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We establish a framework for assessing whether the transition state location of a biopolymer, which can

be inferred from single molecule pulling experiments, corresponds to the ensemble of structures that have

equal probability of reaching either the folded or unfolded states (Pfold ¼ 0:5). Using results for the forced

unfolding of a RNA hairpin, an exactly soluble model, and an analytic theory, we show that Pfold is solely

determined by s, an experimentally measurable molecular tensegrity parameter, which is a ratio of the

tensile force and a compaction force that stabilizes the folded state. Applications to folding landscapes of

DNA hairpins and a leucine zipper with two barriers provide a structural interpretation of single molecule

experimental data. Our theory can be used to assess whether molecular extension is a good reaction

coordinate using measured free energy profiles.
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The response of biopolymers to mechanical force (f), at
the single molecule level, has produced direct estimates of
many features of their folding landscapes, which in turn
has given a deeper understanding of how proteins and RNA
fold. In particular, single molecule pulling experiments
directly measure the distribution of forces needed to rup-
ture biomolecules, roughness, and shapes of folding land-
scapes [1–4]. Such measurements have made it possible to
decipher the molecular origin of elasticity and mechanical
stability of the building blocks of life, which is the first step
in describing how they interact to function in the cellular
context. The major challenge is to provide a firm theoreti-
cal basis for interpreting the physical meaning and relia-
bility of the folding landscape parameters that are extracted
from trajectories that project dynamics in multidimen-
sional space onto a one-dimensional molecular extension,
which is conjugate to f.

The key characteristics of the folding landscape of bio-
molecules that can be extracted from single molecule force
spectroscopy measurements are the f-dependent position
of the transition state (TS), the distance (�xz ¼ xTS � xN)
from the ensemble of conformations that define the basin
of attraction corresponding to the native states (NBA),
and the free energy barrier (�Fz). The assumption in the
analysis of the single molecule force spectroscopy data is
that the molecular extension is a good reaction coordinate
for RNA and proteins, which implies that a single degree of
freedom accurately describes the behavior of the multiple
degrees of freedom explored by the biomolecule. The
structural meaning of �xz, a parameter that is unique to
single molecule force spectroscopy, has never been made
clear. Despite many subtleties in determining �xz from
measurements [5–7], xTS is most easily identified as a local
maximum of the free energy profile at the transition

midforce fm, FðRjfmÞ, which can be constructed by mea-
suring the statistics of end-to-end distance PðRÞ at f ¼ fm
[1–4,8,9]. This method has been experimentally used to
obtain sequence-dependent folding landscapes of DNA
hairpins [2] and, more recently, proteins [3]. In order to
render physical meaning to �xz we address two questions
here: (i) Does �xz represent the structures in the transition
state ensemble (TSE)? The TSE is a subset of structures
that have equal probability of reaching the NBA or un-
folded basin of attraction (UBA). (ii) Can a molecular
tensegrity (short for tensional integrity) parameter [10] s ¼
fc=fm, expressing balance between the internal compac-
tion force fm ¼ �FUF=�xUF and the tensile force fc ¼
�FzðfmÞ=�xzðfmÞ, describe the adequacy of �xzðfmÞ in
describing the TSE structures?
We use simulations of a RNA hairpin and an exactly

soluble model, both of which are apparent two-state folders
as indicated by FðRjfÞ, to answer the two questions posed
above. The TS is a surface in the multidimensional folding
landscape (stochastic separatrix [11]) across which the flux
to the NBA and the UBA is identical. This implies that the
fraction of folding trajectories corresponding to �xz that
start from the TS should have equal probability (Pfold �
0:5 [12]) of reaching the NBA and the UBA [12,13]. At
f ¼ fm, the mean dwell times in the NBA and the basin of
attraction corresponding to unfolded conformations (UBA)
are identical, so that

RxTS
0 dRPðRÞ ¼ R1

xTS
dRPðRÞ ¼ 0:5.

However, it is unclear whether or not the barrier top
position is consistent with the requirement Pfold � 0:5 in
force experiments.
To directly ascertain whether the barrier top position

denotes the TSE (requiring Pfold � 0:5 in force experi-
ments), we study folding of P5GA, a RNA hairpin,
for which the NBA and UBA are equally populated at
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fm ¼ 14:7 pN [8,9]. Both free energy profiles and the
kinetics predicted by Kramers’ theory show excellent
agreement with the simulation results [9] and formally
establish that extension R is a good reaction coordinate
for describing hopping kinetics at f � fm. In practice,
experimental time traces that have a number of transitions
such as the one in Fig. 1(a) can be used to estimate Pfold.
With absorbing boundary conditions imposed at RN ¼
2 nm and RU ¼ 7:5 nm [Fig. 1(c)], we directly count the
number of molecules from 47 points belonging to the TS
region (R ¼ ð4:1� 4:2Þ nm [Fig. 1(c)]) that reach R< RN

(folded) and R> RU (unfolded). Although the R distribu-
tion of the 47 points is uniform [Fig. 1(a)], we obtained
Pfold � 0:74. To determine Pfold by using the ensemble
method, we launched 100 trajectories from each of the
47 structures and monitored their evolution [Fig. 1(b)] by

using Brownian dynamics simulations [14] with the multi-
dimensional energy function for the hairpin [8]. We find
that Pfold ¼ 0:65 [Fig. 1(c)], which is similar to the value
obtained by analyzing the folding trajectory. An examina-
tion of the individual trajectories reveals that many mole-
cules, initially with a gradient toward the UBA, recross the
transition barrier to reach the NBA [blue trajectories in
Fig. 1(b)]. Conversely, most of the molecules directly reach
R ¼ RN if they initially fall into the NBA, showing few
recrossing events. Although the precise percentage of
molecules reaching the UBA or NBA depends on the
particular value of the boundary (RN and RU), our simula-
tions emphasize the importance of the recrossing dynam-
ics, which is known to cause significant deviations from the
transition state theory.
Deviation from Pfold � 0:50 suggests that the global

coordinate R alone is not sufficient to rigorously describe
the hopping kinetics of P5GA. At least one other auxiliary
coordinate is needed, and for structural reasons we take it
to be the number Nbp of base pairs [2]. The broad asym-

metric distribution of Nbp within the narrow TS region

[R ¼ ð4:1–4:2Þ] implied by FðRjfmÞ [Fig. 1(d)] shows
that hopping kinetics at fm should be described by a multi-
dimensional (at least two) folding landscape even though
the f-dependent rates of hopping between the NBA and the
UBA can be reliably predicted by using FðRjfmÞ [9].
To further illustrate if the R coordinate alone is sufficient

to determine the TSE structures, we consider an analyti-
cally solvable generalized Rouse model (GRM) [9] that has
a single bond in the interior of the chain whose presence
corresponds to the NBA. The GRM Hamiltonian [15]

�H ¼ 3

2a2

Z N

0
ds _r2ðsÞ � �f

Z N

0
ds _rðsÞ

þ �Vc½rðs1Þ � rðs2Þ�; (1)

where Vc½x� ¼ kðx2 � c2Þ=2 for x � c and Vc½x� ¼ 0 for
x > c, describes a simple Gaussian chain under tension
with an additional cutoff harmonic interaction at the inte-
rior points s1 and s2. The distribution of R for the GRM,
with �s ¼ js2 � s1j, is

PðR; �sÞ / R sinhð�fRÞe�3R2=2ðN��sÞa2 Z 1

0
dxx sinh

�
3Rx

ðN ��sÞa2
�
e�3x2N=2�sðN��sÞa2��Vc½x�: (2)

To obtain Pfold we set N ¼ 22 for the number of bonds,
a ¼ 0:545 nm for their spacing, � ¼ 1=kBT, �k ¼
1:65 nm�2, c ¼ 4 nm for the strength and cutoff distance
of the interior bond interaction, respectively, and �s ¼ 18.
For this set of parameters, the transition midforce [where
Pðx < cÞ ¼ Pðx > cÞ] is fm � 16:8 pN. The two minima
and the position of the barrier top of the free energy
�FðRjfmÞ ¼ � log½PðRÞ� are easily determined as RN �
3:91 nm,RU � 9:39 nm, andRTS ¼ 6:00 nm, respectively
[Fig. 2(a)].

To calculate Pfold, we prepared 5000 GRM chains with
R ¼ RTS ¼ 6 nm that corresponds to the maximum in
FðRjfmÞ [Fig. 2(a)] and allowed the system to relax to
either of the two basins of attraction, ending the simulation
when the chain extension attains the value RN or RU. These
simulations are performed by using the Hamiltonian in
Eq. (1) and not on the simple one-dimensional profile
�FðRÞ ¼ � log½PðRÞ�. We find 60% (40%) of the initial
chains from RTS reach R ¼ RN (R ¼ RU), which implies
Pfold ¼ 0:6. Similar to the P5GA, the GRM dynamics

FIG. 1 (color online). Relaxation dynamics of the ensemble of
P5GA hairpins from the barrier top of FðRjfmÞ. (a) RðtÞ at
f ¼ fm. TSE in the range R ¼ ð4:1–4:2Þ nm are shown in the
green box with a uniform R distribution. (b) Starting from the
TSE of hairpins from (a), 35% of the trajectories (red) reach
UBA and 65% of the trajectories (blue) reach NBA. (c) Free
energy profile at f ¼ fm. (d) TSE of P5GA has a broad distri-
bution in the number of base pairs (Nbp).
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projected onto the R coordinate using both sets of parame-
ters exhibit a number of recrossing events.

To understand the relation between x (the structural
coordinate which specifies the NBA and UBA in the
GRM) and chain extension R (pulling coordinate that is
conjugate to f), we approximate the sharp interaction in
Eq. (1) by a smoothed potential:

�Vc½x� � �VS½x� ¼ � logðe��kðx2�c2Þ=2 þ 1Þ; (3)

by taking advantage of the clear separation between

the UBA and the NBA [Fig. 2(a)]. Defining N k¼
he��kðx2�c2Þ=2�ðjRj�RÞi0, with h. . .i0 denoting an average
over the Gaussian backbone, we can compute approxi-
mately PRðx< cÞ ¼ R

c
0 dxh�ðjRj �RÞi �N k=ðN k¼0 þ

N kÞ, with h. . .i representing an average over the GRM
potential in Eq. (3). The probability of bond formation
satisfies

PRðx < cÞ �
�
1þ �3=2 exp

�
3R2��2

2Na2�
� �kc2

2

���1
; (4)

where � ¼ Na2�k=3,� ¼ �s=N, and �¼1þ�ð1��Þ�.
At R ¼ 6 nm, Eq. (4) gives PRðx < cÞ � 0:402 � 0:5.
Thus, when the dynamics is initiated from the top of
the apparent free energy barrier using the R variable,
their internal coordinate (x) is populated primarily with
unfolded conformations [Fig. 2(b)]. Despite the fact that
the UBA is primarily populated at R ¼ RTS, we find
that Pfold � 0:6, so that the NBA will be predominantly

populated as the trajectories progress. The midpoint

of transition [PRðx < cÞ ¼ 0:5] occurs at Rmid ¼
½ðNa2�=3��2Þð�kc2 � 3 log�Þ�1=2 ¼ 5:91 nm, which de-
viates slightly from RTS ¼ 6:00 nm. The results from
VS½x�, which are in excellent agreement with the simula-
tions as well as the numerical results using Vc½x� (Fig. 2),
also suggest that hopping kinetics in the GRM involves
coupling between x and R. Thus, even in this simple
system, accurate location of the TSE should consider
two-dimensional free energy profiles (see [6,16]).
To answer the second question, we introduce a molecular

tensegrity parameter, which is a ratio of tensile force and a
force that determines the stability of the biopolymer. The
limit of mechanical stability of the NBA is determined
by the critical unbinding force fc ¼ �FzðfmÞ=�xzðfmÞ.
At the midpoint force f ¼ fm, the tensegrity parameter
s ¼ fc=fm determines whether the applied external tension
is sufficient to overcome the stability of the NBA. Models,
which approximate the free energy profiles using a cubic or
cusp potential [7], could alter fc or fm from the form
suggested above. However, because s involves the ratio of
the two forces, the precise numerical factors are not rele-
vant. Barrier crossings between the NBA over the TS are
governed by the competition between fc and the applied
force f ¼ fm. For fc � fm, barrier recrossing from the
NBA to the TS will be extremely rare, while if fc � fm,
barrier crossing events will be common. We would there-
fore expect as the ratio s ¼ fc=fm increases, barrier re-
crossings from within the NBA to the TS will decrease,
and the probability of reachingR ¼ RN will increase. Thus,
Pfold, the structural link to �xz, should be determined by
the experimentally measurable tensegrity parameter s.
To confirm this expectation, we ran 20 different sets

of GRM parameters (1000 runs each), with fm ranging
between 5 and 25 pN, �k ranging from 0.1 to 600 nm�2, c
between 0.26 and 6 nm, and �s between N=2 and N.
Figure 3 shows that Punfold ¼ 1� Pfold decreases mono-
tonically with s ¼ fc=fm. The dependence of Punfold on s
(Fig. 3) can be derived by considering diffusion in a 1D
version of the GRM potential in Eq. (1): UðxÞ ¼ �fxþ
1
2 kux

2 þ VcðxÞ, with ku being the curvature in the bottom

of the UBA. Assuming constant diffusivity, Punfold ¼R
c
xN
dx0e�Uðx0Þ=

R
xU
xN
dx0e�Uðx0Þ [17], where the positions of

the transition barrier, native, and unfolded wells are given
by c, xN, and xU, respectively. For s � 1, we obtain
Punfold ¼ ð1þ sÞ�1=2, with the entire dependence on the
energy landscape encoded in s. The analytical result, plot-
ted as a solid curve in Fig. 3, captures the overall trend of
the GRM and P5GA simulations.
For s � 1, Punfold can be approximated as

Punfold ¼ 1

2

�
�

1þ�
þ 32f2mð�� 1Þ

�kUð�þ 1Þ3 s
��1

; (5)

where � ¼ 4fm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�kBTkU

p
and kU ¼ @2U=@x2 at

x ¼ xU. This relation can be used to predict the degree

FIG. 2 (color online). Relaxation dynamics of GRM chains
from the barrier top of �FðRjfmÞ. (a) �FðRjfmÞ for the GRM
with interior interaction. Parameters are listed in the text. Red
symbols are from the simulation result sampled by using the
chain with the Hamiltonian of Eq. (1). The solid line is the
theoretical fit. The arrow shows the position of the barrier top.
(b) The distribution of interior distance at R ¼ RTS. The black
line is the theoretical prediction. (c) The initial distribution of R
prior to the relaxation dynamics, which is very tight around R �
RTS ¼ 6 nm. (d) The probability of being folded as a function of
R. Open circles show the exact numerical solution for the sharp
potential [Eq. (1)]. The filled circles are from simulations. The
solid black line shows the approximate solution using the
smoothed potential [Eq. (3)].
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to which the extension is a good reaction coordinate for
DNA hairpins. We calculated s from the measured energy
landscapes in Ref. [2] and obtained Punfold by using
Eq. (5). We took fm � 12:5 pN and �kU � 0:2 nm�2.
The predicted Pfold inset in Fig. 3 varies between 0.54
and 0.61 for the DNA hairpin sequences A–D, close to the
ideal value of 1=2, indicating that extension is a reason-
able coordinate except possibly for sequence C, which has
a T:T base pair (bp) mismatch 7 bp from the stem. The
limitation of extension as a reaction coordinate for this
sequence is consistent with the observation that folding of
sequence C has an intermediate as indicated by the three
minima in FðRjfmÞ [2].

To illustrate that the theory is applicable when there are
multiple barriers [4], we analyze the data for a leucine
zipper which unfolds by populating an intermediate. In this
case there are two tensegrity parameters: s1ð¼ 0:05Þ and
s2ð¼ 0:15Þ (see [18]). The predicted Punfold values show
that the extension is a good reaction coordinate for the
NBA ! I transition but is less for the I ! UBA transition.
(Figure 3).

Our results can be confirmed by analyzing long time
folding trajectories RðtÞ as long as multiple hopping events
occur. Because �xz is f-dependent, it follows that tensegr-
ity can be altered by changing f. Thus, the extension may
be a good reaction coordinate over a certain range of f but
may not remain so under all loading conditions.
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FIG. 3 (color online). Punfold as a function of s ¼ �Fz=fm�xz
for a variety of GRM parameters (colored circles). Red corre-
sponds to small �k� ð0:1–1Þ nm�2, purple to intermediate
�k� ð1–50Þ nm�2, and blue to high �k� ð50–500Þ nm�2.
The point sizes indicate the magnitude of the midpoint force,
with the smallest points at fm ¼ 5 pN and the largest at fm ¼
25 pN. The large square indicates the results of the P5GA
simulations with Punfold ¼ 0:35. The gray line is the theoretical
prediction PunfoldðsÞ ¼ ð1þ sÞ�1=2 for s�1. The solid line in
the inset shows the predicted PunfoldðsÞ for s � 1 [Eq. (5)] using
the DNA hairpin free energy profiles (not deconvolved) in
Ref. [2]. The dashed line is for the leucine zipper, which has
two barriers, using data from Ref. [3]. As explained in Ref. [18],
numbers 1 and 2 are for NBA ! I and I ! UBA transitions,
respectively. Because of different kU values [Eq. (5)], dashed and
solid lines do not coincide.
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