
Applied Mathematical Sciences, Vol. 2, 2008, no. 4, 153 - 176

Approximation Error Bounds

via Rademacher’s Complexity

Giorgio Gnecco

Department of Mathematics (DIMA), University of Genova
Via Dodecaneso 35, 16146 Genova, Italy

and
Department of Communications, Computer, and System Sciences (DIST)

University of Genova, Via Opera Pia 13, 16145 Genova, Italy
giorgio.gnecco@dist.unige.it

Marcello Sanguineti

Department of Communications, Computer, and System Sciences (DIST)
University of Genoa, Via Opera Pia 13, 16145 Genova, Italy

marcello@dist.unige.it

Abstract
Approximation properties of some connectionistic models, commonly

used to construct approximation schemes for optimization problems
with multivariable functions as admissible solutions, are investigated.
Such models are made up of linear combinations of computational units
with adjustable parameters. The relationship between model complex-
ity (number of computational units) and approximation error is investi-
gated using tools from Statistical Learning Theory, such as Talagrand’s
inequality, fat-shattering dimension, and Rademacher’s complexity. For
some families of multivariable functions, estimates of the approxima-
tion accuracy of models with certain computational units are derived
in dependence of the Rademacher’s complexities of the families. The
estimates improve previously-available ones, which were expressed in
terms of V C dimension and derived by exploiting union-bound tech-
niques. The results are applied to approximation schemes with certain
radial-basis-functions as computational units, for which it is shown that
the estimates do not exhibit the curse of dimensionality with respect to
the number of variables.

Keywords: approximation error, model complexity, curse of dimension-
ality, Rademacher’s complexity, Talagrand’s inequality, union bounds, VC di-
mension.
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1 Introduction

Various conditions have been derived, under which linear combinations of com-
putational units containing adjustable parameters are able to approximate
with arbitrary accuracy continuous or square-integrable multivariable func-
tions. This approximation capability, also known as “universal approximation
property”, is exhibited, e.g., by radial-basis-functions, hinging hyperplanes,
free-knot splines, etc. (see, e.g., [1, 2, 3, 4, 5] and the references therein). In
these models, belonging to the so-called variable-basis approximation schemes
[5], the number of computational units (i.e., the basis functions) plays the role
of a measure of model complexity [6] and is critical for feasibility of implemen-
tation: if universality is obtained at the price of a very large model complexity,
then approximation is not computationally efficient.

Variable-basis approximation schemes have been widely used to find sub-
optimal solutions to optimization problems such as traffic control, routing in
telecommunication networks, management of water resources, inventory fore-
casting, exploration of stochastic graphs, etc. (see [7, 8] and the references
therein), in which the admissible solutions depend on a large number d of
variables (e.g., the message queues at the nodes of a large-scale telecommuni-
cation network and the delays on the network’s links). When, to guarantee a
desired degree of accuracy of suboptimal solutions, the model complexity, i.e.,
the number n of computational units, has to grow fast with d, one may incur
the so-called curse of dimensionality [9], which makes optimization problems
computationally intractable. For a given computational model, tractability
depends on the family of functions one wants to approximate, the kind of
computational units, and the measure used to evaluate the approximation er-
ror.

Some insights into features of the families of functions that can be effi-
ciently approximated by variable-basis functions with certain computational
units (thus making the associated problems tractable), can be obtained from
inspection of the dependence of the approximation error on model complex-
ity. The purpose of this work is to improve previous results by Girosi [10]
and Kon, Raphael, & Williams [11, 12], in which estimates of the approxima-
tion error were derived for some families of functions approximated by certain
variable-basis approximation schemes.

Girosi [10] was the first to exploit estimation bounds from Statistical Learn-
ing Theory (SLT) to derive approximation bounds. For functions on X ⊆ Rd

having an integral representation as f(x) =
∫

X
K(x, t)λ(t) dt, where λ ∈

L1(X) and K : X ×X → R is a bounded kernel, he estimated the sup-norm
error in approximation by linear combinations of K(·, t1), . . . , K(·, tn), with
t1, . . . , tn varying in X, which is a variable-basis approximation scheme. As
an example, for X = Rd he considered the convolution kernel generated, for
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r > 0, by the rotation-invariant Bessel potential function βr(·) (i.e., the func-

tion whose Fourier transform is equal to (2π)−
d
2 (1 + ‖s‖2)−r/2), which deter-

mines a radial-basis-functions approximation scheme (i.e., the computational
units are radially symmetric) formed by linear combinations of Bessel potential
functions with different centers t1, . . . , tn varying in Rd.

Kon, Raphael, & Williams [11, 12] (which also considered convolution ker-
nels of the form K(x, t) = k(x− t)) recently extended Girosi’s results, which
require the existence of the L1-norm of the function λ in the convolution k ∗λ.
In particular, in [11] Girosi’s [10] estimate by linear combinations of translates
of βr was extended to the approximation of functions for which the repre-
sentation k ∗ λ holds with λ ∈ Lp (1 < p < ∞), with the error measured
in a weighted essential supremum norm. In [12], Kon, Raphael, & Williams
used Girosi’s [10] approach to derive error bounds for approximation in certain
Hilbert spaces, called Reproducing Kernel Hilbert Spaces (RKSHs; see [13] and
[14, Section III.3]).

The works [10, 11, 12] exploit a main tool from SLT, i.e., the well-known
theorem, by Vapnik and Chervonenkis [15], that gives, for a family of real-
valued functions, a probabilistic uniform bound on the difference between the
expected and empirical risks associated with a learning problem. Such a bound
is expressed in terms of a combinatorial parameter, called VC dimension.

In the last years, new estimation bounds for SLT were derived. They
improve significantly the previous known bounds like those based on the V C
dimension. A survey of these new results, which are expressed in terms of a
quantity called Rademacher’s complexity, is [16]. There are several reasons for
which these estimates are better than the previous ones. For our purposes, it is
enough to recall that classical SLT bounds are obtained by “reducing” a family
of functions to a simpler one via ε-coverings, then applying to such a simpler
family the union-bound technique [16]. The use of union bounds may cause
a loss of tightness in the final estimates. Techniques based on Rademacher’s
complexity, which apply Talagrand’s inequality [17] instead of union bounds,
result in tighter final estimates.

In this paper, we exploit these new tools from SLT in the contexts exam-
ined in [10, 11, 12] to improve the approximation bounds for the families of
functions considered therein. Taking the hint from Girosi’s idea [10, Section 3]
of exploiting the structural similarity between an integral representation with
a kernel K(x,y) and the definition of expected risk, we prove for some families
F of functions defined on a set X, upper bounds on the error of approxima-
tion by linear combinations of functions K(·, ti), . . . , K(·, tn), with t1, . . . tn

varying in X, in terms of the Rademacher’s complexity of F . Then, we derive
an upper bound on Rademacher’s complexity in terms of a quantity known
as Dudley’s integral which, in turn, we bound from above in terms of another
quantity used in SLT, namely, the fat-shattering dimension of the family F .
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To compare our estimates with those from [10, 11, 12], which are expressed in
terms of V C dimension, we bound from above the fat-shattering dimension in
terms of the V C dimension.

We apply our estimates to approximation schemes made of radial-basis-
functions computational units. For Bessel and Gaussian basis functions, we
derive upper bounds that do not exhibit the curse of dimensionality with re-
spect to the number d of variables of the functions to be approximated. For
Bessel basis functions, the rates are of the same order as those that can be
derived by [4, Corollary 8.4], using different techniques. For Gaussian basis
functions with varying widths, the error bounds derived in [10] are improved
in this paper. Moreover, we obtain such improvements as by-products of our
estimates stated in terms of Rademacher’s complexity, which might provide
even better rates.

The paper is organized as follows. Section 2 describes notations and gives
definitions. Section 3 shortly reviews and discusses the literature on approxi-
mation error bounds derived by using classical SLT bounds and V C dimension.
Section 4 contains our estimates: Section 4.1 describes improvements allowed
by exploiting Talagrand’s inequality and Rademacher’s complexity, and Sec-
tion 4.2 combines such tools to derive improved upper bounds on the approx-
imation error. Section 5 applies the estimates to some radial-basis-functions
schemes with Bessel potentials and Gaussians as computational units. Sec-
tion 6 is a brief discussion. To make the paper self-contained, the results from
SLT, exploited to prove the estimates, are reported in the Appendix.

2 Notations and definitions

By R and R+ we denote the sets of real and positive real numbers, resp., and
by N and N+, the sets of natural numbers and positive integers, resp. For
a ∈ R, dae is the smallest integer n ≥ a.

For a real normed linear space (H, ‖ · ‖), f ∈ H, and r > 0, we denote by
Br(f, ‖ · ‖) the closed ball of radius r in the norm ‖ · ‖, centered at f ∈ H, i.e.,

Br(f, ‖ · ‖) = {h ∈ H | ‖h− f‖ ≤ r} .

We write Br(‖ · ‖) instead of Br(0, ‖ · ‖). When the norm is clear from the
context, we write merely H, Br(f), and Br instead of (H, ‖ · ‖), Br(f, ‖ · ‖),
and Br(‖ · ‖), resp.

For 1 ≤ p < ∞, a positive integer d, and a Lebesgue-measurable set
X ⊆ Rd, we denote by Lp(X) the space of (equivalence classes of) real-valued
functions on X that have integrable p-th power with respect to the Lebesgue
measure, endowed with the Lp(X)-norm ‖·‖p,X . L∞(X) is the space of (equiva-
lence classes of) real-valued functions on X which are essentially bounded with
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respect to the Lebesgue measure, endowed with the essential supremum norm
‖ · ‖∞,X . C(X) is the space of continuous functions on X with the supremum

norm. To simplify the notations, for r ≥ 0 we let Br,∞,X
4
= Br(‖ · ‖∞,X).

Whenever there is no ambiguity, we omit X from the notations.
For F ⊆ (H, ‖·‖) and ε > 0, {f1, . . . , fn} ⊆ F is called an ε-net in F , if the

family of open balls of radii ε centered at fi covers F . The ε-covering number
N (F, ‖ · ‖, ε) of a subset F of (H, ‖ · ‖) in the metric induced by the norm ‖ · ‖
is the cardinality of a minimal ε-net in F , i.e.,

N (F, ‖ · ‖, ε) 4
= min {n ∈ N+ | ∃ an ε− net {f1, . . . , fn} ⊆ F } .

We set N (F, ‖ · ‖, ε) = +∞ if the set over which the minimum is taken is
empty. When the norm is clear from the context, we merely write N (F, ε).
Note that here we consider covering numbers defined in terms of open balls,
as in [18, p. 148], but other Authors (e.g., [19, 20]) use closed balls.

A Lebesgue-measurable kernel K : X × X → R is called symmetric
positive-semidefinite when it is symmetric and for all positive integers m,
all (w1, . . . , wm) ∈ Rm, and all (x1, . . . ,xm) ∈ Xm, it satisfies the condition∑m

i,j=1 wi wj K(xi,xj) ≥ 0. For every kernel K : X ×X → R and x ∈ X, we
define the function Kx : X → R as

Kx(t)
4
= K(x, t) ∀t ∈ X .

If there exists a function k : Rd → R such that the kernel K can be written as
Kx(t) = k(x− t), then K is called a convolution kernel.

For a positive integer d, a set X ⊆ Rd, and a family F of functions on X,
we denote by Fx : X → R a function in F , where x is a parameter used to
identify elements in F 1.

By PX we denote a (possibly unknown) probability distribution on X, and
we write merely P when the set X is clear from the context.

The expected risk associated with a function Fx ∈ F is defined as

R(Fx)
4
=

∫

X

Fx(t) dPX(t) .

So, R(Fx) = EPX
{Fx(t)}, where EPX

is the expectation operator; we write
merely E when X and PX = P are clear from the context.

For every positive integer n, we say that a sequence {ti} of n points obtained
by sampling X independently n times according to PX , is a PX-i.i.d. sequence.

1We use the notation Fx since, as it will be clear in Section 3, we shall consider functions
on X having the integral representation f(x) =

∫
X

Kx(t)λ(t) dt for a kernel K : X×X → R
and families F such that Fx(t) is defined via the kernel Kx(t) (e.g., Fx(t) = Kx(t) sign(λ(t))
in Section 4.2). So the parameter x used to identify the elements of F will be a point x ∈ X.
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The empirical risk associated with the function Fx(t) ∈ F and the sequence
{ti} of samples is defined as

Remp(Fx, {ti}) 4
=

1

n

n∑
i=1

Fx(ti) .

Finally, we remark that throughout the paper, C, C1, and C2 denote ab-
solute positive constants that may take on different values in different formulas.

3 Available approximation bounds derived via

classical SLT tools

Previous works deriving approximation bounds via classical SLT tools are the
papers by Girosi [10] and its improvements by Kon, Raphael, & Williams [11]
and Kon & Raphael [12].

Recall that the Vapnik-Chervonenkis dimension (VC dimension) of a family
F = {Fx} of real-valued functions on a set X is the maximum number h of
points {ti} in X that can be separated into two classes Ω1 and Ω2 in all 2h

possible ways, by using functions (with argument t) of the form Fx(t)− α, as
the parameters x and α vary in X and R, resp. [15]. In particular, if for t ∈ X

Fx(t)− α ≥ 0 ,

then we say that (Fx, α) assigns t to the class Ω1. Similarly, if

Fx(t)− α < 0 ,

then (Fx, α) assigns t to the class Ω2.
Expected risk, empirical risk, and V C dimension are related to each other

by the following classical result (which here we state for the particular case
of a family F = {Fx} of functions defined on X, where the parameter x is a
point of X).

Theorem 3.1 (Vapnik & Chervonenkis [15]) Let F be a family of func-
tions on X ⊆ Rd, a, b ∈ R such that for every x, t ∈ X one has a ≤ Fx(t) ≤ b,
h the V C dimension of F , PX a probability distribution on X, and {ti} a PX-
i.i.d. sequence. For every 0 < δ < 1, the following bound holds with probability
at least 1-δ:

sup
Fx∈F

∣∣∣R(Fx)−Remp(Fx, {ti})
∣∣∣ ≤ (b− a)

√
h ln 2en

h
− ln δ

4

n
.
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Let us now consider a family of functions having the integral representation

f(x) =

∫

X

Kx(t) λ(t) dt , (1)

where K : X × X → R is a Lebesgue-measurable kernel and λ ∈ L1(X).
To derive approximation bounds via Theorem 3.1, Girosi [10] noted that if
‖λ‖1 6= 0, then for every x ∈ X, f(x)/‖λ‖1 can be considered as the expected
risk relative to the function Fx(t) = Kx(t)sign(λ(t)) and the probability den-
sity |λ(t)|/‖λ‖1. By applying Theorem 3.1 and letting δ → 1, he obtained
the following bound on the sup-norm error in approximating f by linear com-
binations of the n functions Kx(t1), . . . , Kx(tn) centered at suitable points
t1, . . . , tn ∈ X.

Theorem 3.2 (Girosi [10, 11]) Let X ⊆ Rd, λ ∈ L1(X), K : X ×X → R
be a kernel such that there exists τ > 0 with |Kx(t)| ≤ τ for every x, t ∈ X,
f a function with the representation f(x) =

∫
X

Kx(t) λ(t) dt , and h the V C
dimension of the family F = {Kx}. Then for every positive integer n, there
exist t1, . . . tn ∈ X and c1, . . . , cn ∈ {−1, 1} such that

sup
x∈X

∣∣∣f(x)− ‖λ‖1

n

n∑
i=1

ciKx(ti)
∣∣∣ ≤ 4τ‖λ‖1

√
h ln 2en

h
+ ln 4

n
.

Then Girosi [10] applied Theorem 3.2 to X = Rd and functions of the form
f = βr ∗ λ, where βr is the Bessel potential function, i.e., the inverse Fourier
transform of (2π)−

d
2 (1 + ‖s‖2)−r/2.

His result was extended in [11, 12] to the following families of functions.

• In [11, Corollary 3], to the so-called Sobolev potential spaces (also called

Sobolev-Liouville spaces), defined for p ≥ 1 and λ ∈ Lp(Rd) as Lr
p

4
= {f ∈

Lp(Rd) | f = βr ∗ λ}.
• In [12], to Reproducing Kernel Hilbert Spaces (RKHSs), i.e., Hilbert

spaces of functions f on X such that, for every x ∈ X, the evalua-

tion functional at x, defined as Fx(f)
4
= f(u), is bounded (see [13], [14,

Section III.3]). As every RKHS on a set X can be characterized in terms
of a kernel, we denote such spaces as HK . Two cases in particular were
considered:

- RKHSs that are dense in L2. In this case, for a function f ∈ HK ,
the integral representation f(x) =

∫
Rd K

1/2
x (t)(LK

−1/2f)(t) dt is used

in [12, Theorem 4]. Here LK
−1/2 is the (−1/2)-power of the operator
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LK : L2 → L2 defined as (LKf)(x)
4
=

∫
Rd Kx(t)f(t) dt, and K

1/2
x (t) is

the kernel associated with the operator LK
1/2;

- RKHSs that are closed subspaces of L2, with the inherited inner prod-
uct, but that are not dense in L2. In this case, for a function f ∈ HK ,
the integral representation f(x) =

∫
Rd Kx(t)f(t) dt is used in [12, Propo-

sition 5].

To improve the results from [10, 11, 12], which are based on the classical
SLT theory (V C dimension and Theorem 3.1), we shall exploit recent SLT
bounds that improve classical ones.

4 Improved estimates

4.1 Exploiting new tools from SLT

Recall that the main goal of SLT consists in obtaining non-asymptotical, prob-
abilistic, and uniform (i.e., holding simultaneously for every element of a family
F ) bounds on the difference between the expected risk and the empirical risk
associated with an element Fx ∈ F , i.e.:

Prob{ sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≥ ε}≤ δ(n, q, ε),

or, equivalently,

Prob{ sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≥ ε(n, q, δ)}≤ δ ,

where n is the number of samples, and q is a parameter dependent on the
“complexity” of the family F . In Section 3, the role of q was played by the
V C dimension of F ; in the following, it will be played by the Rademacher’s
complexity of F , to be defined later on.

The approximation bounds reviewed in Section 3 can be improved avoiding
some limitations intrinsic in the procedure according to which classical SLT
bounds are obtained [16]. We briefly outline such a procedure.

i) The family F , which might have infinite cardinality, is “approximated” by
a “simpler” family Fε, whose finite cardinality is equal to the ε-covering
number (in an appropriate metric) of F .

ii) For each function in Fε a SLT bound is derived, typically via Hoeffding’s
inequality or Bernstein’s inequality [21].
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iii) A uniform SLT bound (i.e., a SLT bound for the whole family Fε) is
obtained by combining the bounds in ii) by means of the union-bound
technique, based on the following basic result from probability theory: for
every positive integer k, given k eventsA1, . . . ,Ak one has Prob{⋃k

i=1Ai} ≤∑k
i=1 Prob{Ai}.

iv) A uniform SLT bound for the original family F is derived using the rela-
tionship between F and Fε.

One weak point of the procedure outlined above is iii) because, usually,∑k
i=1 Prob{Ai} is not a “good approximation” of Prob{⋃k

i=1Ai}. Better SLT
bounds for the original family F can be derived by using, instead of the union
bound technique, a probabilistic inequality known as Talagrand’s inequality
[16, 17]. This approach is a significant improvement over the classical one,
because Talagrand’s inequality: i) gives a uniform bound without requiring
one to apply the union-bound technique; ii) holds also for family of functions
of infinite cardinality, so there is no need to approximate F with a family Fε

of finite cardinality.
For the sake of completeness, in Theorem 7.1 of the Appendix we give a mod-
ified version of Talagrand’s inequality, in the form presented in [16].

The right-hand side of Talagrand’s inequality (see Theorem 7.1) can be
bounded from above in terms of a quantity called Rademacher’s complexity
(or Rademacher’s average) of a family of functions. Recall that a Rademacher’s
random variable is a random variable taking only the values +1 and −1 with
equal probability 1/2 [16]. Let PX be a probability distribution on X, {ti} a
PX-i.i.d. sequence, and {εi} a sequence of n independent Rademacher’s ran-
dom variables. Given a family F = {Fx} of functions on X, the Rademacher’s
complexity of F is defined as [16]

Rn(F )
4
= Et1,...,tnEε1,...,εn

{ 1√
n

sup
Fx∈F

∣∣∣
n∑

i=1

εiFx(ti)
∣∣∣
}

.

Using Talagrand’s inequality and Rademacher’s complexity, the SLT bound
reported in Theorem 7.2 of the Appendix was derived. In this section, we shall
exploit it to improve the approximation bounds from [10, 11, 12]. We shall
proceed as follows.

• We shall express Theorem 7.2, involving the Rademacher’s complexity
of F , in a form similar to that of Theorem 3.1.

• Proceeding as in [10], for functions having an integral representation of
the form (1), with λ ∈ L1 and K : X × X → R bounded, we shall
derive an estimate on the sup-norm error in approximation by linear
combinations of K(·, t1), . . . , K(·, tn) with t1, . . . , tn ∈ X.
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• In order to compare the results with those reported in [10, 11, 12],
which are expressed in terms of V C dimension, we shall bound as follows
Rademacher’s complexity in terms of V C dimension.

- First, we shall exploit a result known as Dudley’s integral (see [16]),
which we report in the Appendix as Theorem 7.3. Roughly speaking, it
allows one to obtain an upper bound on the Rademacher’s complexity of a
family F in terms of an integral of the ε-covering number N (ε, F,L2(µn))
of F in the L2(µn) norm (µn is the empirical measure supported on n
samples).

- Then, we shall find an upper bound on Dudley’s integral by using the
upper bound from Theorem 7.4 onN (ε, F,L2(µn)), in terms of a quantity
called ε-fat-shattering dimension of F [16].

- Finally, we shall bound from above the ε-fat-shattering dimension by
the Vε dimension and the latter by the V C dimension. To this end, we
shall exploit Propositions 7.5 and 7.6.

4.2 Approximation bounds

From Theorem 7.2 we obtain immediately the next result, which is a refor-
mulation of the SLT bound from Theorem 7.2 in a form similar to that of
Theorem 3.1.

Theorem 4.1 Let PX be a probability distribution on X ⊆ Rd, {ti} a PX-
i.i.d. sequence of n points, and F a family of [0, 1]-valued functions with
Rademacher’s complexity Rn. There exists an absolute positive constant C
such that for all 0 < δ < 1, with probability at least 1− δ one has:

sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≤ C

√
1

n
max

{
R2

n, ln
1

δ

}
(2)

Note that in Theorem 4.1 the constraint on n, which appeared in the formula-
tion of Theorem 7.2, is implicitly contained in the second side of equation (2).

Since in the following we will have to consider classes of [−τ, τ ]-valued
functions (τ > 0), the following slight modification of Theorem 4.1 is more
useful in order to proceed.

Theorem 4.2 Let PX be a probability distribution on X ⊆ Rd, {ti} a PX-
i.i.d. sequence of n points, and F a family of [−τ, τ ]-valued functions (τ > 0)
with Rademacher’s complexity Rn. There exists an absolute positive constant
C such that for all 0 < δ < 1, with probability at least 1− δ one has:
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sup
Fx∈F

1

2τ
|R(Fx)−Remp(Fx, {ti})| ≤ C

√
1

n
max

{ (Rn + τ

2τ

)2

, ln
1

δ

}
(3)

Proof. The case of a class of [−τ, τ ]-valued functions can be reduced to the
context of Theorem 4.1 by considering a class F τ = {F τ

x} of translated and

scaled functions defined as F τ
x

4
= Kx(t)+τ

2τ
for x ∈ X, which is a class of [0, 1]-

valued functions. The relationship between the Rademacher’s complexities
of F and F τ can be obtained by [16, Theorem 15], which gives some sim-
ple structural results for Rademacher’s complexity. Indeed, as an immediate
application of that theorem, we get

Rn(F τ ) =
1

2τ
Rn({Kx(t) + τ}) ≤ 1

2τ
(Rn({Kx(t)}) + τ) =

1

2τ
(Rn(F ) + τ) .

It turns out that the absolute positive constant C is the same as in Theorem
4.1. 2

As it will be shown later, the next theorem improves the bound on the
sup-norm approximation error derived in [10] (reported here as Theorem 3.2).
The proof exploits ideas from the proof of [10, Proposition 3.1] and properties
of Rademacher’s complexity.

Theorem 4.3 Let X ⊆ Rd, λ ∈ L1(X), f be a function on X having the
representation f(x) =

∫
X

Kx(t) λ(t) dt, and Rn the Rademacher’s complexity
of the family {Kx}. Suppose that there exists τ > 0 such that for all x and t in
X, one has |Kx(t)| ≤ τ . Then there exists an absolute positive constant C such
that, for every positive integer n there exist t1, . . . , tn ∈ X and c1, . . . , cn ∈
{−1, 1} for which

sup
x∈X

∣∣∣f(x)− ‖λ‖1

n

n∑
i=1

ciKx(ti)
∣∣∣ ≤ C ‖λ‖1 (Rn + τ)

√
1

n
.

Proof. Without loss of generality we assume ‖λ‖1 6= 0, as the case ‖λ‖1 = 0

is trivial. For every x ∈ X, f(x)
‖λ‖1 =

∫
X

Kx(t)
λ(t)
‖λ‖1 dt can be considered as

the expected risk relative to the function Fx(t) = Kx(t) sign(λ(t)), where
sign(z) = −1 for z < 0 and sign(z) = 1 for z ≥ 0, and the probability density
|λ(t)|/‖λ‖1. Note that λ can assume both positive and negative values but
the Rademacher’s complexities of F = {Kx(t)} and Fλ = {Kx(t) sign( λ(t) )}
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are the same. Indeed, changing the sign of Kx(ti) in the definition of the
Rademacher’s complexity of F = {Kx(t)} is equivalent to changing the sign
of each εi, and {εi} are independent and symmetrically distributed around 0.

Then by Theorem 4.2, for every δ > 0 and every sequence {ti} obtained

sampling X n times independently according to |λ(t)|
‖λ‖1 , we get with probability

at least 1− δ

1

2τ
sup
x∈X

∣∣∣f(x)

‖λ‖1

− 1

n

n∑
i=1

sign(λ(ti))Kx(ti)
∣∣∣ ≤ C

√
1

n
max

{ (Rn + τ

2τ

)2

, ln
1

δ

}
.

By letting δ → 1 and multiplying both sides of this inequality by ‖λ‖1, we
conclude that there exist2 t1, . . . , tn ∈ X and c1, . . . , cn ∈ {−1, 1} such that

supx∈X

∣∣∣f(x)− ‖λ‖1
n

∑n
i=1 ciKx(ti)

∣∣∣ ≤ C ‖λ‖1 (Rn + τ)
√

1
n
. 2

The computation of Rademacher’s complexity is not always easy; how-
ever, an easy situation occurs, e.g., when F is the unit ball of a RKHS, as
in this case the Rademacher’s complexity can be expressed in terms of the
sum of the eigenvalues of the operator associated with the kernel [16]. How-
ever, to compare our results with those from [10, 11, 12], we shall estimate the
Rademacher’s complexity in terms of the V C dimension, by means of Propo-
sitions 7.5 and 7.6.

The following lemma gives, for a family F of [0, 1]-valued functions, an
upper bound on the Rademacher’s complexity of F in terms of its V C dimen-
sion. The lemma is analogous to [16, Corollary 5], which refers to the case of
Boolean functions. As intermediate steps, the proof of the lemma estimates
Rademacher’s complexity in terms of ε-fat-shattering dimension, Vε dimension
and V dimension.

Recall that for ε > 0, a class F of real-valued functions on X ε-shatters
a set S ⊆ X if there exists a function g such that for every T ⊆ S, there is
fT ∈ F satisfying the following: for every t ∈ S\T , one has fT (t) ≤ g(t) − ε
and for every t ∈ T , fT (t) ≥ g(t) + ε. The ε-fat-shattering dimension of F ,
denoted by fatε(F ), is the maximal cardinality of an ε-shattered subset of X
[16, 22]. A scaled version of the V C dimension, called here Vε dimension, is
defined by considering, in the definition of an ε-shattered set, only constant
functions g, i.e., g(t) = α ∈ R [22]. Finally, for ε = 0 we obtain the definition
of V dimension [22]3.

2This argument does not require neither compactness of X, nor continuity of the kernel.
Indeed, if one of these properties does not hold, then one can replace the absolute positive
constant C in the upper bound with another absolute positive constant C+η, for an arbitrary
η > 0.

3The terminology is not uniform in the literature. For example, in [22] the ε-fat-shattering
dimension is called Pγ dimension (the latter name comes from the fact that it is a gener-
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Lemma 4.4 Let F be a family of [0, 1]-valued functions with finite V C dimen-
sion. There exists an absolute positive constant C such that for every positive
integer n

Rn(F ) ≤ C
√

V C(F )

Proof. Propositions 7.5 and 7.6 imply that for a family F of [0, 1]-valued
functions with finite V C dimension, for ε ≤ 1 the ε-fat-shattering dimension
can be bounded from above as follows in terms of V C dimension:

fatε(F ) ≤
(
2
⌈ 1

2ε

⌉
− 1

)
V ε

2
(F ) ≤

(2

ε
− 1

)
V (F ) ≤

(2

ε
− 1

)
V C(F ), (4)

which is a polynomial in 1/ε of degree lower than 2.
As for ε ≥ 1 N (ε, F,L2(µn)) = 1 for every family of [0, 1]-valued functions,

one has
∫∞
0

( ln N (ε, F,L2(µn)) )1/2 dε =
∫ 1

0
( ln N (ε, F,L2(µn)) )1/2 dε . By (4)

and Theorem 7.4, there exist absolute positive constants C, C1, and C2 such
that

∫ 1

0

(
lnN (ε, F,L2(µn))

)1/2

dε ≤
∫ 1

0

(
ln

(
2
ε

)C1fatC2ε(F )
)1/2

dε

≤
∫ 1

0


ln

(
2
ε

)C1

�
2

C2ε−1
�

V C(F )



1/2

dε

=
∫ 1

0

(
C1

(
2

C2ε
− 1

)
V C(F )

) 1
2

(
ln

(
2
ε

))1/2

dε .

Note that in the statement of Theorem 7.4 the value of the positive constant
C2 is not given, however the second inequality above would be true also for
C2ε > 1, since it is easy to check that, for a class F of [0, 1]-valued functions,
fatC2ε(F ) = 0 if C2ε > 1.
By standard integrability criteria we get

∫ 1

0

(
C1

( 2

C2ε
− 1

)
V C(F )

)1/2
(

ln
(2

ε

) )1/2

dε ≤ C(V C(F ))1/2.

Putting all together, we get

∫ ∞

0

(
lnN (ε, F,L2(µn))

)1/2

dε ≤ C(V C(F ))
1
2 .

alization of the pseudo-dimension P , introduced in [23]). Moreover, the definition of V
dimension given in [22] is very similar, but not identical, to the definition of V C dimension
for a family of real-valued functions. However, the upper bound V (F ) ≤ V C(F ) stated in
Proposition 7.5 follows easily from their definitions.
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We conclude by Theorem 7.3 and by performing the average with respect
to {ti}. This last step is due to the fact that Rademacher’s complexity is the
average, with respect to {ti}, of the first side of Dudley’s integral formula. 2

The next theorem improves the bound on the sup-norm approximation
error derived in [10] (reported here as Theorem 3.2), using V C dimension as
in Theorem 3.2, instead of Rademacher’s complexity as in Theorem 4.3.

Theorem 4.5 Let X ⊆ Rd, λ ∈ L1(X), f be a function on X having the
representation f(x) =

∫
X

Kx(t) λ(t) dt, and h the V C dimension of the family
{Kx}. For every positive integer n, there exist t1, . . . , tn ∈ X, c1, . . . , cn ∈
{−1, 1}, and an absolute positive constant C such that:

i) if for all x and t one has 0 ≤ Kx(t) ≤ 1, then

sup
x∈X

∣∣∣f(x)− ‖λ‖1

n

n∑
i=1

ciKx(ti)
∣∣∣ ≤ C ‖λ‖1

√
h

n
;

ii) if there exists τ > 0 such that for all x and t one has |Kx(t)| ≤ τ , then

sup
x∈X

∣∣∣f(x)− ‖λ‖1

n

n∑
i=1

ciKx(ti)
∣∣∣ ≤ 2τC ‖λ‖1

√
h

n
.

i) When λ assumes both positive and negative values, the Rademacher’s
complexities of F = {Kx(t)} and Fλ = {Kx(t) sign(λ(t))}, where sign(z) = −1
for z < 0 and sign(z) = 1 for z ≥ 0, are the same. So, the statement follows
from Theorem 4.3 and Lemma 4.4.

ii) The case −τ ≤ Kx(t) ≤ τ can be reduced to i) by considering the

class F τ of translated and scaled functions defined as F τ 4
=

{
Kx(t)+τ

2τ

}
, which

is a class of [0, 1]-valued functions. It easily follows from the definition of
V C dimension that V C(F ) and V C(F τ ) are equal. Indeed, the effect of a
translation τ is a corresponding translation of the constant α appearing in the
definition of V C dimension, while the subsequent scaling does not change the
associated classification rule. 2

For a discussion on how the absolute positive constant C in Theorem 4.5
can be estimated, see Section 6. However, even without knowing C, one can
see that Theorem 4.5 improves Theorem 3.2, at least for sufficiently large
values of n, thanks to the absence of the extra factor ln((2en)/h). Further
improvements may be obtained by evaluating C and directly using the ε-fat-
shattering dimension instead of the V C dimension. Here we have chosen to
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use the V C dimension for two reasons: i) to allow an immediate comparison
with the results reported in [10, 11, 12]; ii) from the practical point of view,
estimates of the V C dimension for these cases were already available. Note
also that basically, the reason for which Theorem 4.5 improves Theorem 3.2
is that it has been derived exploiting bounds based on Talagrand’s inequality,
instead of the union-bound technique.

5 Application to radial-basis-functions approx-

imation schemes

In this section we derive upper bounds on the approximation error by cer-
tain radial-basis-functions approximation schemes, i.e., approximation schemes
having for a positive integer n the form

n∑
i=1

ci k(x− ti) ,

where c1, . . . cn ∈ R, ti, . . . , tn ∈ Rd, and k : R → R is a radial function. In
particular, we consider the following basis functions: the Bessel potentials and
the Gaussian. Throughout this section, we set X = Rd.

The d-dimensional Fourier transform is defined as the operator from L2(Rd)
to L2(Rd) such that, when restricted to f ∈ L1(Rd), one has

f(x) 7→ f̂(s) =
1

(2π)d/2

∫

Rd

ei〈x,s〉 f(x) dx ,

where 〈·, ·〉 denotes the Euclidean inner product in Rd. The operator is then
continuously extended on L2(Rd) as in [32].

For r > 0, βr is the Bessel potential of order r, defined as the function
βr : Rd → R with the Fourier transform

β̂r(s) = (2π)−
d
2 (1 + ‖s‖2)−r/2 .

For every r > 0, βr ∈ L1, βr is non-negative, radially-decreasing with expo-
nential decay at infinity, and analytic except at the origin ([24], [25, p. 132]).
If r > d/2, then βr ∈ L2. Moreover, for r > d it is continuous [4, p. 105]. For
applications of Bessel potentials see, e.g., [26].

We shall consider the family F1
r of functions defined as

F1
r

4
=

{
f : Rd → R | f = βr ∗ λ , λ ∈ L1

}
, (5)

where for two functions g, h : Rd → R, (g ∗h)(x)
4
=

∫
Rd g(y)h(x−y)dy is their

convolution.
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For every integer p ∈ [1,∞), if f ∈ L1 and g ∈ Lp then f ∗ g ∈ Lp and
‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p [27, Section IV.4]. So, for every r > 0 one has F1

r ⊂ L1.
The space F1

r is called Sobolev potential space (or Sobolev-Liouville space) of
order 1; it is a normed space with the norm ‖ · ‖F1

r
defined for every f ∈ F1

r

as ‖f‖F1
r

4
= ‖λ‖1.

Let KBessel
r,x (t)

4
= βr(x−t). The following estimate improves [10, Proposition

3.1].

Corollary 5.1 Let d be a positive integer, r > d and hr the V C dimen-
sion of {KBessel

r,x }. For every f ∈ F1
r and every positive integer n, there exist

t1, . . . , tn ∈ Rd, c1, . . . , cn ∈ {−1, 1}, and an absolute positive constant C such
that

sup
x∈Rd

∣∣∣f(x)− ‖λ‖1

n

n∑
i=1

ci βr(x− ti)
∣∣∣ ≤ 2τC ‖λ‖1

√
hr

n
.

where τ > 0 is such that |βr(z)| ≤ τ for every z ∈ Rd.

Proof. As r > d, βr is continuous and radially-decreasing with exponential
decay at infinity, there exists τ > 0 such that, for all z ∈ Rd, one has |βr(z)| ≤
τ . The statement follows by Theorem 4.5 ii). 2

Corollary 5.1 gives a bound on the error of approximation by linear com-
binations of translates of the Bessel potentials of order r. Unfortunately, as
noted in [10], both the analytic expression of βr and the V C dimension of the
family {KBessel

r,x } are unknown.
In [10], the integral representation from [25, p. 132] of the kernel βr in

terms of Gaussians of different widths was used to derive a bound on the error
of approximation of functions from F1

r by a linear combination of Gaussians
with different widths and centers [10, Proposition 3.2]. Instead of using [25,
p. 132], in the following we derive directly an integral representation of βr

in terms of Gaussians. Then, we improve the bound [10, Proposition 3.2] by
exploiting such a representation and Corollary 5.1.

Recall that Gaussian radial-basis-function computational units compute
scaled and translated Gaussian functions on Rd. Let γ, γb : Rd → R denote
the Gaussian function and the Gaussian function scaled by b > 0, resp., i.e.,

γ(x) = e−‖x‖
2

and γb(x) = e−b‖x‖2 .

Corollary 5.2 Let d be a positive integer and r > d. For every f ∈ F1
r and

every positive integer n, there exist t1, . . . , tn ∈ Rd, b1, . . . , bn ∈ R, c1, . . . , cn ∈
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{−1, +1}, and an absolute positive constant C such that

sup
x∈Rd

∣∣∣f(x)− 2−d/2 Γ(r/2− d/2)
Γ(r/2)

‖λ‖1
1
n

n∑

i=1

ci e
− ‖xi−ti‖2

bi

∣∣∣

≤ C 2−d/2 Γ(r/2− d/2)
Γ(r/2)

‖λ‖1

√
d + 3

n
, (6)

where Γ denotes the Gamma function.

Proof. The Fourier transform of the Gaussian function is a scaled Gaussian
multiplied by a scalar: for every b > 0,

γ̂b(s) = (2b)−d/2γ1/4b( s) . (7)

For every positive integer d and every r > 0, one has

β̂r(s) =
1

Γ(r/2)

∫ ∞

0

ur/2−1 e−u(1+‖s‖2) du , (8)

where Γ(z)
4
=

∫∞
0

tz−1e−t dt is the Gamma function. To see this, let I
4
=∫∞

0
ur/2−1 e−u(1+‖s‖2) du and v

4
= u(1 + ‖s‖2). Then, du = dv(1 + ‖s‖2)−1 and

I = (1 + ‖s‖2)−r/2
∫∞

0
vr/2−1 e−v dv = β̂r(s)Γ(r/2).

By (7) with b = 1 and (8) we get

βr(x) =
2−d/2

Γ(r/2)

∫ ∞

0

u
r−d
2
−1 e−

‖x‖2
4u e−u du.

Thus, every f = βr ∗ λ can be written as

f(x) =
2−d/2

Γ(r/2)

∫ ∞

0

∫

Rd

e−
‖x−t‖2

4u Λ(u, t) dt du ,

where Λ(u, t)
4
= e−u u

r−d
2
−1 λ(t) is integrable as r > d and

∫∞
o

e−u u
r−d
2
−1 du =

Γ(r/2−d/2). So, we can apply Theorem 4.5 i)4 with the kernel KGauss
x (t, u)

4
=

e−
‖x−t‖2

4u . Moreover, we can also estimate from above the V C dimension of
the family {KGauss

x } as follows. As in the proof of [11, Proposition 5] we note
that, since the exponential function is one-to-one, it is sufficient to bound from

above the V C dimension of the family
{
−‖x−t‖2

4u

}
, where x plays the role of

a parameter, and (t, u) ∈ Rd × [0,∞) is the variable. By definition, the V C

4Inspection of the proof of Theorem 4.5 shows that it can be extended to the case of a
parameter space different from X (even with a dimension different from the dimension d of
X).
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dimension of
{
−‖x−t‖2

4u

}
is equal to the V C dimension of the class of binary

classifiers associated with
{
−‖x−t‖2

4u
+ α , α ∈ R

}
. As

−‖x− t‖2

4u
= −‖t‖

2

4u
+

x · t
2u

− ‖x‖2

4u
,

each element of
{
−‖x−t‖2

4u
+ α

}
, with parameters x and α, is a function of

(t, u) that can be expressed as a linear combination of the d + 3 functions

1,
1

u
,

t1
u

, . . . ,
td
u

,
‖t‖2

u
.

Hence, by [28, Theorem 1] the V C dimension of the family {KGauss
x } is at most

d + 3. 2

Corollary 5.2 improves [10, Proposition 3.2], as the multiplicative term√
d + 3 in the numerator replaces the term

√
(d + 1) ln 2en

d+1
+ ln 4 therein.

Note that various Authors derived upper bounds of the order O
(√

1
n

)
for

approximation schemes formed by linear combinations of various kinds of com-
putational units: Gaussian radial basis functions [4, 29], sigmoidal neural net-
works [1, 30], hinging hyperplanes [2], sines and cosines with variable frequen-
cies and phases [3], etc. So the estimate from [10, Proposition 3.2] is worse
than the above-mentioned ones, whereas our bound from Corollary 5.2 has the
same order.

6 Discussion

Relationships with other works. In [31], estimates of the approximation
error in the L∞-norm were derived for certain variable-basis approximation
schemes, using techniques different from those exploited in this paper.
A measure-theoretic formulation. To derive our estimates by applying
Talagrand’s inequality (here in the form of Theorem 7.1), we have considered

the representation f(x)
‖λ‖1 =

∫
X

Kx(t)
λ(t)
‖λ‖1 dt as the expected risk relative to the

function Fx(t) = Kx(t) sign(λ(t)), and the probability density |λ(t)|/‖λ‖1.
More generally, one can use the following measure-theoretic approach, which
allows one to deal with the case in which one cannot define a probability
density function in the classical sense.

Let

f(x) =

∫

X

Kx(t) dµ ,
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where µ is a real signed measure with bounded total variation |µ| [32, Sections

6.1 and 6.2]. Define the positive and negative variations of µ as µ+ 4
= 1

2
( |µ|+µ)

and µ−
4
= 1

2
( |µ| − µ), resp., which are two positive and bounded measures

[32, Section 6.4]. Then, µ = µ+ − µ− and |µ| = µ+ + µ−. By the Hahn
Decomposition Theorem [32, Section 6.14], there exist two disjoint sets A, B
such that A ∪B = X, dµ+ = d|µ| on A, dµ− = d|µ| on B and

f(x) =

∫

X

Kx(t) dµ =

∫

A

Kx dµ+ −
∫

B

Kx(t) dµ− .

Then we get

f(x) =
∫

A
Kx(t) d|µ| −

∫

B
Kx(t) d|µ| =

∫

X
Kx(t) [IA(t)− IB(t)] d|µ|

=

∫
X Kx(t) [IA(t)− IB(t)] d|µ|∫

X d|µ|
∫

X
d|µ| ,

where IA and IB are the indicator functions of the sets A and B, resp., and
we have multiplied and divided by

∫
X

d|µ| to get a probability measure.
Now one can apply Theorem 7.2 to the family of functions FA,B = {KA,B

x }
with KA,B

x

4
= Kx(t) [IA(t)− IB(t)]. As the function IA(t) − IB(t) can take

only the values +1 and −1, the Rademacher’s complexity of the family FA,B =
{KA,B

x } is equal to that of the family F = {Kx}.
Localized Rademacher’s complexity. In [16], an improvement of classical
SLT bounds was derived in terms of a quantity called localized Rademacher’s
complexity. We do not report here the definition of such a complexity but we
recall that it can be used to improve SLT results as it allows one to bound the
probability

Prob
{
∃Fx ∈ F |Remp(Fx, {ti}) ≤ ε, R(Fx) ≥ 2ε

}
.

Indeed, in SLT this quantity is more interesting than

Prob
{

sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≤ ε
}

(9)

since, in order to obtain an approximation of the minimum of the expected
risk, it is sufficient having a small estimation error when the observed empirical
risk is small.

However, to derive approximation bounds from SLT bounds, the localized
Rademacher’s complexity cannot be fruitfully used (at least not in a straight-
forward way), because in this context what one needs is a bound of the form
(9). Indeed, following Girosi’s [10] approach, (9) gives a bound on the sup-
norm error for the function one wants to approximate, while the bound based
on the localized Rademacher’s complexity does not.
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Computations of the constants. The absolute positive constant C in The-
orems 4.3 and 4.5 can be computed by using the values (or upper bounds on
the values) of:

• the absolute positive constant C in Talagrand’s inequality (Theorem 7.1),
required to compute the absolute positive constant C in Theorem 7.2 or
equivalently the absolute positive constant C in Theorem 4.2;

• the absolute positive constant C in Theorem 7.3;

• the absolute positive constants C1 and C2 in Theorem 7.4;

• the absolute positive constant C2 in the proof of Lemma 4.4.

As regards the constant in Theorem 7.3, the value C = 12 has been derived
in [33]. For a value of the constant in the Talagrand’s inequality (in a different
form than the one reported in Theorem 7.1), see [34].
Improvements of other estimates. The estimates in [11, 12] were derived
using similar techniques as in [10]. So, it turns out that our Theorems 4.3
and 4.5 can be applied also to improve the bounds in [11, 12] (in particular,
[11, Corollary 3] and [12, Theorem 4 and Proposition 5]).

7 Appendix

Theorem 7.1 (Talagrand’s inequality [16]) Let PX be a probability dis-
tribution on X ⊆ Rd, {ti} be a PX-i.i.d. sequence of n points in X, and F a
set of [−1, 1]-valued functions on X. There exists an absolute positive constant
C ≥ 1 such that for every 0 < δ < 1, every 0 < ε < 1, and every positive

integer n ≥
⌈

4C2

ε2 ln 1
δ

⌉
, the following bound holds with probability at least 1−δ:

sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≤ 2Et1,...,tn

{
sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})|
}

+
3ε

4
.

Theorem 7.2 (SLT bound via Rademacher’s complexity [16]) Let PX

be a probability distribution on X ⊆ Rd, {ti} be a PX-i.i.d. sequence of n points
in X, and F a set of [−1, 1]-valued functions on X. There exists an absolute
positive constant C such that for every 0 < δ < 1, every 0 < ε < 1, and every

positive integer n ≥
⌈

C
ε2 max

{
R2

n(F ), ln 1
δ

}⌉
, the following bound holds with

probability at least 1− δ:

sup
Fx∈F

|R(Fx)−Remp(Fx, {ti})| ≤ ε .
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Theorem 7.3 (Dudley’s integral [16]) Let F be a family of functions on
X ⊆ Rd, µn be the empirical measure supported on n samples {ti} ⊂ X, and
N (ε, F,L2(µn)) be the ε-covering number of F with respect to L2(µn). There
exists an absolute positive constant C such that for every positive integer n the
following holds:

Eε1,...,εn

{
1√
n

sup
Fx∈F

∣∣∣∣∣
n∑

i=1

εiFx(ti)

∣∣∣∣∣

}
≤ C

∫ ∞

0

(
lnN (ε, F,L2(µn))

)1/2

dε .

Theorem 7.4 (Bound on ε-covering numbers [16, 35]) Let X ⊆ Rd ,
F a set of [−1, 1]-valued functions on X, µ a probability measure on X,
N (ε, F,L2(µ)) the ε-covering number of F with respect to L2(µ), and fatε(F )
the ε-fat-shattering dimension of F . There exist absolute positive constants C1

and C2 such that for every 0 < ε < 1 the following holds:

N (ε, F,L2(µ)) ≤
(2

ε

)C1 fatC2ε(F )

.

Proposition 7.5 (Vε, V and VC dimensions [22]) For every family F of
real-valued functions that are uniformly bounded in the sup-norm and every
ε > 0,

Vε(F ) ≤ V (F ) ≤ V C(F ) .

Proposition 7.6 (Vε and fatε dimensions [22]) For every family F of real-
valued functions that are uniformly bounded in the sup-norm and every ε > 0,

Vε(F ) ≤ fatε(F ) ≤
(
2
⌈ 1

2ε

⌉
− 1

)
V ε

2
(F ) .

Remark. The bound V (F ) ≤ V C(F ) actually does not appear in [22], but it
follows easily from the (slightly different) definitions of V dimension and V C
dimension for a family of real-valued functions. In fact, in the definition of
V C dimension the parameter α can vary with x, but this does not hold in the
definition of V dimension.
Remark. Propositions 7.5 and 7.6 were derived in [22] for [0, 1]-valued func-
tions but, for every a > 0, they hold for classes of [−a, a]-valued functions. To
see this, given one such class F , first add to each of its functions the value a,
so that the interval where they take values becomes [0, 2a]. The V C, V Cε, and
fatε-shattering dimensions of the new class are the same as those of F (just
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imagine to translate by a the quantities used in the definitions). Then, one
goes from [0, 2a] to [0, 1] by scaling the function values. In doing so, from the
definitions one can see that the V C dimension does not change, whereas the
ε-dependent dimensions are modified as follows: the value ε for a class F of
[0, 2a]-valued functions corresponds to the value ε/(2a) for the same class of
functions scaled in [0, 1].
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