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Abstract

We introduce a new method for detecting communities of arbitrary size in an undirected weighted network. Our approach
is based on tracing the path of closest-friendship between nodes in the network using the recently proposed Generalized
Erdös Numbers. This method does not require the choice of any arbitrary parameters or null models, and does not suffer
from a system-size resolution limit. Our closest-friend community detection is able to accurately reconstruct the true
network structure for a large number of real world and artificial benchmarks, and can be adapted to study the multi-level
structure of hierarchical communities as well. We also use the closeness between nodes to develop a degree of robustness
for each node, which can assess how robustly that node is assigned to its community. To test the efficacy of these methods,
we deploy them on a variety of well known benchmarks, a hierarchal structured artificial benchmark with a known
community and robustness structure, as well as real-world networks of coauthorships between the faculty at a major
university and the network of citations of articles published in Physical Review. In all cases, microcommunities, hierarchy of
the communities, and variable node robustness are all observed, providing insights into the structure of the network.
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Introduction

The topology of networks occurring in biological or chemical
[1,2], social [3,4], political [5], or technological [6] systems can
give profound insights into a variety of important aspects of these
systems, such as the processes that generated the network [7], the
stability of the system [8] or the properties of processes occurring
on it [9]. An important aspect of common real-world networks is
that of community structure [10], where subsets of the network are
densely connected internally and weakly connected externally.
Nodes in the same community have more in common than those
in distinct communities, reflected in the topology of denser intra-
community edges than inter-community edges. However, the
detection of communities in networks without apriori knowledge of
their structure is highly nontrivial, and methods for community
detection have recently attracted a great deal of interest.
Perhaps the most common approach for community detection

in networks is based on modularity maximization [11,12]. Each
node i in a network of N nodes and M edges is assigned to a single
community, ci , with the partition chosen to maximize

Q~
1

2W

X

ij

(wij{
WiWj

2W
)d(ci,cj), ð1Þ

where wij is the weight of the edge between nodes i and j,

Wi~
P

j wij is the strength of node i, W~
1

2

X
i
Wi, and

d(ci,cj)~1 if ci~cj and 0 otherwise. For an unweighted network,

wij:aij = 0 or 1, where aij is the adjacency matrix, and thus

Wi~ki is the degree of the node. Modularity compares the network
in question to a randomly generated network with each node
constrained to have the same strength, and is maximized by a

partition into communities fcig that have a higher intra-community
weight than would be expected randomly. This choice of a random
network acts as a null model, although other choices are possible
[13], and a wide variety of numerical approaches for efficiently
computing the maximal partition exist, including statistical
mechanical methods [14], bisection algorithms [11], and other
greedy searches [15,16]. While modularity maximization is both
intuitive and accurate in a variety of settings, Q has a natural
system-size resolution limit [17,13]: if the number of nodes becomes
large (N??), but the typical strength Wi of all nodes remains
finite, the total strength W?? and the second term in the sum in
Eq. 1 becomes small (since Wi and Wj do not diverge). Thus,

modularity maximization may not detect small communities in
large networks due to this resolution limit. Simple methods to
overcome this limitation include the introduction of a resolution

parameter [14,13] c, with the redefinition of Q~(2W ){1
P

ij (wij{cWiWj=2W )d(ci,cj), or multiresolution methods [18]

which impose a self-loop of strength r on the network (i.e.
wij?wijzrdij ) in Eq. 1. Both of these approaches overcome the

problem of a resolution limit by introducing an arbitrary parameter
in detecting community structure that must be tuned. Alternate
approaches to community detection avoid a resolution limit through
other means, such as thresholding the resistance distance between
nodes, with nodes having low resistance distance between each
other belonging to the same community [19], maximizing the
‘fitness’ of each node in a greedy fashion [20], creating block models
to detect communities if the number of expected communities is
exactly known [21], or refining communities by finding ‘statistically
significant’ nodes [22]. In all these approaches, at least one free
parameter is required to detect the communities, which may be
useful in giving the ability to tune the resolution at which
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communities are detected, but with no a-priori method for
determining the ‘correct’ value that leads to a meaningful partition.
In this paper, we develop a new parameter-free, resolution-

limit-free method for community detection, most easily understood
intuitively in the context of a social network: a person belongs in
the same community as his or her ‘closest friend’ (the node to
which he or she has the greatest measure of ‘closeness,’ discussed
below). Our method requires a way to measure closeness (or
friendship) between nodes in a network, and a variety of such
measures are available [23]. We will focus primarily on a recently
proposed non-metric measure of closeness [24], the Generalized
Erdös Numbers (GENs), which have been found useful in a variety
of contexts in understanding the structure of network topology.
This closest-friend community detection method is shown to be
able to accurately detect communities in a variety of widely used
benchmarks, in some cases outperforming some modularity-
maximizing detection schemes in real world networks with a
known ‘correct’ partition. We also extend the method to detect
community structure at a lower resolution (macrocommunities
formed from higher resolution microcommunities) without
appealing to a free parameter. Our approach has the advantages
of being intuitively accessible, free of arbitrary parameters, and
able to accurately find communities in complex networks. We
leverage our chosen measure of closeness between nodes in
determining the robustness of assignment of each node into its
community (rather than a global measure of the quality of the
partition using modularity). Finally, our approach is applied to a
citation network and a coauthorship network, and the complex
hierarchical structure of each network is examined in detail.

Methods

Communities from Closeness
In a network with community structure, nodes in a community

have a higher density of edges internally (to other nodes in their
community) than they do externally. While one approach to
community detection maximizes global quality functions that
depend on the density of edges [10], we could alternatively search
for high densities of edges locally to find communities. Such a local
method may use an appropriate measure of closeness between
nodes, with ‘close’ nodes having multiple short-length paths
between one another (implying a locally high density of edges; see
below for examples). In the context of a social network, for
example, it is natural to expect that closest friends (those who feel
closest to one to another given a measure of ‘closeness’) should be
found in the same community. Such an expectation can be
enforced by determining the closest friend (CF) of each node i,
denoted f (i), and requiring them to be in the same community. In
other words, node i is assigned to the same community as the node
to which it is topologically closest. The closest friend of f (i)
(denoted f (f (i))) is also found in this community, and we generate

a path of closest friendship pi~fi,f (i),f (f (i)), . . .g (halting when a
self-intersection occurs after which the cycle would repeat). Nodes i
and j that share elements of their closest friend paths (i.e.

Dpi\pj D=0) will all trace to the same central loop, and each of the

elements of pi and pj are placed in the same community. If the
closeness measure is well chosen (such that a higher density of
edges implies a stronger feeling of ‘closeness’), the closest friend
paths for nodes in each community will remain within the correct
communities, allowing for an accurate partition of the network
(discussed further in Supplementary Information S1). This
approach has the advantage of generating a single partition
(rather than a tree of many possible partitions from which the
‘correct’ partition must be chosen, commonly used in clustering

algorithms) and without a system-size resolution limit [17,13], and
therefore unambiguously chooses a ‘natural’ partition of the
network.
Despite the simplicity of our method, there exist pathological

network topologies may require modification of the algorithm in
order to accurately detect the community structure. As a simple
example, a node that is connected to every other node in the
network will be everyone’s closest friend, regardless of the topology of
the rest of the network, and only one community will be detected
using our approach (see Supplementary Information S1 for further
discussion). Failure of the detection algorithm in this case can be
avoided by searching for the closest unpopular friend (CUF), where
the CUF is detected by sorting the closest friends of node i in
descending order of node degree, and choosing the first node fu(i)
who has degree less than or equal to the next-closest node. This
ensures that we avoid nodes with extremely high degree (the
popular close friends), who may have many out-of-community
connections, and choose fu(i) to be a node that is simultaneously
(a) a close friend (but not necessarily the closest) and (b) less likely
to have out-of-community edges. The path of closest friendship is

modified to be piu~fi,fu(i),fu(fu(i)), . . .g, and community detec-
tion proceeds as described above. We note that neither the CF nor
CUF approaches depend on the graph being Hamiltonian: the

particular path pi or piu need not span the entire graph for any
starting node i (and must not, if there is to be more than one
community). Additional modifications to both the CF and CUF
methods are required due to community fracture: communities
may be split into two or more disjoint pieces due to the random
fluctuations of the edges [25] (see Supplementary Information S1
for further discussion). Fractured communities may occur for any
community detection algorithms, and a greedy approach to detect
and merge fractured communities is described in Supplementary
Information S1.

Choosing a Closeness Measure
Before we apply the CF or CUF method for community

detection, we must choose a measure of closeness between nodes
in that network, with the only requirement being that nodes i and j
are ‘closer’ if there is a higher density of edges (multiple short-
ranged paths) between them. We focus on the use of a recently
developed closeness measure, the Generalized Erdös numbers [24]
(GENs), created with two simple principles in mind: (i) connections
from node j to nodes that feel close to a specified node (nodes {k}
with low Eik) are more important than connections to other nodes,
and (ii) a connection of high weight from j to some node k should
make node j feel more close to node k and less close to node i. This
second expectation is natural if closeness is defined with a limited
resource in mind, such as the time spent between people in a social
or coauthorship network [24]. These expectations naturally lead to
a weighted harmonic mean [24], with Eii~0 and

Wj

Eij
~
X

k[Cj

wjk

Eikzw{1
jk

:

with Cj the set of nodes that are connected to j. Eij is not a distance
metric (as Eij=Eji), a desirable property because unpopular (low
degree or low weight) individuals may feel close to popular (high
weight) nodes, but not vice-versa. The GENs are computed

numerically by setting E(0)
ij ~(1{dij) and iteratively computing

E(tz1)
ij ~Wj=

P
k wjk=(E

(t)
ik zw{1

jk ), halting when maxij DE
(tz1)
ij

{E(t)
ij Dƒd for some tolerance d (we used 5|10{3. Computing

the closeness between all pairs of nodes i and j will scale as N|M,
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and is the slowest step in detecting communities using the CF or
CUF approaches.
To see how our closeness measure works in detecting

communities in a network with known community structure, we
examine the Girvan-Newman benchmark [1,12] in Fig. 1(a),
which consists of four equal-sized communities of 32 nodes, each
with kout edges leading out of the community and 16{kout edges
within the community. The connectivity between communities
can also be described by the mixing parameter m~kout=
(kinzkout)~kout=16, with detection of the correct communities
becoming difficult when kout *> 8 or m *> 0:5. The level of
agreement between the detected and correct partition is quantified
using the normalized mutual information [10]:

I~2

P
i[Pt,j[P0

nij log
Nnij

ntin
0
j

 !

P
i[Pt

nti log (n
t
i=N)z

P
j[P0

n0j log (n
0
j =N)

ð2Þ

with nti the number of nodes in community i of the trial partition

(Pt), n
0
j is the number in community j of the true partition (P0), and

nij is the number simultaneously occurring in i and j of Pt and P0.
In Fig. 1(a), we see that the accuracy of the CUF approach does
depend on the choice of closeness measure, where we compare the
performance of the GEN measure with others [23] such as the
overlap measure (Oij~DCi\Cj D with Cj the set of neighbors of j)
and the Jacard coefficient (Jij~DCi\Cj D=DCi|Cj D ). Similarly, in

real-world networks with an apriori known community structure
(shown in Fig. 1(b)) such as the Football network [1], the Political
Blogs network [26], and the Political Books network [27] (see
Supplementary Information S1), both the GENs and overlap are
consistently more accurate in community detection than greedy
modularity maximization. Because the GENs are the most
accurate on both real world and artificial networks of all of the
closeness measures attempted, we choose to focus on them as our
measure of closeness in the rest of the paper.

Additional Benchmarks of Community Detection
As a systematic test of the method on a more complex

benchmark, apply our detection method to the benchmark of
Lancichinetti, Fortunato, and Radicchi [28]. Communities are of
variable size (with the size s of each drawn from a power law
distribution, P(s)*s{b) and the degree of each node is drawn from
a scale free distribution as well (P(k)*k{c). Each node has on
average a fraction m of its edges within its assigned community and
1{m edges outside of its community. The complex structure of this
network makes community detection non-trivial, but as seen in
Fig. 1(c-f) our method is accurately able to reconstruct the correct
partition for various values of b, c, and m (for N~1000 and 50
realizations of the network for each data point). So long as mƒ0:5,
we typically find the normalized mutual information I *> 0:9,
indicating a good agreement with the correct partition. Our
approach produces partitions that are less accurate than the results
reported in Fig. 5 of Ref. [28], in accordance with the observations
in Fig. 1(a) that the method underperforms modularity maximiza-
tion when the correct partition is also modularity maximizing.
However, the CUF method still performs admirably, with the
additional benefits of no fitting parameters or resolution limits.

Hierarchical Communities
In many cases [29,20] networks have community structure at

multiple resolutions, begging the question of how to detect such a

hierarchical community structure. Instead of using a tunable
resolution parameter whose ‘correct’ value(s) are unknown a-
priori, the CF/CUF method naturally suggests a simpler
approach: to iteratively coarse grain the network using a high-
resolution partition (detected as described above) and then reapply
our detection method on the lower resolution network. Commu-
nities in the high-resolution partition act as coarse grained nodes,
and the average closeness felt between communities serves to
determine closest friends. If the GENs are chosen as the measure
of closeness, the averages are taken as (Ec

hg)
{1~

P
i[g,j[h

E{1
ij =ngnh, where ng is the number of nodes in g. While the choice

of a method of coarse graining the network implies an additional
degree of freedom in our algorithm, it is important to note the
differences between the CUF method and modularity maximiza-
tion with a variable resolution parameter. In the CF/CUF
method, the resolution can not be tuned continuously by choosing
different closeness measures or methods of coarse graining.
Rather, the choice of measure and method set an optimal apriori
resolution for hierarchical community detection, which is likely to
be robust to changes in the method if the closeness measure and
the coarse graining method are well chosen.
The accuracy of our hierarchical detection method on a

commonly used artificial benchmark, implemented in Ref. [18], is
shown in Fig. 1(g), with additional benchmarks discussed further in
Supplementary Information S1. A network of 256 nodes is formed
from 16 communities of 16 nodes each, in turn composed of 4
macrocommunities containing 4 communities each. Each node
has on average 13 edges within its community and 4 edges outside
of its community but within its macrocommunity, and 1 edge
outside of its macrocommunity. This is similar to the Reichardt
and Bornholdt [14,20] benchmark discussed in Supplementary
Information S1 and adapted in the next section. We compare the
partitions detected using the CUF algorithm with a simulated
annealing maximization of the multiresolution modularity (that is,
Eq. 1 with wij?wijzrdij , where r is a resolution parameter
ranging from rmin~{W=N to ?). The average modularity Qr

for the modularity maximizing partition is shown by the red points
in Fig. 1(g), and this modularity maximizing partition transitions
smoothly between the high-resolution communities detected using
our CUF algorithm for large r and the low-resolution coarse
grained using our hierarchical algorithm for small r. Additional
analysis of a similar benchmark for our hierarchical detection
algorithm can be found in Supplementary Information S1.

Robustness of Individual Nodes
It is desirable that any method for community detection be

relatively robust to small changes in network connectivity.
Modularity may be used to assess the quality of a partition on a
global level at a particular resolution, but not the robustness of a
individual node. The assignment of node i to a particular
community may be fragile (non-robust) if it (a) has few edges
within its assigned community (i.e. small kini ~

P
j[ci aij ) or (b) has

a small ratio of in-community and out-of-community edges (i.e.

small kini =(ki{kini )~kini =k
out
i ). It is useful to incorporate both of

these elements into a single measure, which we call the degree of

robustness: d (1)
i is the number of the kini nodes to which i feels

closest that are in i’s microcommunity. Nodes with high robustness
can be considered the ‘core’ of their community, since of all of the
nodes in the community they have the largest number of close
friends amongst the other community members. In networks with
a hierarchical community structure, nodes may have varying
robustness at each resolution. Nodes that are robustly assigned to a
microcommunity may have a fragile assignment to its macro-
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community, and vice versa. To assess the robustness at each level

of the hierarchy, we can compute D(j)
i ~d(j)

i {d(j{1)
i , where d(j)

i is

the robustness of a node i at the jth resolution in the hierarchy,

setting d(0)
i ~0 for notational convenience so that D(1)

i ~d(1)
i .

Nodes with small D(j)
i are weakly connected to the other nodes in

their community (i.e. their assignment to the micro- or macro-
community is fragile, regardless of the robustness in communities
of other resolutions). Note that the normalized degree of

robustness D(j)
i =ki is useful in detecting nodes on the boundary

between communities (having many edges, but few close friends in

their assigned community), but that D(j)
i more directly indicates

robustness as the number of strong in-community edges. At each
level of resolution, the average robustness of any community can

be estimated as r(j)c ~SD(j)
i Ti[c~n{1

c

P
i[c D

(j)
i .

An Artificial Benchmark with Variable Robustness
In order to introduce variable node robustness into an artificial

benchmark, we modify the benchmark of Reichardt and
Bornholdt [14,20] (similar to that in Fig. 1(g)) which includes
512 nodes, 16 microcommunities of 32 nodes, and 4 macro-
communities of 128 nodes (see Supplementary Information S1 for
more details). Each node i has on average kini edges connecting it

to its microcommunity, kouti zkini edges in its macrocommunity,

and kmix
i edges outside of its macrocommunity. In order to

modify the benchmark to allow for variable node robustness, we

choose kini , k
out
i , and kmix

i to depend on i in a simple fashion,

depending on the macrocommunity it is assigned to (labelled A–
D in Fig. 2(a)) and an asymmetry parameter a§0, with a~0
corresponding to the standard Reichardt-Bornholdt benchmark
[14] (see the table in the caption of Fig. 2 and discussion in

Supplementary Information S1). This modified benchmark allows
us to examine the effectiveness of the multi-level hierarchical
community detection as well as the utility of the degree of

robustness D(j)
i .

An example of the benchmark is shown explicitly in Fig. 2(a)
for a~8, for which the in-, out-, and mix-degrees of nodes vary
significantly with i (see the caption of Fig. 2). Fig. 2(b-c) show the
in-degrees and in-out ratios for the highest resolution of the
hierarchy and (e-f) for the coarsest resolution, with a decrease in

kini implying a node is less connected to its community and a

decrease in r(1)i ~kini =(k
out
i zkmix

i ) indicating a node is highly
connected to nodes outside of its community. When we apply
our community detection algorithm, the CUF approach
recovers the correct partition with a mutual information of
SImicroT~0:95 on the micro-scale and SImacroT~0:85 on the
macro-scale (see eq. 2) at a~8. The mutual information at each
scale increases for for decreasing a, but begins to drop rapidly
near a *> 10. The high value of the mutual information shows

that the CUF algorithm accurately detects the intended
communities for reasonably large asymmetry in the community
structure (see Supplementary Information S1 for further
hierarchical benchmarking).
The benchmark shows that the degree of robustness D(j)

i

accurately determines nodes that are less robustly assigned to their
intended community at both levels of resolution (shown in Fig. 2(d)
and (g)). Nodes in macrocommunity A are less connected to the
network overall (and are less robustly assigned at all scales), with

and unsurprisingly both D(1)
i and D(2)

i are decreasing with
i#~½(i{1) mod 32%=31 as expected. In macrocommunity B,
nodes have a constant in-community degree and a decreasing ratio
of in- to out-of-community degree at each scale, so nodes should

Figure 1. Benchmarks of the community detection algorithm. (a) shows the mutual information between the detected and true partitions for
varying kout and for different closeness measures on the Girvan-Newman benchmark [1,12]. Up and down triangles show modularity maximization
using a greedy [16] (implemented in Mathematica) and Potts model [14,32] for comparison with the CUF method implemented using the Jacard
Coefficients (black circles), GENs (red squares) and overlap (blue stars) as closeness measures. (b) Percent improvement of the CUF approach over a
greedy modularity maximization [16] using the GENs (red), overlap (blue), and Jacard Coefficients (black) as a closeness measure for real world
networks with a ‘correct’ partition known apriori. Taken together, (a) and (b) suggest the GENs are typically more accurate measure of closeness. (c-f)
show the CUF method implemented on the benchmark of Lancichinetti, Fortunato and Radicchi for varying k, b and c (compare to Fig. 5 and 7 of Ref.
[28]). The CUF method performs well for mƒ0:5, although modularity maximization is more accurate (as is the case in (a)), and beings to fail
significantly for mw0:5 as expected. (g) shows the multiresolution modularity [18] Qr of the high (solid black line) and low (dashed blue line)
resolution partitions using our CUF algorithm, alongside the maximum modularity determined via simulated annealing. The modularity maximizing
solutions transition smoothly between the coarser partition for small r and the finer partition for larger r as expected, indicating that our CUF method
does indeed detect the two levels of hierarchy accurately without appealing to arbitrary parameters.
doi:10.1371/journal.pone.0038704.g001
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be less robust with increasing i#. While the expected decrease in

robustness is clearly observed for D(1)
i , at the macro-scale there

is a slight (but unexpected) increase in the robustness of each
node as i# increases. This is due to errors in the macro-scale
community detection, with macrocommunity B being the most
difficult to detect of all of them. Nodes in macrocommunity C
have constant in-degree and in-out ratio at the micro-scale

(with the corresponding robustness D(1)
i nearly constant), but at

the macro-scale are less robust with both the in-degree and in-

out ratio decreasing (leading to an expected decrease in D(2)
i

with increasing i#). Finally, the nodes on the micro-scale in
macrocommunity D simultaneously have increasing in-degree
but decreasing in-out ratio with increasing i#. While we find the

degree of robustness D(1)
i increasing, the rate of increase of D(1)

i

depends on the interplay between the increased robustness due
to more in-community edges and the decreased robustness due

to more out-of-community edges. D(1)
i in macrocommunity B

and D and D(2)
s in macrocommunity D are both clear examples

of the dependence of the rate of increase in D(j)
s on both kin and

r(j). The successes in correctly determining not only the
hierarchical community structure but also node robustness of
this simple benchmark suggest that our approach may be

fruitfully applied to complex real world networks with
hierarchical structure.

Results and Discussion

The Harvard Coauthorship Network
Turning now to real examples, we look at the network of

scientific journals which we expect can be divided into sub-fields at
varying resolutions. We construct a network from publications
found in the Digital Access to Scholarship at Harvard (DASH)
repository, a database of journals, book chapters, and conference
proceedings uploaded by Harvard faculty. The available metadata
includes the authors and the journal of publication, which we use
to generate a weighted network with each journal as a node. The
weight of the edge between nodes i and j, wij , is the number of
article pairs that have at least one author in common, with one
article published in journal i and the other in journal j. The largest
connected component of this network (comprising N~779
journals as nodes, shown in Fig. 3(a)) has a complex structure:
while the degree of each node (the number of edges with non-zero

weight) is exponentially distributed, P(ki~k)*e{k=15:1, the
strength of each node is log-normally distributed, with a good fit

given by P(Wi~W )*W{1e{0:24½log (W ){5:3%2 (see Fig. 3(b-c)). It is

Figure 2. Benchmarks with variable node robustness. (a) A snapshot of the benchmark with hierarchical community structure and variable
node robustness at a~8. The behavior of the nodes as a function of a and i#~½(i{1) mod 32%=31 is described in the table, with

r(1)i ~kini =(k
out
i zkmix

i ) the average in-out ratio at the microcommunity resolution, and r(2)i ~(kini zkouti )=kmix
i is the in-out ratio at the

macrocommunity resolution. In the table, down arrows, up arrows, and dashes denote increasing, decreasing, and constant values (respectively)
of the quantities on average. (b) and (e) show the in-degrees at each resolution, kini for microcommunities and kini zkouti for macrocommunities.

Likewise, (c) and (f) show the ratio of in- and out-degrees at each resolution, r(1)i and r(2)i . (d) shows the degrees of robustness D(1)
i at the micro-scale

and (g) shows the robustness D(2)
i on the macro-scale. The behavior of the degrees of robustness at both resolutions agrees with the expectations in

most cases: if the in-degrees or in- to out-degrees decrease, the nodes become less robust.
doi:10.1371/journal.pone.0038704.g002

Table 1.

Macrocom. kini kouti kmix
i kini r(1)i

Behavior kini zkouti r(2)i
Behavior

A kin0 {ai# kout0 (1{ai#=kin0 ) kmix
0 (1{ai#=kin0 ) ; – Less robust ; – Less robust

B kin0 kout0 zai#=2 kmix
0 zai#=2 – ; Less robust – ; Less robust

C kin0 kout0 {ai#=2 kmix
0 zai#=2 – – Constant ; ; Less robust

D kin0 zai# kout0 z2ai# kmix
0 z3ai#=r(2)i

: ; More robust{ : – More robust

{The robustness with increasing i# depends on how slowly kini increases.
doi:10.1371/journal.pone.0038704.t001
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interesting to note that an exponentially distributed degree
sequence is indicative of network growth without preferential
attachment [30], while log-normally distributed strengths may
indicate growth with a localized preferential attachment in the
weight (see ref. [31] and below for further discussion). This may
illuminate some of the details of how a publication network grows:
while authors preferentially publish in high-profile journals or
proceedings (leading to the fat tail on the strength distribution),
they may choose to publish in new or lower profile journals if
necessary (leading to the exponential, non-preferential attachment
distribution of the degree sequence).
In Fig. 3(a), 36 microcommunities in the DASH network are

found, and in most cases an inspection of the group memberships
showed the members of each community were related (a full list is
found in Supplementary Information S1). It is worth noting that
using a Potts model approach to modularity maximization [14,32]
(with resolution c~1) yields 32 distinct microcommunities, and the
partitions generated by the two methods share much in common,
suggesting the CUF results are reasonable. The hierarchical
detection scheme shows that each of the microcommunities falls
into 6 natural macrocommunities (see Fig. 3(a)). The two largest
macrocommunities show a division between the Physical Sciences
(physics, biology, chemistry, and geology) and the Mathematical
Sciences (pure mathematics, economics, and computer science).
Three additional macrocommunities consist of a combination of
Philosophy and the History of Science, Linguistics, and Law, and a
final macrocommunity having no obvious meaning on inspection
(see Supplementary Information S1 for the member journals of
each community). We note that this hierarchical partition is not
easily detected using the Potts modularity maximization approach:
even for c~0:02, there are still 23 microcommunities detected via
modularity maximization. Thus, the partition into distinct
scientific fields naturally arises from the coarse graining in our
approach, but is difficult to detect using modularity methods
alone. Further coarse graining shows that there is no additional
hierarchical structure to be found in the DASH network.
The average robustness of the nodes in each community of the

DASH data is very heterogeneous (the multi-colored bars in
Fig. 3(d)), which can be of use in determining which micro-
communities are held together weakly, either because of the
complex network topology involving the nodes in the community
or due to an incorrect partitioning of the network. Many of the
detected communities have few nodes, and are correspondingly
less robust on average. Even some large communities have low
average robustness, which could indicate an incorrect assignment
or an unexpected network topology around a community. For
example, Phys. Sci. 5 (PS5 in Fig. 3(d)) consists of 26 journals, with
a very small average degree of robustness of r(1)PS5~2:8. The
surprisingly low robustness of PS5 is not due to sparse connections
between nodes within the community (the average degree of nodes

in PS5, Skini T~7:6), but is because of the fact that these journals
are highly connected externally (SkoutT~5:5).
The robustness of a node’s assignment to its macrocommunity

(the thin black bars in Fig. 3(d)) is not determined by how robustly
assigned it is to its microcommunity. The average robustness r(2)c

gives an indication of how strongly a microcommunity is attached
to its macrocommunity, and we find that Philosophy/History 1

(PH1) is the most weakly assigned, with r(2)PH1&0:12, despite the

very robust assignment of the nodes in the microcommunity

(r(1)PH1~9:8). Two journals in PH1 are very strongly connected to

the Mathematical Sciences macrocommunity (so much weight is
directed to Math. Sci. from PS1), while many journals in PH1 are
more weakly connected to the journals in its own macrocommu-

nity (so more edges are directed towards Philosophy and History).
The degree of robustness is thus able to home in on micro-
communities that may be on the boundary between macrocom-
munities and identifying particularly complex topologies.

The Physical Review Citation Network
Another real-world network where one may expect a hierar-

chical structure is that of a citation network (independent of their
journal of publication), with an expectation of divisions between
fields and sub-fields as was observed in the DASH network. We
examine the citation network of articles published in the Physical
Review journals [33,31], with articles as nodes and citations
between articles as edges. Citations naturally form directed edges
(a citation between i and j does not imply a citation between j and
i), but to apply our methods we study the undirected (wij~wji)
version. The degree distribution of this network has been
previously shown to be log-normally distributed [31], which may
indicate the underlying dynamics of the growth of the network.
Network growth coupled with with preferential attachment
produces a scale free degree distribution [30,7], but Redner [33]
has noted that a modified, locally defined preferential attachment
process explains the emergence of a log-normally distributed data.
Rather than citing the most important papers, an author chooses
to cite either a randomly chosen paper or one of the citations of
that paper (with the latter likely to be highly cited [34]). The log-
normal distribution is also observed in the highly-cited subset of
the network considered (see below for further discussion),
suggesting that this smaller sample is reasonably representative
of the structure of the full network.
Applying the CUF method to the Physical Review network detects

four distinct hierarchies of community structure, ranging from the
finest resolution of numerous small microcommunities to the
coarsest resolution with two large macrocommunities (see Fig. 4(a-
c) for a schematic ranging from coarsest to finest). At the highest
resolution, 266 communities are detected, and the partition has
the modularity Q1~0:63 (at c~1). This is in reasonable
agreement with a similar previously studied Phys. Rev. network
[33] with 274 detected communities and a modularity of Q~0:54,
suggesting that this fine resolution partition of the more current
data is reasonable. High-modularity partitions are also detected
using our coarse graining method, with the modularities Q2~0:75
for the 62 communities on the second level of the hierarchy and
Q3~0:74 for the 11 communities at the third level (see Fig. 4(a-b)).
The final level of coarse graining does not produce a very high
modularity (with Q4~0:33) for two macrocommunities, but the
meaning of the partition recognizable on inspection of the
component communities for its distinction between earth-bound
and cosmological research. At each level of hierarchy, the
partitioning is both reasonable from a scientific perspective as
well as generally producing a large modularity, suggesting that
CUF approach is able to discern the natural partitions of the
network without need for a resolution parameter.
The distribution of the degrees of robustness found in the

Physical Review network is shown in Fig. 4(d), along side the degree
distribution of the nodes. As mentioned earlier, the degree
distribution is well fit by a log-normal distribution [31]

P(ki~k)*k{1e{1:1½log (k){2%2 , with a fatter tail than exponential
but vanishing faster than a power law. The distribution of node

robustness D(j)
i , which indicates how robustly the node i is assigned

at the jth level of the hierarchy, decays much more rapidly for large

D(j)
i for all four of the hierarchical levels. At the finest resolution

(blue squares in Fig. 4(d)), the degrees of robustness are well fit by

an exponential decay P(D(1)
i ~D)*e{D=4:5, and although the tail
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beyond D~20 (incorporating below 2.5% of the nodes) is slower
than exponential, it remains faster than log-normal. The far more
rapid decay of the degrees of robustness suggest that highly-cited
papers have applications in a wide variety of fields (i.e. are have
many out-of-community edges). The robustness of the nodes at the
lower-resolution partitions are all similar to one another (triangles
and stars in Fig. 4(d)), all satisfying an exponential initial decay of

P(D(j)
i ~D)*e{D=2:8 over a somewhat shorter range. Each node

has roughly the same robustness on each level of the hierarchy,
suggesting that an equal fraction of nodes are involved in forming
the edges of the different levels of the hierarchies.

Conclusions
In this paper, we have described a new and intuitive method for

detecting hierarchical community structure in complex networks that
does not rely on free parameters or require advanced knowledge of
the number or size of the communities. Given a method for
measuring the ‘closeness’ between two nodes in a network, one can

trace a path of closest friendship that defines a high-resolution
partition of the community, resulting in a method with (1) reasonable
computational complexity in comparison to other methods [10], (2)
easy detection of multiple levels of community structure without the
need for an (unknown apriori) resolution parameter [17,13], and (3) a
simple yet powerful method of measuring the robustness of the
assignment of an individual node to its community. We must note
that there are also limitations to our approach, including the free
choice of a closeness measure, pathological network topologies
(which, for example, necessitates the use of the CUF over the CF; see
Supplementary Information S1), and the requirement that no
community can be formed from only one node. Despite these
possible limitations, the advantages of our approach in automatically
detecting and evaluating hierarchical community structure are
significant. Using the recently proposed Generalized Erdös Numbers
[24] as a closeness measure (which performs better than other
measures in benchmarks) we examined two real world systems where
a hierarchical community structure is naturally expected: a

Figure 3. The network of journals from the DASH data. (a) Low weight edges (with 1ƒwijƒ5) are shown in blue, while higher weight nodes
(wij§6) are shown in red. Nodes are ordered in order of descending macrocommunity size, then descending microcommunity size, and finally in
descending strength. The 36 microcommunities are denoted by the smaller black squares, while the 6 macrocommunities are shown in the larger

thick black squares. Some microcommunities are labelled with their two most robust nodes (having largest D(1)
i ). The degree distribution of the DASH

data in (b) is exponential, while the distribution of node strengths in (c) appears to be log-normal. In (d), the average robustness of nodes in the
microcommunities (r(1)c , thick bars of varying color) and macrocommunities (r(2)c , thin black bars) for the DASH data. In (d), the bar for Mathematical

Sciences 2 (MS2) is cut off, having a very high average degree of robustness of r(1)MS2~39:8.
doi:10.1371/journal.pone.0038704.g003

Figure 4. The hierarchical community structure of the Physical Review network. (a-c) shows a progressively coarsened view of the network,
with the text labels of the communities composed of the most statistically significant words found in the titles of the articles in the communities. (a)
shows the microcommunity structure of 148 nodes, with (b) a zoomed-out picture of the 625 nodes in one macrocommunity of the second level of
the hierarchy, and (c) the full network (showing the final two levels of hierarchy). (d) shows the degree distribution as well as the distribution of node
robustness at each level of the hierarchy (shown log-linear in the inset). Black circles show the degree distribution, which is log-normally distributed
[31] (the best fit is the black line). The distribution of robustness on the micro-scale, D(1)

i , is shown with the blue squares, while the distribution for the

other hierarchical degrees of robustness D(j)
i are all quite similar (shown with the up triangles, down triangles, and stars). The initial decay of the

robustness is well-fit by an exponential in all cases (with the best fit for each shown as lines).
doi:10.1371/journal.pone.0038704.g004
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coauthorship network defined by the DASH data and a citation
network generated from the Physical Review data. Our approach is able
to detect a high-resolution partition of each dataset that is composed
of well defined communities of variable size, and an inspection of the
member nodes suggests that the partition is meaningful in both the
DASH- and Phys. Rev. networks. Our coarse graining method of
detecting hierarchy finds a reasonable macrocommunity partition for
the DASH data (with each of the macrocommunities clearly linked
upon inspection), with this coarse-grained partition not obviously
detected using modularity maximization. By examining the degree of
robustness of these communities on the micro- and macro-scale, we
are able to rapidly home in on the most interdisciplinary communities
(those with many significant connections to other communities). The
Phys. Rev. citation network naturally partitions into four distinct
hierarchies of communities (without any apriori assumption of the
correct number of hierarchies), with the nodes in the communities
generally related to each other upon inspection. The ability to find
communities of arbitrary size, detect the structure of a natural (and
system-defined) number of hierarchies, and locate particularly insular
or interdisciplinary communities are all significant advantages of our

method, and clearly displayed in the analysis of both the DASH and
Phys. Rev. networks.

Supporting Information
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4. Barabási A, Jeong H, Néda Z, Ravasz E, Schubert A, et al. (2002) Evolution of
the social network of scientific collaborations. Physica A: Statistical Mechanics
and its Applications 311: 590–614.

5. Porter M, Mucha P, Newman M, Friend A (2007) Community structure in the
united states house of representatives. Physica A: Statistical Mechanics and its
Applications 386: 414–438.

6. Yan K, Fang G, Bhardwaj N, Alexander R, Gerstein M (2010) Comparing
genomes to computer operating systems in terms of the topology and evolution
of their regulatory control networks. Science’s STKE 107: 9186.

7. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science
286: 509.

8. Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.

9. Moore C, Newman M (2000) Epidemics and percolation in small-world
networks. Physical Review E 61: 5678–5682.

10. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–
174.

11. Newman M (2006) Modularity and community structure in networks.
Proceedings of the National Academy of Sciences 103: 8577.

12. Newman M, Girvan M (2004) Finding and evaluating community structure in
networks. Physical Review E 69: 26113.
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