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The shape of a flexible polymer in a cylindrical pore
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We calculate the mean end-to-end distaitef a self-avoiding polymer encapsulated in an
infinitely long cylinder with radiu®. A self-consistent perturbation theory is used to calcuibtes

a function ofD for impenetrable hard walls and soft walls. In both casesbeys the predicted
scaling behavior in the limit of large and smd)l. The crossover from the three-dimensional
behavior (D —) to the fully stretched one-dimensional cade— 0) is nonmonotonic. The
minimum value ofR is found atD ~ 0.46R;, whereRc is the Flory radius oR atD — . The results
for soft walls map onto the hard wall case with a larger cylinder radiu20@ American Institute
of Physics[DOI: 10.1063/1.1903923

I. INTRODUCTION lengthL, confined to the interior of a cylinder of radil
We are primarily interested in how the mean end-to-end dis-
Beginning with the observation by Kuhthat polymer  tanceR of the polymer changes as a function®fand the
coils are asymmetric even in dilute solutions, a number oktrength of the interaction between the cylinder and polymer.
studies have characterized the anisotropy of polymer clRainsDaoud and de GennEwmbtained, using scaling argumerfss,
Polymer molecules in good solvents, modeled using the Edwhen the interaction with the cylinder is purely repulsive. As
wards model, are more anisotropic than Gaussian polymem® — o, the cylinder has no effect on the mean end-to-end
because the number of ellipsoidal conformations in selfdistanceR, which implies thatR~R-~IN”, wherel is ap-
avoiding chains is far greater than spherical conformatfons.proximately the size of one monome¥, is the number of
The anisotropy of polymers, which is relevant in a number ofmonomers, and the Flory exponent3/(d+2)=0.6 ind
applications involving polymer dynamiéspecomes even =3 dimensions. A —0, the polymer is effectively con-
more pronounced in confined spaces. Nanop¢stts, cyl- fined tod=1. In the confined environment, there are only
inders, and gejsalign the polymer coils and distort their two relevant length scale®: andD, so that aD/R:-—0,
orientations, even when the characteristic confining volume&nd using the scaling assumption, we can Wtite
is rglatlvely !arge compargd tq the polymer volurife. R~ R:A(RD). (1)
Confinement-induced alterations in the shape of a polymer is
also relevant in biological applications. For example, aAs R-/D— o, the chain is stretched in one dimension and
newly synthesized polypeptide chain transits the ribosom@ecomes rodlike, thus resembling a one-dimensional self-
through a roughly cylindrical exit tunnel. The extension isavoiding walk. The scaling functiof(x) takes the form
perhaps achieved by an effective stretching fZ)rd@
F(x) ~ {l X—0

XM X — o,

~akgT/D, whereT is the temperaturekg is Boltzmann’s

constantD (=1 nm) is the radius of the exit tunnel, andis

a constant. The magnitude &f that is appropriate to the . .

structure of the tunnel in the ribosome is between 4-10 pN\,N.h.ere the unknown exponentis dftermmed fro_m the con-

depending onea, which is large enough to unfold long d'“‘s’{} R~N asx—, i.e., u(m+1)=1, so tham=2/3 and

stretches of proteins at low pulling speddsnother example thu

is the encapsulation of a protein in the roughly cylindrical | \2/3

cavity of the Escherichia colichaperonin GroEL. In this R~ |N(5> . 3)

case, substrate proteins are confined for a duration of time in

a nanopore, which can enhance unfolding rates. In a ver¥he prefactor in Eq(3), which is a complicated function of

direct application, Tegenfeldt al'® have directly measured D and the polymer-cavity interactions, is difficult to com-

the genomic length of DNA molecules by trapping them inpute. In this article, we calculate for arbitrary values oD

cylindrical nanochannels. by adapting the Edwards—Sindg&S) (Ref. 12 uniform ex-
Motivated in part by the above observations, we con-pansion method, which has been used in a number of

sider the behavior of a self-avoiding polymer of contourapplications.****Note that, without the inclusion of an ex-

2)
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cluded volume term, the system will converge on a one- o _ 1 2D?
dimensional random walk, so thR~INY2, with no depen- (R =3LIp + WZ
dence orD. n
The remainder of the paper is orgapized as follgws: In y 1 1 4 e_aénllLIGDz— ie—afnllL/GDz
Sec. Il, we calculatd for a polymer confined to a cylinder o2 a2 2,

with infinite polymer-cylinder repulsion. These calculations L

are repeated for soft walls in Sec. lll, and the differences = sLI1+(R)), (6)
between the two systems are determined. Finally, the effect
of short ranged monomer-monomer interactions is briefly de
scribed in Sec. IV.

Wwhere N=% exp(— a0n 1L/6D2)/ ag,- The transverse term of
the end-to-end distancgR3)=(x?)+(y?), scales as(R3)
~D? as D—0, implying that(z%=1,L/3~D?® as D—0
[see Eq(3)].

Taking a derivative of R? gives12 Slzli(lll
Il. HARD WALLS -1/1,)d(R?/dl,, and we find

A self-avoiding chain is described by the Edwards o1 1 1 4  (R5)
Hamiltoniart?  BH[r(s)]=3/2[5ds%(s)+B,, where B, §=3U ( _E>{1_NE {(1_g_ﬁ)
=Vo/[5/5ds dg8®[r(s)-r(s')] andV, is the strength of the N "
self-avoiding interaction. Following ES, we replace the Xe_aénllL/(SDz—e_ainllL/6D2:|}
true Hamiltonian by a reference GaussiandH, '
=3/2,[5ds%(s), where the effective step lengthis deter-
mined by the ES method. We writ@H =Hq+B,+B,, The second term in Ed4) is more complicated, but is
where B;=3(1/1-1/1,)/2f5dsXs). We find** R2  simplified by splitting the averages into confined and uncon-
=(RY=[drodr S D[r(9)](r.-ro)?exp(-BH[r(s)]) ~ (R?), fined terms. The unconfined averages are calculated by

)

- A+0(B?), with completing the square in the exponent after Fourier trans-
forming 5[2(5’)—2(5”)].5’12 To computeS, we define
= ((R?B1)o — (R?)o(B1)o) + (R*B2)o — (R%)o(B2)o), ~ Il snX) It X) I tmnX)
(m,{n}) dx X and
(4) ‘]k+1(aknl) Jk+1(a’kn3) ‘]m+1(amnz)

(8)

and where(---), denotes an average over the reference
Hamiltonian 8H,. The optimal value of, is chosen to sat- L
isfy (R%=(R?),, which is possible only iA=0. The con- Edm{n};t,t") = Ik(m,{ni})ex;<— @[aknlk + |t = ']
dition A=0 results in a complicated self-consistent equation
for |,. For the unconfined case, ES shoWetthat higher or-
der terms in thds;'s merely alter the numerical coefficient of * akms(l —t), ©)
I, without affecting the Flory scaling laws. Thus, higher or- ) ) )
der terms will be ignored in this paper. For the remainder ofvhere the “time ordering” variables. andt.., are
the paper, all averages are taken with respect to the reference { t t<t {t’ t<t’
Hamiltonian 7, so the subscripts on the brackets will be  t- >= (10
dropped. We also defing =(R? B;)—(R?}(3;).

To calculateA, the Green’s function for the reference with t=s'/L andt’=s"/L. In terms of these quantities, we
Hamiltonian in a cylinder needs to be determined. Becausénd
of the infinitely repulsive polymer-cylinder interaction the

' t>t, t t>t

3
Green’s function vanishes at the walls of the cylinder. The Sz_ 2 /e > f f dt dt —2—
resulting Green’s function obeys the Heat Equation in an Ilm{n} V -
infinite cylinder, and the solution that satisfies the appropri- e e
ate boundary conditions, in terms of the cylindrical coordi- X< = Ea(m {ni}:t,t') + EO(m’{ni}’t’t )
natesr =(p, ¢,2), is** an, Cp, @on, @on,

2
(__<_'_||)} -

In the limit D— o, Eq.(11) converges to the Edwards—Singh
In(mnpo/D) In(@mnpr /D) e hhle?  (5) self-consistent equation for the unconfined cses.

erl(amn) m+1(amn) ( 1 1 6L3

S+S~12L | |1> 2V, A =0. (12

Glror ;L) =——25= Z(ZO ZL) E 2 cosm(¢ — ¢o)

m=-% n=0

where Gz(zo,zL):I%D(z)exp(—Blzlfgds'Z), J(x) is the
mth Bessel function, andy,, is its nth positive root. Using Thus, for large D, |,~(24V3%L/#%)Y5 and R~Re
Eq. (5), (R becomes ~ (24173 Y10(V,)5L35, As D— 0, the ground state domi-
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satisfies® dGXr,r';L)/ dp|,-p=CoGXr,r’;L), where C,
13 =o corresponds to the hard wall case. The Green’s function
12 in this case is
1.1 . X
Eu- 1 S . _ Gz an
o« G (rLaroyL)_ 2 2—
0.9 7TD2 m=—o n C27/r2nn
08 In(poBm D)
X cosm(¢ — ¢ )u
07 5204 o6 o8 1 12 12 LT (B
D/Re

Jn(PLBmr D) e_ﬁrznnllL/GDz
FIG. 1. Plots ofR/R¢ as a function 0D/Rg, for various values of andV,,. ‘]m(Ian) !
The lowest curve correspondsliél =1000 andVy/1=0.1 and the uppermost

C‘%QS?I hai/'ﬂﬁ‘i‘;lanl%\gé':od% ;hegela;ﬁ tWCt’hCO'”‘?'tCt;‘lt Cg&’)%s '”Jhe where we have defined the dimensionless paramefers
middle, one wi = andV,/1=0.1, the other wi = an _ _ 2 2 )

Vo/1=0.2. The minimum for all curves occur ne&@,,~0.46R-, with _D_CQ’ ym”_l+('8mn rr12)/C , and where thesys are the
Ruin~0.7Re. positive roots of

nates in Eq(5). Thus, only them,{n})=(0,0,0,0=0term B Bron) + C I Bnn) = 0. (19

in Eq. (5) makes an appreciable contribution. In this case, weVhenC>1, Byn~ ami(1-1/C), so thatGS~ (1-1/C)G by

find that a Taylor expansion. It can then be shown that, for large C,
Reoit~ (1 +4/5C)Rya¢ As D— 0, the results forR for the

L of1 1) 18V, [IL° -
S +S,~ 3L =-=]- 5\ = 3l00=0. (13 hard and soft walls coincide.
I 1/ 15D° Vér For finite C, the B,,,s cannot be easily related to the

For small cylinder radius, Eq. (13 gives I,  @mnS, SO we define

(14)

~0.393V,l/D?»?3L and R~0.627V,l/D?)Y3L, after 1,(0) (2 1,LI6D?
is evaluated. As predicted in E), R has the proper scaling Ns=2, ez—
from ND~3. Thus, in both thd — 0 andD — = limits, the n BanYon
expected scaling form is recovered, including the predicted (16)
dependence dR on D. — 2D2. e Pal1L/eD?

To determine the behavior @& for intermediate values RYy=—"2 "5
of the cylinder radius, the self-consistent equafiar0) can Ns ™ '80“7%”
be numerically solved fol, as a function oD, andR deter- 2 4 e Br1L/6D? 1\2
mined usingR=(LI,)*2. Figure 1 showsR/R for different X (1 +—- —2) - 2—(1 + —)

c IBOn Blnﬁn C

values ofL and V. All of the plots are virtually identical,

which implies that the only difference between the systems igpq B, averages are easily computed by taking a derivative

the numerical value oRg. As D/Rr exceeds unityR—Re ¢ Eqg. (16), as in Eq.(7). The B, averages are tedious to
from below (Fig. 1). In accordance with the scaling predic- 5culate. but give

tions, R/Rg increases substantially even under moderate

squeezindD/Re~0.2). Surprisingly, the crossover from the 2 6L3 Bﬁmz 11 Vo

coil state(D/R->1) to the stretched statéD/R-<1) is Sz:j\_/— = > iy f f dtdt =g
nonmonotonic. There is a minimum R~ 0.73R: at Dy, S tmin} > Fmn, 0 0 V-t
~0.48R: (Fig. 1. This behavior, which has been previously = ety 2 B et pr
observed for polymers confined to a sift,is due to X9\ - M(l 1) + M
confinement-induced anisotropy in the polymer conforma- Vinlyi% 7%“17’3“3
tions. Monte Carlo simulations by van Villiet and ten Brifike —

show thatR,;,~0.8Rt in a slit, which shows that confine- % (1 2_2 2 @ - |1_L|t _ t’|)

ment in a cylinder squeezes the polymer somewhat more c Bénl Bgn3 2D?  6D? ’
than in a slit. 17)

IIl. SOFT WALLS whereEk(m,{ni};t,t’) is identical toEk(m,{_ni};t,t’) in Eq.

In real systems, the interaction between the polymer an@9), except thaiv,,,— By, and I (m,{n;}) — I, (m,{n;}), with
the cylinder is not infinitely hard. It is therefore important to ’
calculateR in the case of soft walls. By soft walls, we mean  — _ ! ‘,‘]k(ﬁknlx) Jk(,Gkn3x) Jm('gmwx)
hat the i ion b he pol d the wall can b 'k(m’{”i})‘J dxx 2 - 19
that the interaction between the polymer and the wall can be 0 IBiny) I Brny) In(Brnn,)
represented by a repulsive, nonhard sphere potential, which
in the corresponding heat conduction problem requires radiaAs C— 0, it can be shown that E415) gives Byo~ V2C. In
tive boundary conditions. In the hard wall ca&dy’,rq;L) the smallD limit, for a finite Cy, we findS; converges to the
=G(r,,r’;L)=0, withr'=(D, ¢,2). If the walls are soft then first term in Eq.(13), andS,~—-8V,/15D?(I,L/67°)Y?, im-
the Green’s function does not vanish at the boundaries, byilying |;~0.2301V,/D??3L and R~ 0.526V,|/D?)3L.

Downloaded 01 Feb 2010 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



194907-4 G. Morrison and D. Thirumalai J. Chem. Phys. 122, 194907 (2005)

unaltered for a heteropolymer confined to a cylinder, pro-

0.95 vided the effective intramolecular interaction is not strong
09 enough to induce chain collapse.
085
oc
x 08
075
07 V. CONCLUSIONS

02 03 04 05 06 07 08

D/Re¢ Inspired by a number of physical situations, we have
FIG. 2. Dependence &/R¢ as a function oD /R for various values o€,. calcglated the defpenden,ce of the size of a F’Olymer, molecule
The solid line corresponds ©y/1=10%, the dotted line is foC,/1=0.5,and ~ cONfined to a cylinder using the Edwards—Singh uniform ex-
the dashed line represer@s/1=10". The values oL/l andV,/| are 1000  pansion method. The theory presented here provides an ap-
and 0.1, respectively proximate formula for the dependence of the end-to-end dis-

tanceR for arbitrary values of the cylinder radius. The

The scaling laws are unchanged by the softness of the wallghajor conclusions of the study are as follows.
only the numerical coefficients are altered.

The numerical solution foR as a function ofD with
varying C, shows thaR,,;,~0.75R¢ as in the hard wall case
(Fig. 2. However, asC, decreasesp,,, decreases from
~0.46R: to ~0.32R: (Fig. 2). Thus, the soft wall behaves as
a hard wall with a somewhat larger effective radilDs
=D+6D. For D=D,,, a shift of 6D ~ D in(%*) = Dyin(Co) value ofD
causeR to coincide with the end-to-end distance in the hard i

wall case. If we account for this shift, we find that the Valuesself-(ggn\é\i/:tehnivg Ezltci:g:,atesdjr br)i/Sirrl]uzneerc:IIf)éus:(;v[[r;% t:riss-
of R for both cases differ at most by 5% f&r=D,,;,. Be- q ) P g,

cause the scaling laws change drastically for sniglla over from the three-dimensional behavier— < limit) and

simple shift inD is not sufficient to reducR to the value for th_e _fuIIy stretched I|m|t(D—>Q casg is nonmonotonic. The
minimum value ofR~ 0.79R¢ is found atD ~ 0.46R- when
hard walls forD <D .

the wall is infinitely hard. This is because the wall induces an
orienting field that enhances the anisotropy of the polymer.
This effect is greater for an encapsulated polymer in a cylin-
der compared to slit confinement.

(iii) A direct calculation shows that asymptotic scaling
Typically, there are interactions between monomers bel_aws are the same for both hard and soft walls. Any soft wall

sides the universally present excluded volume interaction<a" be replgced by an equivalent hgrd Wa_” with a larger
As long as these interactions are short ranged, the potenti&Y!inder radius, provided the wall-cylinder interaction re-
between monomerss, and s, can be modeled as Mains shortranged.

By=—wdr(s))-r(sy)], where As=s,~s,>0. The insertion

of this potential into Eq.(4) leads to Vo— Vy—wd(s

-8))8(s"-s,) =Vo— wd(t—t;) 8(t’ —t,)/L? in Eq. (11), so that

for infinitely hard walls,S;~ w(3/87°,As)Y2 asD —«, and ~ACKNOWLEDGMENTS

S;~2wlo(0)/D? (1,As/67%)Y? as D—0. Inclusion of

monomer-monomer interactions for a polymer confined to ~ The constructive comments from Professor Michael E.
soft walls yields the same scaling behavior in both limits, theFisher are deeply appreciated. The authors would like to
only change being the numerical coefficients. Comparison ofhank Margaret Cheung and Ed O’Brien for numerous useful
these scaling laws with Eqé&L2) and(13) shows that there is  discussions. This work was supported in part by a grant from
an effective shift in the strength of repulsion due to a monothe National Science Foundation.
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(i) The theory yields, in the appropriate limits, the pre-
dicted scaling laws foR as a function oD. In particular, the
expected scaling function is obtained in the- 0 limit. The
advantage of the theory is that the numerical factors that are
difficult to obtain using scaling argumehtshave been ex-
plicitly calculated. This allows for a calculation & for any

IV. EFFECT OF MONOMER-MONOMER
INTERACTIONS ON R
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