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Single molecule Förster resonance energy transfer �FRET� experiments are used to infer the
properties of the denatured state ensemble �DSE� of proteins. From the measured average FRET
efficiency, �E�, the distance distribution P�R� is inferred by assuming that the DSE can be described
as a polymer. The single parameter in the appropriate polymer model �Gaussian chain, wormlike
chain, or self-avoiding walk� for P�R� is determined by equating the calculated and measured �E�.
In order to assess the accuracy of this “standard procedure,” we consider the generalized Rouse
model �GRM�, whose properties ��E� and P�R�� can be analytically computed, and the Molecular
Transfer Model for protein L for which accurate simulations can be carried out as a function of
guanadinium hydrochloride �GdmCl� concentration. Using the precisely computed �E� for the GRM
and protein L, we infer P�R� using the standard procedure. We find that the mean end-to-end
distance can be accurately inferred �less than 10% relative error� using �E� and polymer models for
P�R�. However, the value extracted for the radius of gyration �Rg� and the persistence length �lp� are
less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration
increases for all polymer models. The relative error in the inferred Rg and lp, with respect to the
exact values, can be as large as 25% at the highest GdmCl concentration. We propose a
self-consistency test, requiring measurements of �E� by attaching dyes to different residues in the
protein, to assess the validity of describing DSE using the Gaussian model. Application of the
self-consistency test to the GRM shows that even for this simple model, which exhibits an order
→disorder transition, the Gaussian P�R� is inadequate. Analysis of experimental data of FRET
efficiencies with dyes at several locations for the cold shock protein, and simulations results for
protein L, for which accurate FRET efficiencies between various locations were computed, shows
that at high GdmCl concentrations there are significant deviations in the DSE P�R� from the
Gaussian model. © 2009 American Institute of Physics. �DOI: 10.1063/1.3082151�

I. INTRODUCTION

Much of our understanding of how proteins fold comes
from experiments in which folding is initiated from an en-
semble of initially unfolded molecules whose structures are
hard to characterize.1 In many experiments, the initial struc-
tures of the denatured state ensemble �DSE� are prepared by
adding an excess amount of denaturants or by raising the
temperature above the melting temperature �Tm� of the
protein.2 Theoretical studies have shown that folding mecha-
nisms depend on the initial conditions, i.e., the nature of the
DSE.3 Thus, a quantitative description of protein folding
mechanisms requires a molecular characterization of the
DSE—a task that is made difficult by the structural diversity
of the ensemble of unfolded states.4,5

In an attempt to probe the role of initial conditions on
folding, single molecule Förster resonance energy transfer

�FRET� experiments are being used to infer the properties of
unfolded proteins. The major advantage of these experiments
is that they can measure the FRET efficiencies of the DSE
under solution conditions where the native state is stable.
The average denaturant-dependent FRET efficiency �E� has
been used to infer the global properties of the polypeptide
chain in the DSE as the external conditions are altered. The
properties of the DSE are inferred from �E� by assuming a
polymer model for the DSE, from which the root mean
squared distance between two dyes attached at residues i and
j along the protein sequence �Rij = ��ri−r j���, the distribution
of the end-to-end distance P�R� �where R= �rN−r0��, the root
mean squared end-to-end distance �Ree= �R2�1/2�, the root
mean squared radius of gyration �Rg= �Rg

2�1/2�, and the per-
sistence length �lp� of the denatured protein6–15 can be
calculated.

In FRET experiments, donor �D� and acceptor �A� dyes
are attached at two locations along the protein sequence,4,16

and hence can only provide information about correlations
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between them. The efficiency of energy transfer E between
the D and A is equal to �1+r6 /R0

6�−1, where r is the distance
between the dyes, and R0 is the dye-dependent Förster
distance.4,16 Because of conformational fluctuations, there is
a distribution of r, P�r�, which depends on external condi-
tions such as the temperature and denaturant concentration.
As a result, the average FRET efficiency �E� is given by

�E� = �
0

�

�1 + r6/R0
6�−1P�r�dr �1�

under most experimental conditions due to the central limit
theorem.17 If the dyes are attached to the ends of the chain,
then P�r�= P�R�. Even if �E� is known accurately, the extrac-
tion of P�R� from the integral equation �Eq. �1�� is fraught
with numerical instabilities. In experimental applications to
biopolymers, a functional form for P�r� is assumed in order
to satisfy the equality in Eq. �1�. The form of P�r� is based
off of a particular polymer model which depends only on a
single parameter �see Table I�: the Gaussian chain �depen-
dent on the Kuhn length a�, the wormlike chain �WLC� �de-
pendent on the persistence length lp�, and the self-avoiding
walk �SAW� �dependent on the average end-to-end distance
Ree�. For the chosen polymer model meant to represent the
biopolymer of interest, the free parameter �a, lp, or Ree� is
determined numerically to satisfy Eq. �1�. Using this method
�referred to as the “standard procedure” in this article�, sev-
eral researchers have estimated Rg and lp as a function of the
external conditions for protein L,11,14 cold shock protein
�CspTm�,13 and Rnase H.16 The justification for using ho-
mopolymer models to analyze FRET data comes from the
anecdotal comparison of the Rg measured using x-ray scat-
tering experiments and the extracted Rg from analysis of
Eq. �1�.4

Here, we study an analytically solvable generalized
Rouse model �GRM�18 and the Molecular Transfer Model
�MTM� for protein L19 to assess the accuracy of using poly-
mer models to solve Eq. �1�. In the GRM, two monomers
that are not covalently linked interact through a harmonic
potential that is truncated at a distance c. The presence of the
additional length scale, c, which reflects the interaction be-
tween nonbonded beads, results in the formation of an or-

dered state as the temperature �T� is varied. A more detailed
discussion of these models can be found in Sec. IV. For the
GRM, P�R� can be analytically calculated, and hence the
reliability of the standard procedure to solve Eq. �1� can be
unambiguously established. We find that the accuracy of the
polymer models in extracting the exact values in the GRM
depends on the location of the monomers that are constrained
by the harmonic interaction. Using coarse-grained simula-
tions of protein L, we show that the error between the exact
quantity and that inferred using the standard procedure de-
pends on the property of interest. For example, the inferred
end-to-end distribution P�R� is in qualitative, but not quan-
titative agreement with the exact P�R� distribution obtained
from accurate simulations. In general, the DSE of protein L
is better characterized by the SAW polymer model than the
Gaussian chain model.

We propose that the accuracy of the popular Gaussian
model can be assessed by measuring �E� with dyes attached
at multiple sites in a protein.13,20,21 If the DSE can be de-
scribed by a Gaussian chain, then the parameters extracted
by attaching the dyes at position i and j can be used to
predict �E� for dyes at other points. The proposed self-
consistency test shows that the Gaussian model only qualita-
tively accounts for the experimental data of CspTm, simula-
tion results for protein L, and the exact analysis of the GRM.

II. RESULTS AND DISCUSSION

We present the results in three sections. In Secs. II A and
II B we examine the accuracy of the standard procedure �de-
scribed in Sec. I� in accurately inferring the properties of the
denatured state of the GRM and protein L models. Section
II C presents results of the Gaussian self-consistency �GSC�
test applied to these models. We also analyze experimental
data for CspTm to assess the extent to which the DSE devi-
ates from a Gaussian chain.

A. GRM

The GRM is a simple modification of the Gaussian chain
with N bonds and Kuhn length a0, which includes a single,
noncovalent bond between two monomers at positions s1 and

TABLE I. Polymer models and their properties.

Polymer model

Property

End-to-end distribution P�R� a Radius of gyration Rg Persistence length lp

Gaussian
4�R2	 3

2�Na2
3/2

exp	− 3R2

2Na2 
 a�N /6

Na2

2L
=

a

2

WLCb

4�R2C1

L�1 − �R/L�2�9/2exp	 − 3L

4lp�1 − �R/L�2�
 L

6C2
+

1

4C2
2 +

1

4LC2
3 −

1 − exp�− L/lp�
8C2

4L2

Ree
2 = 2lpL − 2lp

2 − 2lp
2 exp	−

L

lp



c

Self-avoiding polymerd

a

Ree
	 R

Ree

2+�

exp	− b	 R

Ree

�


N/A N/A

aThe average end-to-end distance Ree= ��R2P�R�dR�1/2.
bL and lp are the contour length and persistence length, respectively. C1= ��3/2e−��−3/2�1+3�−1+ 15

4 �−2��−1, where �=3L / �4lp�. C2=1 / �2lp�.
cUsing the simulated �R2�, lp was solved for numerically using this equation.
d� and � equal to 0.3 and 2.5, respectively. The constants a and b are determined by solving the integrals of the zeroth and second moment of �P�R�dr
=�R2P�R�dr=1, resulting in values of a=3.678 53 and b=1.231 52.
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s2 �Fig. 1�. The monomers at s1 and s2 interact with a trun-
cated harmonic potential with spring constant k, with
strength �=kc2 /2, where c is the distance at which the inter-
action vanishes �Eq. �4��. The GRM minimally represents a
two-state system, with a clear demarcation between ordered
�with �r�s2�−r�s1���c� and disordered �with �r�s2�−r�s1��
�c� states. Unlike other polymer models �see Table I�,
which are characterized by a single length scale, the GRM is
described by a0 and the energy scale �. For 	�→0 �the high
temperature limit, where 	=1 /kBT�, the simple Gaussian
chain is recovered �see Sec. IV for details�. By varying 	�, a
disorder→order transition can be induced �see Fig. 1�. The
presence of the interaction between monomers s1 and s2 ap-
proximately mimics persistence of structure in the DSE of
proteins. If the fraction of ordered states, fO, exceeds 0.5
�Fig. 1 inset�, we assume that the residual structure is present
with high probability. The exact analysis of the GRM when
�r�s2�−r�s1���c allows us to examine the effect of structure
in the DSE on the global properties of unfolded states.

Because �E� can be calculated exactly for the GRM �see
Eq. �5��, it can be used to quantitatively study the accuracy

of solving Eq. �1� using the standard procedure.6,10,11,13,14

Given the best fit for the Gaussian chain �Kuhn length a�,
WLC �persistence length lp�, and SAW �average end-to-end
distance Ree�, as described in Table I, many quantities of
interest can be inferred �P�R� or Rg, for example�, and com-
pared to the exact results for the GRM. The extent to which
the exact and inferred properties deviate, due to the addi-
tional single energy scale in the GRM, is an indication of the
accuracy of the standard procedure used to analyze Eq. �1�.

1. P„R… is accurately inferred using the Gaussian
polymer model

If the interacting monomers are located near the end
points of the chain, the end-to-end distribution function is
bimodal, with a clear distinction between the ordered and
disordered regions.18 However, if the monomers s1 and s2 are
in the interior of the chain, the two-state behavior is obscured
because the distribution function becomes unimodal. In Fig.
1, we show the exact and inferred P�R� functions for a chain
with N=63, a0=3.8 Å, c=2a0, and �s2−s1�= �N−1� /2=31.
We take the Förster distance �Eq. �1�� R0=23 Å
 �R2��=0

1/2

for the GRM. The distributions are unimodal for both weakly
�	�=2� and strongly �	�=6.6� interacting monomers.

The strength of the interaction is most clearly captured
with the fraction of conformations in the ordered state, fO,
with fO=0.25 for the weakly interacting chain and fO=0.75
for the strongly interacting chain �inset of Fig. 1�. The in-
ferred Gaussian distribution functions are in excellent agree-
ment with the exact result. Because of the underlying Gauss-
ian Hamiltonian in the GRM, the rather poor agreement in
the inferred SAW distribution seen in Fig. 1 is to be ex-
pected. We also note that the GRM is inherently flexible so
that the WLC and Gaussian chains produce virtually identi-
cal distributions.

2. The accuracy of the inferred Rg depends on the
location of the interaction

The two-state nature of the GRM is obscured by the
relatively long unstructured regions of the chain, similar to
the effect seen in laser optical tweezers experiments with
flexible handles.18 As a result, P�R� is well represented by a
Gaussian chain, with a smaller inferred Kuhn length, a�a0

�Fig. 2�. For large 	�, where the ordered state is predomi-
nantly occupied and r�s2�
r�s1�, the end-to-end distribution
function is well approximated by a Gaussian chain with N�

=N−�s bonds. Consequently, the single length scale for the
Gaussian chain decreases to a�a0

�1−�s /N
0.71a0 for
large values of 	� �Fig. 2�.

Because the two-state nature of the chain is obscured for
certain values of �s2−s1�, the Gaussian chain gives an excel-
lent approximation to the end-to-end distribution function.
However, the radius of gyration Rg is not as accurately ob-
tained using the Gaussian chain model, as shown in Fig. 3.
The exact Rg for the GRM reflects both the length scale a0

and the energy scale 	�, which can not be fully described by
the single inferred length scale a in the Gaussian chain. For
the GRM, Rg depends not only on the separation between the
monomers �s, but also explicitly on s1 �i.e., where the inter-
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FIG. 1. �Color� Top figures show a schematic sketch of the GRM, with the
donor and acceptor at the end points, represented by the green spheres, and
the interacting monomers at s1 and s2 represented by the red spheres. In the
ordered configuration, the monomers at s1 and s2 are tightly bound. The
bottom figure shows the exact and the inferred end-to-end distribution func-
tions P�r� for interior interactions ��s=31�. The blue lines correspond to the
Gaussian chain model, light green lines to the SAW, and the symbols to the
exact GRM distribution. Dashed lines and red circles are for 	�=6.6, while
solid lines and red squares correspond to 	�=2. In the inset we show the
fraction of ordered states as a function of 	�. Note that 75% of the struc-
tures are ordered at 	�=6.6, yet the inferred Gaussian P�r� is in excellent
agreement with the exact result.
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action is along the chain; see Fig. 3 and Sec. IV�, which can
not be captured by the Gaussian chain. If the interacting
monomers are in the middle of the chain �s1= �N+1� /4=16
and �s=31�, the inferred Rg is in excellent agreement with
the exact result �Fig. 3�. The relative error in Rg �the differ-
ence between the inferred and exact values, divided by the

exact value� is no less than �2%. However, for interactions
near the end point of the chain, with s1=0 and the same
�s=31, the relative error between the inferred and exact val-
ues of Rg is �−14%. The large errors arise because the ra-
dius of gyration depends on the behavior of all of the mono-
mers so that the energy scale 	� plays a much larger role in
the determination of Rg than Ree.

B. MTM for protein L

Protein L is a 64 residue protein �Fig. 4�a�� whose fold-
ing has been studied by a variety of methods.11,14,22–24 More
recently, single molecule FRET experiments have been used
to probe changes in the DSE as the concentration of GdmCl
is increased from 0 to 7M.11,14 From the measured GdmCl-
dependent �E�, the properties of the DSE, such as Ree, P�R�,
and Rg, were extracted by solving Eq. �1�, and assuming a
Gaussian chain P�R�.11,14 To further determine the accuracy
of polymer models in the analysis of �E�, we use simulations
of protein L in the same range of the concentration of dena-
turant, �C�, as used in experiments.6,9

1. The average end-to-end distance is accurately
inferred from FRET data

In a previous study,19 we showed that the predictions
based on MTM simulations for protein L are in excellent
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FIG. 2. �Color online� The inferred Kuhn length a as a function of 	� for
the GRM. Ree monotonically decreases a function of the interaction strength,
leading to the decrease in a /a0. The Kuhn length a reaches its limiting value
of a
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�1−�s /N when fO
1.

0 2 4 6 8 10 12 14

βkc
2
/2

9

10

11

12

13

R
g

(Å
) 0 4 8 12

βkc
2
/2

-0
.1

5
-0

.1
-0

.0
5

0

re
la

ti
ve

er
ro

r

s = 0
1

s = 16
1

FIG. 3. �Color� Comparison of the exact �symbols� and inferred �blue line�
values of the radius of gyration �Rg� as a function of 	� for �s=31. Shown
are Rg’s for the GRM with s1=0 �open symbols� and s1=16 �filled symbols�
for N=63. The structures in the ordered state are shown schematically. The
Rg obtained using the standard procedure is independent of s1, while the
exact result is not. The inset shows the relative errors between the inferred
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FIG. 4. �Color� �a� A secondary structure representation of protein L in its
native state. Starting from the N-terminus, the residues are numbered 1–64.
�b� The average FRET efficiency between the various �i , j� residue pairs in
protein L vs GdmCl concentration. The �Eij� values, computed using MTM
simulations, for each �i , j� pair is indicated by the two numbers next to each
line. For example, the numbers “1–64” beneath the black line indicates that
i=1 and j=64. The solid black line �lowest values of �E�� is computed for
the dyes at the end points.

124903-4 O’Brien et al. J. Chem. Phys. 130, 124903 �2009�

Downloaded 01 Feb 2010 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



agreement with experiments. From the calculated �E� with
the dyes at the end points �solid black line in Fig. 4�b��,
which is in quantitative agreement with experimental
measurements,19 we determine the model parameter Ree or lp

by assuming that the exact P�R� can be approximated by the
three polymer models in Table I. Comparison of the exact
value of Ree to the inferred value RF, obtained using the
simulation results for �E�, shows good agreement for all
three polymer models �Fig. 5�a��. There are deviations be-
tween Ree and RF at �C��Cm, the midpoint of the folding
transition. The maximum relative error �see inset of Fig.
5�A�� we observe is about 10% at the highest concentration
of GdmCl. The SAW model provides the most accurate esti-
mate of Ree at GdmCl concentrations above Cm, with a rela-

tive error �0.05, and the Gaussian model gives the least
accurate values, with a relative error �0.10 �Fig. 5�a��. Due
to the relevance of excluded volume interaction in the DSE
of real proteins, the better agreement using the SAW is to be
expected.

2. Polymer models do not give quantitative
agreement with the exact P„R…

The inferred distribution functions, PF�R�’s, obtained by
the standard procedure �as described in the introduction� at
�C�=2M and 6M GdmCl differ from the exact results �Fig.
5�b��. Surprisingly, the agreement between P�R� and PF�R�
is worse at higher �C�. The range of R explored and the width
of the exact distribution are less than predicted by the poly-
mer models. The Gaussian chain and the SAW models ac-
count only for chain entropy, while the WLC only models
the bending energy of the protein. However, in protein L
�and in other proteins� intramolecular attractions are still
present even when �C�=6M �Cm. As a result, the range of R
explored in the protein L simulations is expected to be less
than in these polymer models. Only at �C� /Cm
1 and/or at
high T are proteins expected to be described by Flory ran-
dom coils. Our results show that although it is possible to use
models that can give a single quantity correctly �Ree, for
example�, the distribution functions are less accurate. The
results in Fig. 5�b� show that P�R�, inferred from the poly-
mer models, agrees only qualitatively with the exact P�R�,
with the SAW model being the most accurate �Fig. 5�b��.
While the MTM will not perfectly reproduce all of the fine
details of protein L under all situations, we expect it to pro-
duce more realistic results than idealized polymer models,
which have no specific intrachain interactions.

3. Inferred Rg and lp differ significantly from the exact
values

The solution of Eq. �1� using a Gaussian chain or WLC
model yields a and lp, from which Rg can be analytically
calculated �Table I�. Figures 6�a� and 6�b�, which compare
the FRET inferred Rg and lp with the corresponding values
obtained using MTM simulations, show that the relative er-
rors are substantial. At high �C� values the Rg

F deviates from
Rg by nearly 25% if the Gaussian chain model is used �Fig.
6�a��. The value of Rg
26 Å at �C�=8 M while Rg

F using
the Gaussian chain model is 
31 Å. In order to obtain reli-
able estimates of Rg, an accurate calculation of the distance
distribution between all the heavy atoms in a protein is
needed. Therefore, it is reasonable to expect that errors in the
inferred P�R� are propagated, leading to a poor estimate of
internal distances, thus resulting in a larger error in Rg. A
similar inference can be drawn about the persistence length
obtained using polymer models �Fig. 6�b��. Plotting lp

F as a
function of �C� �Fig. 6�b��, against lp=Ree /2L, shows that lp

is overestimated at concentrations above 1M GdmCl, with
the error increasing as �C� increases. The error is less when
the Gaussian chain model is used.
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FIG. 5. �Color online� �a� The root mean squared end-to-end distance �Ree�
as a function of GdmCl concentration for protein L. The average Ree �black
circles� and R for the subpopulation of the DSE ��red� squares� from simu-
lations are shown. The values of Ree inferred by solving Eq. �1� by the
standard procedure using the Gaussian chain, WLC, and SAW polymer
models are shown for comparison as the top, middle, and bottom solid lines,
respectively. The inset shows the relative errors between the exact and the
values inferred using the FRET efficiency for Ree vs GdmCl concentration.
The top, middle, and bottom lines correspond to the Gaussian chain, WLC,
and SAW polymer models, respectively. �b� Simulation results of the dena-
tured state end-to-end distance distribution �P�R�� at 2.4M GdmCl �solid
�red� squares� and 6M GdmCl �open �red� squares� and T=327.8 K are
compared with P�R�s using the Gaussian chain, WLC, and SAW polymer
models are also shown at 2.4M GdmCl �dashed lines� and 6M GdmCl �solid
lines�. The top, middle, and bottom lines correspond to the SAW, WLC, and
Gaussian chain polymer models, respectively.
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C. Gaussian self-consistency test shows the DSE is
non-Gaussian

The extent to which the Gaussian chain accurately de-
scribes the ensemble of conformations that are sampled at
different values of the external conditions �temperature or
denaturants� can be assessed by performing a self-
consistency test. A property of a Gaussian chain is that if the
average root mean square distance, Rij, between two mono-
mers i and j is known then Rkl, the distance between any
other pair monomers k and l, can be computed using

Rkl =��k − l�
�i − j�

Rij . �2�

Thus, if the conformations of a protein �or a polymer� can be
modeled as a Gaussian chain, then Rij inferred from the
FRET efficiency �Eij� should accurately predict Rkl and the
FRET efficiency �Ekl�, if the dyes were to be placed at mono-

mers k and l. We refer to this criterion as the GSC test, and
the extent to which the predicted Rkl from Eq. �2� deviates
from the exact Rkl reflects deviations from the Gaussian
model description of the DSE.

1. GSC test for the GRM

For the GRM, with a nonbonded interaction between
monomers s1 and s2, we calculate �Eij� using Eq. �8� with j
fixed at 0 and for i=20, 40, and 60. Using the exact results
for �Eij�, the values of Rij are inferred assuming that P�r� is
a Gaussian chain. From the inferred Rij the values of �Ekl�
and Rkl can be calculated using Eqs. �1� and �2�, respectively.
We note that since Rkl /Rij =��k− l� / �i− j� �Eq. �2�� for any
pair �k , l� using the Gaussian chain model, the prediction of
the Gaussian chain will be independent of the particular
choices of k and l, as long as their difference is held constant.
We first apply the GSC test to a GRM in which fO
0.75 due
to a favorable interaction between monomers s1=16 and s2

=47. There are discrepancies between the values of the
Gaussian inferred �Rkl

G� and exact Rkl distances, as well as the
inferred ��Ekl

G�� and exact �Eij� efficiencies when a Gaussian
model is used �Fig. 7�. The relative errors in the predicted
values of the FRET efficiency and the interdye distances can
be as large as 30%–40%, depending on the choice of i and j
�see insets in Fig. 7�. We note that the relative error in the
end-to-end distance is small for dyes near the end points �the
green line in Fig. 7�b��, in agreement with the results shown
in Fig. 1. The errors decrease as fO decreases, with a maxi-
mum error of 20% when fO=0.5, and 10% when fO=0.25
�data not shown�. By construction, the GRM is a Gaussian
chain when fO=0 and therefore the relative errors will vanish
at sufficiently small 	� �data not shown�. These results show
that even for the GRM, with only one nonbonded interaction
in an otherwise Gaussian chain, its DSE cannot be accurately
described using a Gaussian chain model. Thus, even if the
overall end-to-end distribution P�r� for the GRM is well ap-
proximated as a Gaussian �as seen in Fig. 1�, the internal Rkl

monomer pair distances can deviate from predictions of the
Gaussian chain model.

2. GSC test for protein L

We apply the GSC test to our simulations of protein L at
GdmCl concentrations of �C�=2.0M �below Cm=2.4M� and
�C�=7.5M �well above Cm�. While our simulations allow us
to compute the DSE �Eij� for all possible �i , j� pairs, we
examine only a subset of �Eij� as a function of GdmCl con-
centration �Fig. 4�b��. By choosing multiple j values for the
same value of i, we can determine whether distant residues
along the backbone are close together spatially, which may
offer insights into three-point correlations in denatured
states. We note that all values of �Eij� in Fig. 4 are mono-
tonically decreasing, except for the �1,14� pair. This is due to
the fact that the native state has a beta strand between these
two residues; as the protein denatures, they come closer to-
gether, increasing the FRET efficiency. We use these values
for �Eij� in the GSC test. The results are shown in Figs. 8�a�
and 8�b�. Relative errors in �Ekl� as large as 36% at 2.0M
GdmCl and 50% at 7.5M GdmCl are found, with the lowest
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FIG. 6. �Color online� �a� Comparison of Rg from direct simulations of
protein L and that obtained by solving Eq. �1� using the Gaussian chain and
WLC polymer models. The top line �magenta� shows the WLC fit, the
bottom line �blue� shows the Gaussian fit, squares �red� show the DSE Rg

from the simulation, and black circles show the average simulated Rg. The
inset shows the relative errors as a function of GdmCl concentration; top
and bottom lines correspond to the WLC and Gaussian chain polymer mod-
els, respectively. �b� Same as �a� except the figure is for lp. Top and bottom
lines correspond to the inferred lp using the WLC and Gaussian chain poly-
mer models, respectively. Top and bottom sets of squares correspond to a
direct analysis of the simulations using the WLC and Gaussian chain poly-
mer models, respectively.
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errors generally seen for residues close to one another along
the backbone, in agreement with the results from the GRM
�Fig. 7�a� inset�. In addition, the number of data points that
underestimate �Ekl� increases as �C� is changed from 7.5 to
2.0M for �k− l��20. Despite these differences, the gross fea-
tures in Figs. 8�a� and 8�b� are concentration independent.
Because the error does not vanish for all �k , l� pairs �Figs.
8�a� and 8�b��, we conclude that the DSE of protein L cannot
be modeled as a Gaussian chain.

3. GSC test for CspTm

In an interesting single molecule experiment, Hoffmann
et al.13 measured FRET efficiencies by attaching donor and

acceptor dyes to pairs of residues at five different locations
of a CspTm. They analyzed the data by assuming that the
DSE properties can be mimicked using a Gaussian chain
model. We used the GSC test to predict �Ekl� for dyes sepa-
rated by �k− l� along the sequence using the experimentally
measured values �Eij�.

The relative error in �Ekl� �Eq. �2�� should be zero if
CspTm can be accurately modeled as a Gaussian chain.
However, there are significant deviations �up to 17%� be-
tween the predicted and experimental values �Fig. 9�. The
relative error is fairly insensitive to the denaturant concen-
tration �compare Figs. 9�a� and 9�b��. It is interesting to note
that the trends in Fig. 9 are qualitatively similar to the rela-
tive errors in the GRM at fO�0. Based on these observa-
tions we conclude tentatively that whenever the DSE is or-
dered to some extent �i.e., when there is persistent residual
structure� then we expect deviations from a homopolymer
description of the DSE of proteins. At the very least, the
GSC test should be routinely used to assess errors in the
modeling of the DSE as a Gaussian chain.
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FIG. 7. �Color� GSC test using �a� the FRET efficiency and �b� the average
end-to-end distance for the GRM with fO=0.75 and interaction sites at s1

=16 and s2=47. In both �a� and �b� the solid lines are the inferred properties
and the open symbols are the exact values. In both �a� and �b�, j=0 and the
blue, magenta, and green lines correspond to a dye at i=20, 40, and 60,
respectively. The insets show the relative error for �Ekl� and Rkl. Note that
the relative error would be zero if the Gaussian chain accurately modeled
the GRM.
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FIG. 8. �Color online� The Gaussian self-consistency test applied to simu-
lated DSE �Eij� data of protein L using the �i , j� pairs listed in Fig. 4�b�.
Shown are the relative errors at �a� 2.0M GdmCl and �b� 7.5M GdmCl. In
both �a� and �b�, solid �green� circles correspond to �i− j�=13, open �orange�
squares to �i− j�=16, solid �blue� squares to �i− j�=19, open �brown� circles
to �i− j�=29, asterisks �cyan� to �i− j�=30, diamonds �red� to �i− j�=34, solid
�violet� triangles to �i− j�=44, open �gray� triangles to �i− j�=50, and crosses
�magenta� to �i− j�=54. Each symbol corresponds to a line in Fig. 4�b�, with
the colors of the symbols corresponding to the colors of the line, except for
the 1–64 pair �not shown here�.
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III. CONCLUSIONS

In order to assess the accuracy of polymer models to
infer the properties of the DSE of proteins from measure-
ment of FRET efficiencies, we studied two models for which
accurate calculations of all the equilibrium properties can be
carried out. Introduction of a nonbonded interaction between
two monomers in a Gaussian chain �the GRM� leads to an
disorder-order transition as the temperature is lowered. The
presence of “residual structure” in the GRM allows us to
clarify its role in the use of the Gaussian chain model to fit
the accurately calculated FRET efficiency. Similarly, we
have used the MTM model for protein L to calculate pre-
cisely the denaturant-dependent �E� from which we extracted
the global properties of the DSE by solving Eq. �1� using the
P�R�’s for the polymer models in Table I. Quantitative com-
parison of the exact values of a number of properties of the
DSE �obtained analytically for the GRM and accurately us-
ing simulations for protein L� and the values inferred from
�E� has allowed us to assess the accuracy with which poly-
mer models can be used to analyze the experimental data.
The major findings and implications of our study are listed
below.

�1� The polymer models, in conjunction with the measured

�E�, can accurately infer values of Ree, the average end-
to-end distance. However, P�R�, lp, and Rg are not
quantitatively reproduced. For the GRM, Rg is under-
estimated, whereas it is overestimated for protein L.
The simulations show that the absolute value of the
relative error in the inferred Rg can be nearly 25% at
elevated GdmCl concentration.

�2� We propose a simple self-consistency test to determine
the ability of the Gaussian chain model to correctly
infer the properties of the DSE of a polymer. Because
the Gaussian chain depends only on a single length
scale, the FRET efficiency can be predicted for varying
dye positions once �E� is accurately known for one set
of dye positions. The GSC test shows that neither the
GRM, simulations of protein L, nor experimental data
on CspTm can be accurately modeled using the Gauss-
ian chain. The relative errors between the exact and
predicted FRET efficiencies can be as high as 50%. For
the GRM, we find that the variation in the FRET effi-
ciency as a function of the dye position changes
abruptly if one dye is placed near an interacting mono-
mer. Taken together these findings suggest that it is
possible to infer the structured regions in the DSE by
systematically varying the location of the dyes. This is
due to the fact that the FRET efficiency is perfectly
monotonic using the Gaussian chain model. An experi-
ment that shows nonmonotonic behavior in �Eij� as the
dye positions i and j are varied is a clear signal of
non-Gaussian behavior, and sharp changes in the FRET
efficiency as a function of �i− j� may indicate strongly
interacting sites �see Fig. 7�a��.

�3� The properties of the DSE inferred from Eq. �1� be-
come increasingly more accurate as �C� decreases. At a
first glance this finding may be surprising, especially
considering that stabilizing intrapeptide interactions are
expected to be weakened at high GdmCl concentrations
�C�, and therefore the protein should be more “poly-
merlike.” The range of R-values sampled at low �C� is
much smaller than at high �C�. Protein L swells as �C�
is increased, as a consequence of the increase in the
solvent quality. It is possible that �C�
2.4M might be
close to a �-solvent �favorable intrapeptide and
solvent-peptide interactions are almost neutralized� so
that P�R� can be approximated by a polymer model.
The inaccuracy of polymer models in describing P�R�
at �C�=6M suggests that only at much higher concen-
trations does protein L behave as a random coil. In
other words, T=327.8 K and �C�=6M is not an ather-
mal �good� solvent.

�4� It is somewhat surprising that polymer models, which
do not have side chains or any preferred interactions
between the beads, are qualitatively correct in charac-
terizing the DSE of proteins with complex intramolecu-
lar interactions. In addition, even �C�=6M GdmCl is
not an athermal solvent, suggesting that at lower �C�
values the aqueous denaturant may be closer to a
�-solvent. A consequence of this observation is that for
many globular proteins, the extent of collapse may not
be significant, resulting in the nearness of the concen-
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FIG. 9. �Color online� The GSC test using experimental data from CspTm.
One dye was placed at one end point, and the location of the other was
varied. We show relative error of the predicted �E�, using Eqs. �1� and �2�,
versus the distance between the dyes ��k− l�� for �C�=2M �a� and 5M �b�. In
both �a� and �b�, triangles correspond to �i− j�=33, x’s to �i− j�=45, dia-
monds to �i− j�=46, squares to �i− j�=57, and circles to �i− j�=65. The trends
in Figs. 7 and 8 are similar.
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trations at which collapse and folding transitions occur,
as shown by Camacho and Thirumalai25 some time ago.
We suggest that only by exploring the changes in the
conformations of polypeptide chains over a wide range
of temperature and denaturant concentrations can one
link the variations of the DSE properties �compaction�
and folding �acquisition of a specific structure�.

IV. THEORY AND COMPUTATIONAL METHODS

A. GRM model

In order to understand the effect of a single noncovalent
interaction between two monomers along a chain, we con-
sider a Gaussian chain with Kuhn length a0 and N bonds,
with a harmonic attraction between monomers s1�s2, which
is cutoff at a distance c. The Hamiltonian for the GRM is

	H =
3

2a2�
0

N

dsṙ2�s� + 	V�r�s2� − r�s1�� , �3�

	V�r� = �kr2/2, �r� � c

kc2/2, �r� � c ,
� �4�

where k is the spring constant that constrains r�s2�−r�s1� to
a harmonic well. The Hamiltonian in Eq. �3� allows the exact
determination of many quantities of interest. Defining x
=r�s2�−r�s1� and �s=s2−s1, we can determine most aver-
ages of interest for the GRM using

�¯� =
� d3xd3rN�¯�G�x,rN;�s,N�

� d3xd3rNG�x,rN;�s,N�
, �5�

G�x,rN;�s,N� = exp	−
3x2

2�sa2 −
3�rN − x�2

2�N − �s�a2 − 	V�x�
 .

�6�

B. C�-SCM protein model and GdmCl denaturation

We use the coarse-grained C�-side chain model
�C�-SCM� to model protein L �for details, see the supporting
information in Ref. 19�. In the C�-SCM each residue in the
polypeptide chain is represented using two interaction sites,
one that is centered on the �-carbon atom and another that is
located at the center of mass of the side chain.26 Langevin
dynamics simulations27 are carried out in the underdamped
limit at zero molar guanidinium chloride. Simulation details
are given in.19

We model the denaturation of protein L by GdmCl using
the MTM.19 MTM combines simulations at zero molar Gd-
mCl with experimentally measured transfer free energies, us-
ing a reweighing method28–30 to predict the equilibrium
properties of proteins at any GdmCl concentration of
interest.

V. ANALYSIS

A. GRM

The average squared end-to-end distance can be com-
puted directly from Eq. �5�, using �Ree

2 �=Na0
2+ ��x2�−�sa0

2�.

The exact expression for �x2� is easily determined, but some-
what lengthy, and we omit the explicit result here. Also of
interest is the end-to-end distribution function, P�R�= ���rN

−R��, which can be obtained from Eq. �5�. In order to deter-
mine the probability of an interior bond being in the “or-
dered” state �i.e., the fraction of residual structures, see the
inset for Fig. 1�a��, we compute the interior distribution,
PI�X�= ���x−X��, so that fO=��x��cd

3xPI�x�. The radius of
gyration requires a more complicated integral than the one
found in Eq. �5�, but we find

Rg
2 =

Na0
2

6
+ ��x2� − �sa0

2���s

3N
+

s1

N
− 	�s

2N
+

s1

N

2� . �7�

Note that unlike the average end-to-end distance, the radius
of gyration depends not only on �s, but also on s1.

The FRET efficiency for a system with dyes attached to
r�j=0�=0 and r�i�, �E�= ��1+ ��r�i�� /R0�6�−1�, is determined
from Eq. �5� as

E�i�

=�
EG�i� , 0 � i � s1

�0
�dxdrg1�x,r;�si��/�1 + �r/R0�6�

�0
�dxdrg1�x,r;�si��

, s1 � i � s2

�0
�dxdrg2�x,r;�si��/�1 + �r/R0�6�

�0
�dxdrg2�x,r;�si��

, s2 � i � N ,�
�8�

where EG�i� is the FRET efficiency for a Gaussian chain with
i bonds, and

g1�x,r;�sj�� = xr sinh	3�i − s1�xr

�a0
2 
e−3�ix2+�sr2�/2�a0

2−	V�x�, �9�

g2�x,r;�sj��

= xr sinh	 3xr

�i − �s�a0
2
e−3x2/2�sa0

2−3�x2+r2�/2�i−�s�a0
2−	V�x�,

�10�

� = �s2 + s1�i − s1
2 − i2. �11�

This result allows us to compute the GSC test, after a nu-
merical integral over r.

B. Protein L

Averages and distributions were computed using the
MTM19 which combines experimentally measured transfer
free energies,31 converged simulations and the Weighted His-
togram Analysis Method �WHAM� equations.28–30 The
WHAM equations use the simulation time series of potential
energy and the property of interest at various temperatures
and gives a best estimate of the averages and distributions of
that property. The native state ensemble �NSE� and DSE sub-
populations were defined as having a structural root mean
squared deviation, after least squares minimization, of less
than or greater than 5 Å relative to the crystal structure for
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the NSE and DSE, respectively. The exact values of lp are
computed using the average R from simulations and the re-
lationships listed in Table I.

C. Notation

Throughout the paper, exact values of all quantities are
reported without superscript or subscript. For the GRM, ex-
act values are analytically obtained or calculated by perform-
ing a one-dimensional integral numerically. For convenience,
exact results for protein L refer to converged simulations.
While these simulations have residual errors, the simplicity
of the MTM has allowed us to calculate all properties of
interest with arbitrary accuracy. The use of subscript or su-
perscript is, unless otherwise stated, reserved for quantities
that are extracted by solving Eq. �1� using the polymer mod-
els listed in Table I.
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