓt

V



yκ1
,

∑

κ2∈Nℓt

ακ2

∫

Rd

β(Xκ2
, x) · w(x) · 1̂Xκ1

(x)dx





+
λ

2

∑

κ1,κ2∈Nℓt

ακ1ακ2

(

β(Xκ1 , x), w(x) · 1̂Xκ2
(x)

)

. (13)

The statement follows by (12).

According to Theorems 2 and 3, in order to determine f◦
m it is sufficient to

minimize the function R̂m(α). Note that for a quadratic loss function V , R̂m(α)
is quadratic, too.

4. Learning with box kernels

The function K(·, ·) defined in (12) originates from the (plain) kernel g(·, ·);
its arguments Xκ1

and Xκ2
can be space regions or points. When the regions
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are multi-dimensional intervals (i.e., “boxes”), the function K(·, ·) is called the
box kernel associated with g(·, ·). Boxes formalize the type of knowledge that
we introduced in Section 1.

The box kernel can be plugged in every existing kernel-based classifier, al-
lowing it to process at the same time labeled points and labeled box regions
with nonzero volume, without any modification to the learning algorithm. The
function K(·, ·) inherits a number of properties from the kernel g(·, ·).

Proposition 2. Let K ∈ R
ℓt,ℓt be the Gram matrix associated with the function

K(·, ·), i.e., the matrix with entries Kκ1,κ2 := K(Xκ1 ,Xκ2). If g is the kernel of
a RKHS, then K is a positive semidefinite matrix.

Proof. For a box Xκ, let vol(Xκ) :=
∏d

i=1 |aiκ − biκ|. We distinguish the fol-
lowing three cases.

1. vol(Xκ1
) > 0 and vol(Xκ2

) > 0. Since g is the kernel of a RKHS, there
exists a feature mapping φ̄ to some inner-product feature space F such
that ∀x, ζ ∈ X one has g(x, ζ) = < φ̄(x), φ̄(ζ) >F . By the definition (12)
we get

K(Xκ1 ,Xκ2) =

∫

Rd

(∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ1
(ζ)dζ

)

· w(x) · 1̂Xκ2
(x)dx

=

∫

Rd

∫

Rd

< φ̄(x), φ̄(ζ) >F w(ζ) · 1̂Xκ1
(ζ) · w(x) · 1̂Xκ2

(x)dζdx

= <

∫

Rd

φ̄(ζ)w(ζ) · 1̂Xκ1
(ζ)dζ,

∫

Rd

φ̄(x)w(x) · 1̂Xκ2
(x)dx >F

= < Φ̄(Xκ1), Φ̄(Xκ2) >F , (14)

where Z ∈ 2X , Φ̄(Z) :=
∫

Z
φ(x)w(x) · 1̂Z(x)dx, and the last equalities in

(14) follow by the definition of Bochner’s integral [25, Chapter 7].

2. vol(Xκ1
) > 0 and Xκ2

= {xκ2
}. By the same arguments as above, we get

K(Xκ1 , {xκ2}) =

∫

Rd

(∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ1
(ζ)dζ

)

· w(x) · δ(x− xκ2)dx

= w(xκ2
)

∫

Rd

g(xκ2
, ζ) · w(ζ) · 1̂Xκ1

(ζ)dζ

= < w(xκ2)φ̄(xκ2),

∫

Rd

φ̄(ζ)w(ζ) · 1̂Xκ1
(ζ)dζ >F

= < w(xκ2
)φ̄(xκ2

), Φ̄(Xκ1
) >F , (15)

where w(xκ2)φ̄(xz) is the degenerate case of Φ̄(Z) (in which Z degenerates
into the point xz).

3. Xκ1
= {xκ1

} and Xκ2
= {xκ2

}. We immediately get K(Xκ1
,Xκ2

) =
w(xκ1

) · w(xκ2
) · g(xκ1

, xκ2
) =< w(xκ1

)φ̄(xκ1
), w(xκ2

)φ̄(xκ2
) >F .
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The statement follows by constructing the Gram matrices corresponding to
the cases 1, 2, and 3, resp.

Proposition 2 can be extended to regions with arbitrary shapes. However,
from a practical point of view, the multi-dimensional integrals that define K(·, ·)
(hence the Gram matrix K) are particularly simple to evaluate for regions with
a certain shapes and for some plain kernels g(·, ·). This was shown in [7] in the
case of box-shaped regions and Gaussian plain kernels.

5. Functional risk versus average risk: A comparison

We now compare the two learning problems associated with the minimiza-
tions of the functional and average risks R(·) and Rm(·), resp., on the Sobolev
space Wk,2.

As described in the following proposition, a first relationship occurs when
the loss function is the linear hinge loss V (yκ, f(x)) = max(0, 1 − yκf(x)), the
weight function satisfies w(x) ≥ 1 inside each set Xκ, and the assumption made
in Remark 2 holds.

Proposition 3. If V is the linear hinge loss function, w(x) ≥ 1 and yκf
◦(x) 6=

1 inside each set Xκ, then one has R(f◦) = Rm(f◦).

Proof. It follows from the assumption yκf
◦(x) 6= 1 inside each set Xκ, and the

continuity of this loss function that either

yκf
◦(x) > 1, for allx ∈ Xκ

or
yκf

◦(x) < 1, for allx ∈ Xκ

holds. This, combined with the assumption on the weight function and the
definition of mXκ

(f), shows that, for each set Xκ, one has

∫

Rd

V (yκ, f
◦(x)) · w(x) · 1̂Xκ

(x)dx

=

∫

Rd

max(0, 1− yκf
◦(x)) · w(x) · 1̂Xκ

(x)dx

= max

(

0, 1− yκ

∫

Rd

f◦(x) · w(x) · 1̂Xκ
(x)dx

)

= V (yκ,mXκ
(f◦)) , (16)

so R(f◦) = Rm(f◦).

Note that the equality

∫

Rd

V (yκ, f
◦(x)) · w(x) · 1̂Xκ

(x)dx = V (yκ,mXκ
(f◦))

12



obtained in the proof of Proposition 3 holds also for the linear loss V (yκ, f(x)) =
−yκf(x) (even without the assumptions w(x) ≥ 1 and yκf

◦(x) 6= 1 inside each
set Xκ), so also for this loss function one has R(f◦) = Rm(f◦).

A second relationship between R(·) and Rm(·) is provided by the following
proposition, which holds for a general convex and differentiable loss function V
and requires that, for all κ ∈ Nℓt , w(x) · 1̂Xκ

(x) is a probability density on Xκ

(this happens, e.g., for the uniform weight function w(x) ≡ 1).

Proposition 4. For κ ∈ Nℓt , let
∫

Rd w(x) · 1̂Xκ
(x)dx = 1. Then for every

f ∈ Wk,2 one has R(f) ≥ Rm(f).

Proof. For every f ∈ Wk,2, the risks R(f) and Rm(f) differ by the two terms

∑

κ∈Nℓt

∫

Rd

V (yκ, f(x)) · w(x) · 1̂Xκ
(x)dx

and

∑

κ∈Nℓt

V (yκ,mXκ
(f)) =

∑

κ∈Nℓt

V (yκ,

∫

Rd

f(x) · w(x) · 1̂Xκ
(x)dx) .

By applying Jensen’s inequality2 to the probability density w(x) · 1̂Xκ
(x), for

every κ ∈ Nℓt we get

∫

Rd

V (yκ, f(x)) · w(x) · 1̂Xκ
(x)dx ≥ V

(

yκ,

∫

Rd

f(x) · w(x) · 1̂Xκ
(x)dx

)

.

The next proposition shows that, for λ “large enough” and “sufficiently
small” diameters of the sets Xκ, the values of the two risks R(·) and Rm(·) at
optimality are very similar. The proposition requires a slightly larger minimum
value of k with respect to the previous ones.

Proposition 5. Let k ≥ d+1
2 , f◦ and f◦

m be the minimum points over Wk,2 of

R(·) and Rm(·), resp., and for every κ ∈ Nℓt let
∫

Rd w(x) · 1̂Xκ
(x)dx = 1. Then

there exist two constants C1, C2 > 0 such that

i. |R(f◦)−Rm(f◦)| ≤
∑

κ∈Nℓt

diam(Xκ) · Lκ(λ) · C2
2R(0)

λ
; (17)

ii. |R(f◦
m)−Rm(f◦

m)| ≤
∑

κ∈Nℓt

diam(Xκ) · Lκ(λ) · C2
2R(0)

λ
,

where Lκ(λ) := sup
δ∈[−C1

2R(0)
λ

,C1
2R(0)

λ ]

∣

∣

∣V ′
f (yκ, δ)

∣

∣

∣.

2Jensen’s inquality states that for every convex function φ and every random variable z,
one has E{φ(z)} ≥ φ(E{z}).
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Proof. (i) We first evaluate the risk R(f) for f = 0. By the definition of R(·)
and the optimality of f◦, we get

λ

2
‖Pf◦‖2 ≤ R(f◦) ≤ R(0) ,

then ‖Pf◦‖ ≤ 2R(0)
λ . As k > d+1

2 , by the Sobolev Embedding Theorem with

k > d+1
2 it follows that f◦ is of class C1 and there exist two constants C1, C2 > 0

such that

sup
x∈Rd

|f◦(x)| ≤ C1‖Pf◦‖ ≤ C1
2R(0)

λ
(18)

and

sup
x∈Rd

‖∇f◦(x)‖ ≤ C2‖Pf◦‖ ≤ C2
2R(0)

λ
. (19)

By (18) we have

sup
x∈Xκ

∣

∣V ′
f (yκ, f

◦(x))
∣

∣ ≤ sup
δ∈[−C1

2R(0)
λ

,C1
2R(0)

λ ]

∣

∣V ′
f (yκ, δ)

∣

∣ = Lκ(λ) .

By (19) and the definition of Lκ(λ), we obtain

sup
x,y∈Xκ

|V (yκ, f
◦(x))− V (yκ, f

◦(y))| ≤ diam(Xκ) · Lκ(λ) · C2
2R(0)

λ
. (20)

As w(x) · 1̂Xκ
(x) is a probability density on Xκ, we have

min
x∈Xκ

V (yκ, f
◦(x)) ≤ V (yκ,mXκ

(f◦)) ≤ max
x∈Xκ

V (yκ, f
◦(x)) . (21)

Hence, (20) and (21) provide

∣

∣

∣

∣

V (yκ,mXκ
(f◦))−

∫

Rd

V (yκ, f
◦(x)) · w(x) · 1̂Xκ

(x)dx

∣

∣

∣

∣

≤ diam(Xκ) · Lκ(λ) · C2
2R(0)

λ
. (22)

Finally, (17) follows by the estimate (22) on each set Xκ.

(ii) is proved likewise item i, observing that R(0) = Rm(0).

Remark 4. The function Lκ(λ) is nonincreasing and for a quadratic loss func-

tion V (yκ, f(x)) = 1
2 (yκ − f(x))

2
we have Lκ(λ) ≤ |yk| + C1

2R(0)
λ . In such a

case, formula (17) becomes

|R(f◦)−Rm(f◦)| ≤
∑

κ∈Nℓt

diam(Xκ) ·
(

|yk|+ C1
2R(0)

λ

)

· C2
2R(0)

λ
.
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Let

K(λ) :=
∑

κ∈Nℓt

diam(Xκ) · Lκ(λ) · C2
2R(0)

λ
.

The following proposition provides a relationship between f◦ and f◦
m, showing

that their difference is small when λ is “large enough” and the diameters of the
sets Xκ are “small enough”.

Proposition 6. Let k ≥ d+1
2 , f◦ and f◦

m be the minimum points over Wk,2 of

R(·) and Rm(·), resp., and for every κ ∈ Nℓt let
∫

Rd w(x) · 1̂Xκ
(x)dx = 1. Then

there exist a constant C1 > 0 (the same as in Proposition 5) such that

sup
x∈Rd

|f◦(x)− f◦
m(x)| ≤ C1 ‖P (f◦ − f◦

m)‖ ≤ C1

√

4K(λ)

λ
. (23)

Proof. By Proposition 5 and the optimality of f◦ and f◦
m, we have

|R(f◦
m)−R(f◦)| = R(f◦

m)−R(f◦)

≤ R(f◦
m)−Rm(f◦

m) +Rm(f◦
m)−Rm(f◦) +Rm(f◦)−R(f◦)

≤ |R(f◦
m)−Rm(f◦

m)|+Rm(f◦
m)−Rm(f◦) + |Rm(f◦)−R(f◦)|

≤ 2K(λ) . (24)

As the functional R(·) is uniformly convex with modulus of convexity λ
2 t

2, by
(B.1) and the optimality of f◦ we get

|R(f◦
m)−R(f◦)| ≥ λ

2
‖P (f◦

m − f◦)‖2 . (25)

As k > d+1
2 , by the Sobolev Embedding Theorem with k > d+1

2 it follows
that f◦ is of class C1 and there exist a constant C1 > 0 such that

sup
x∈Rd

|f◦(x)| ≤ C1‖Pf◦‖ ≤ C1
2R(0)

λ
(26)

The statement (23) follows by combining equations (25), (26), and (24).

For a quadratic loss function V (yκ, f(x)) = 1
2 (yκ, f(x))

2, the difference
f◦(x) − f◦

m(x) can be evaluated directly by comparing the solutions to the
two linear Fredholm integral equations of the second kind obtained by plugging
V (yκ, f(x)) =

1
2 (yκ, f(x))

2 into (3) and (11). The corresponding equations are

f◦(x) +
1

λ

∑

κ∈Nℓt

∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ
(ζ) · f◦(ζ)dζ

=
1

λ

∑

κ∈Nℓt

yκ

∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ
(ζ)dζ
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and

f◦
m(x) +

1

λ

∑

κ∈Nℓt

∫

Rd

(∫

Rd

g(x, ξ) · w(ξ) · 1̂Xκ
(ξ)dξ

)

· w(ζ) · 1̂Xκ
(ζ) · f◦

m(ζ)dζ

=
1

λ

∑

κ∈Nℓt

yκ

∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ
(ζ)dζ ,

resp. Such equations can be written in the forms

f◦(x) + γ

∫

Rd

k(x, ζ) · f◦(ζ)dζ = r(x) (27)

and

f◦
m(x) + γ

∫

Rd

km(x, ζ) · f◦
m(ζ)dζ = r(x) , (28)

resp., where

γ :=
1

λ
,

k(x, ζ) :=
∑

κ∈Nℓt

g(x, ζ) · w(ζ) · 1̂Xκ
(ζ)

and

km(x, ζ) :=
∑

κ∈Nℓt

(∫

Rd

g(x, ξ) · w(ξ) · 1̂Xκ
(ξ)dξ

)

· w(ζ) · 1̂Xκ
(ζ)

are their respective kernels (in the sense of Fredholm integral equations), and

r(x) :=
1

λ

∑

κ∈Nℓt

yκ

∫

Rd

g(x, ζ) · w(ζ) · 1̂Xκ
(ζ)dζ

is known.
Let us assume that there exists ε > 0 such that

∫

Rd

∫

Rd

|k(x, ζ)− km(x, ζ)|2 dxdζ ≤ ε .

(By the definitions of k(x, ζ) and km(x, ζ), we expect ε decreases when decreas-
ing the diameters of the sets Xκ). We estimate the difference between f◦ and
f◦
m. By subtracting equation (28) from (27), we get
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f◦(x)− f◦
m(x)

= −γ
(∫

Rd

k(x, ζ) · f◦(ζ)dζ −
∫

Rd

km(x, ζ) · f◦
m(ζ)dζ

)

= −γ
(∫

Rd

(k(x, ζ)− km(x, ζ)) · f◦(ζ)dζ +

∫

Rd

km(x, ζ) · (f◦(ζ)− f◦
m(ζ))dζ

)

.

As
∥

∥

∫

Rd a(·, ζ)b(ζ)dζ
∥

∥ ≤
√

∫

Rd

∫

Rd |a(x, ζ)|2dxdζ · ‖b‖, in terms of the L2-norm

we obtain

‖f◦ − f◦
m‖ ≤ γ

(

√
ε · ‖f◦‖+

√

∫

Rd

∫

Rd

|km(x, ζ)|2dxdζ · ‖f◦ − f◦
m‖

)

.

Then, for γ ·
√

∫

Rd

∫

Rd |km(x, ζ)|2dxdζ < 1 and f◦ 6= 0, we get

‖f◦ − f◦
m‖

‖f◦‖ ≤ γ · √ε

1− γ ·
√

∫

Rd

∫

Rd |km(x, ζ)|2dxdζ
. (29)

Finally, recalling that γ = 1
λ and ε is nonincreasing when the diameters of

the sets Xκ decrease, it follows by (29) that the relative error
‖f◦−f◦

m
‖

‖f◦‖ decreases

when increasing λ and/or decreasing the diameters.

6. Discussion

We have developed a unified variational formulation for the class of learn-
ing problems introduced in [2], which incorporate both supervised points and
supervised regions. Our approach takes the hint from the inspirational frame-
work proposed in [8], where desired smoothness properties of the input/output
relationship that provides the solution to the learning problem are modeled
via differential operators. We have provided new representer theorems for the
optimal solutions of the associated learning problems.

The basic ingredients of our approach are: (i) loss functions involving labeled
regions (either with non-null Lebesgue measure or degenerating into points), (ii)
regularization based on diffferential operators, (iii) Green’s functions (of such
operators) that are kernels of RKHSs, and (iv) Sobolev spaces of suitable orders.

As a particular case arising when prior knowledge is expressed by logical
propositions, we have investigated the situation in which the labeled regions are
multi-dimensional intervals (i.e., “boxes”). In such a context, we have shown
that the solution to learning from labeled boxes/points is based on a novel class
of kernels, obtained by joining a classical kernel with the collection of supervised
boxes (which can degenerate to points).

Using the techniques described in [24], some results that we have obtained
for finite-order differential operators can be extended to the case of infinite-order
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differential operators and, more generally, to pseudo-differential ones. When σ >

0, this holds for the infinite-order differential operator L =
∑∞

n=0
(−1)nσ2n

n!2n ∇2n

(where ∇2 denotes the Laplace operator), whose Green’s function is the Gaus-

sian g(x, ζ) = exp
(

−‖x−ζ‖2
2

2σ2

)

(where ‖ · ‖2 denotes the l2-norm), to which refer

the numerical results presented in [7].

Appendix A. Reproducing Kernel Hilbert Spaces (RKHSs)

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space HK(Ω)
formed by functions defined on a nonempty set Ω such that for every u ∈ Ω
the evaluation functional Υu, defined for any f ∈ HK(Ω) as Υu(f) = f(u),
is bounded. RKHSs were formally defined by Aronszajn [14] but their theory
employs work by Schönberg [29], as well as many classical results on kernels and
positive definite functions. We consider real RKHSs.

RKHSs can be characterized in terms of kernels, which are symmetric pos-
itive semidefinite functions K : Ω × Ω → R, i.e., functions satisfying for all
positive integers m, all (w1, . . . , wm) ∈ R

m, and all (u1, . . . , um) ∈ Ωm,

m
∑

i,j=1

wi wj K(ui, uj) ≥ 0.

By the Riesz Representation Theorem [30, p. 200], for every u ∈ Ω there exists
a unique element Ku ∈ HK(Ω), called the representer of u, such that for every
f ∈ H one has

Υu(f) = 〈f,Ku〉HK(Ω) (A.1)

(reproducing property), where 〈·, ·〉HK(Ω) denotes the inner product in HK(Ω).
It is easy to check that the function K : Ω × Ω defined for all u, v ∈ Ω as
K(u, v) = 〈u, v〉 (where 〈·, ·〉 is any inner product on R

d) is a kernel.
On the other hand, every kernel K : Ω×Ω→ R generates an RKHS HK(Ω)

that is the completion of the linear span of the set {Ku : u ∈ Ω}, with the inner
product defined as 〈Ku,Kv〉HK(Ω) = K(u, v) and the induced norm ‖ · ‖HK(Ω)

(see, e.g., [14] and [31, p. 81]).
By the reproducing property (A.1) and the Cauchy-Schwartz inequality,

for every f ∈ HK(Ω) and every u ∈ Ω we have |f(u)| = |〈f,Ku〉HK(Ω)| ≤
‖f‖HK(Ω)

√

K(u, u) ≤ sK,Ω ‖f‖HK(Ω), where sK,Ω = supu∈Ω

√

K(u, u). Thus
for every kernel K, we have

sup
u∈Ω

|f(u)| ≤ sK,Ω‖f‖HK(Ω) .

A paradigmatic example of a kernel on R
d is the Gaussian kernel K : Rd ×

R
d → R, defined as K(u, v) = exp(−‖u − v‖2). Other examples of kernels

are K(u, v) = exp(−‖u − v‖), K(u, v) = 〈u, v〉p (homogeneous polynomial of
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degree p), K(u, v) = (1 + 〈u, v〉)p (inhomogeneous polynomial of degree p), and
K(u, v) = (a2 + ‖u− v‖2)−α, with α > 0 [15, p. 38].

For the role of kernels in learning theory see, e.g., [15] and [21].

Appendix B. Functionals on normed spaces

A functional Φ : F → R (where F is a convex subset of the normed linear
space F) is called uniformly convex iff there exists a non-negative function δ :
[0,+∞)→ [0,+∞) such that δ(0) = 0, δ(t) > 0 for all t > 0, and for all h, g ∈ F
and all λ ∈ [0, 1], one has

Φ(λh+ (1− λ)g) ≤ λΦ(h) + (1− λ)Φ(g)− λ(1− λ)δ(‖h− g‖F ) .

Any such function δ is called a modulus of convexity of Φ [32]. It is easy to
show (see, e.g., [33, Proposition 2.1]) that, for c > 0, the functional Φ(f) =
c ‖f‖2F is uniformly convex with modulus of convexity δ(t) = c t2. The sum of
a convex functional Φ1 and of a uniformly convex one Φ2 is uniformly convex,
and has the same modulus of convexity as Φ2 (see, e.g., [33, Proposition 2.1]).
A uniformly convex functional on a convex subset of a Hilbert space admits a
unique minimum point (see, e.g., [34, p. 10]). A useful property of uniform
convexity is that f◦ ∈ argminf∈F Φ(f) implies the lower bound

|Φ(f◦)− Φ(f)| ≥ δ (‖f◦ − f‖F ) (B.1)

for any f ∈ F (see, e.g., [33, Proposition 2.1]).
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