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ABSTRACT

In the field of sparse representations, the overcomplete dic-

tionary learning problem is of crucial importance and has a

growing application pool where it is used. In this paper we

present an iterative dictionary learning algorithm based on the

singular value decomposition that efficiently construct unions

of orthonormal bases. The important innovation described in

this paper, that affects positively the running time of the learn-

ing procedures, is the way in which the sparse representations

are computed - data are reconstructed in a single orthonor-

mal base, avoiding slow sparse approximation algorithms -

how the bases in the union are used and updated individually

and how the union itself is expanded by looking at the worst

reconstructed data items. The numerical experiments show

conclusively the speedup induced by our method when com-

pared to previous works, for the same target representation

error.

Index Terms— sparse representations, orthogonal blocks,

overcomplete dictionary learning.

1. INTRODUCTION

Tools from the sparse representations [1] [2] field have been

extensively used to model various observed data, e.g. audio

and image, in terms of sparse linear models with numerous

practical applications [3].

In this field, one of the central open problems is devel-

oping overcomplete dictionary learning algorithms. This ap-

proach suggests a different way of considering linear trans-

formations: instead of using a popular, well-known trans-

form (such as Fourier or wavelet) to represent the data, a

custom transform can be learned by analyzing a small, but

relevant, available dataset. The goal is that, given the dataset

Y ∈ R
n×N we construct the factorization Y ≈ DX where

the matrix D ∈ R
n×m is called dictionary, the normalized

This work was supported by the Romanian National Authority for Sci-

entific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-

3-0400.

columns dj ∈ R
n with j = 1, . . . ,m, are called atoms and

the sparse representations matrix X ∈ R
m×N . Notice that

the problem dimensions follow n ≤ m≪ N .

Stated as an optimization problem, given the dataset Y

and the target sparsity s0 we can define the overcomplete dic-

tionary learning problem as

minimize
D,X

‖Y −DX‖2F

subject to ‖xi‖0 ≤ s0, 1 ≤ i ≤ N

‖dj‖2 = 1, 1 ≤ j ≤ m,

(1)

where ‖x‖0 is the ℓ0 pseudo-norm (the number of non-zero

components in the vector x). This problem is hard due to

the bilinear objective function and the N constraints that are

NP-hard.

Numerous methods that tackle problem (1) have been pro-

posed (such as K-SVD [4], AK-SVD [5], LS-DLA [6]) and

the general approach is to solve it by alternative iterations:

keep the dictionary fixed and find the sparse representations

by applying an algorithm such as Orthogonal Matching Pur-

suit (OMP) [7] and then, with the new representations, update

the dictionary (the whole at once or one atom at a time). Cur-

rent state of the art methods work well in practice, especially

in terms of performance (low representation errors).

The general dictionary learning problem does not assume

any structure for the dictionary D. In this paper we assume

that the dictionary is a union of orthonormal bases (ONBs) [8]

- or, in the particular case, that the dictionary is orthonormal.

Consider now the problem

minimize
D,X

‖Y − [Q1 . . . QL]X‖
2
F

subject to ‖xi‖0 ≤ s0, 1 ≤ i ≤ N

QT
j Qj = In, 1 ≤ j ≤ L,

(2)

where the dictionary D is written explicitly as a union of L
ONBs noted Qj ∈ R

n×n with j = 1, . . . , L.

Prior dictionary learning methods that work with unions

of ONBs follow the same iterative idea as general dictionary



learning methods do but operate with the Singular Value De-

composition (SVD) in order to build naturally the orthonor-

mal structures. In order to construct the sparse representa-

tions, the OMP algorithm is used again. Each individual or-

thonormal block is updated after analyzing the single block

case, which plays a crucial role in this learning framework.

Setting the solver structure aside, constraining the dictionary

to be a union of ONBs has a true practical significance - for

example, images can be modeled as a superposition of several

layers that have sparse representations in particular ONBs [9].

Contribution. In this paper we propose a new approach

to the union of ONBs dictionary learning problem. We pro-

pose a new way of constructing the unions of ONBs by chang-

ing the way the sparse representations are created. Unlike

the previous methods, that use atoms from any orthonormal

block, we attach each data item to the orthobase that best rep-

resents it avoiding thus the utilization of the OMP algorithm

and speeding up the direct and inverse dictionary applications.

From this point of view, the method proposed in this paper

is similar, in nature, to the block sparse dictionary learning

methods [10] albeit with some important differences: each

block is an orthobase and only one block is used in each rep-

resentation. This novel structure allows for the fast applica-

tion of the dictionary. When training the blocks of the dictio-

nary, each block is constructed using a well-known orthonor-

mal dictionary learning method applied only on the training

data associated with this particular block, while the dictionary

expands in a greedy fashion by adding at each step an extra

block.

The method proposed in this paper is slightly different

than the common wisdom presented in the field of sparse rep-

resentations. There, the general principle is to allow, for the

same target signal, the representation atoms to originate from

different bases. This comes with great representation success

but at the expense of relatively large running times which are

mainly the fault of the slow sparse approximation algorithms.

If until now, the diversity in the dictionary was generated by

atom directions, in our case the diversity is generated by al-

lowing for a large number of independent orthobases (that can

be operated very fast).

The manuscript is organized as follows: Section 2 out-

lines the current approach to the ONBs dictionary learning

problem, Section 3 describes the new approach that we con-

sider while Section 4 outlines some numerical experiments

that validate the new method. Section 5 concludes the paper

and sets future objectives in this research direction.

2. PRIOR ART

The results presented in this section are based on [8], a paper

that describes an efficient dictionary learning method based

on unions of ONBs. The new results presented in this paper

build upon this work.

In the first case we consider that the dictionary is com-

posed of a single orthonormal base. The problem is easily

stated as

minimize
Q,X

‖Y −QX‖2F

subject to ‖xi‖0 ≤ s0, 1 ≤ i ≤ N

QTQ = In.

(3)

The crucial observation is that, in the iterative process to

solve this problem when the sparse representations matrix X

is kept fixed a singular value decomposition is used for the up-

date. Concretely, each iteration of the orthonormal dictionary

learning algorithm is presented next.

1ONB Alternative optimization iteration. Given the dataset

Y ∈ R
n×N , the target sparsity s0 and the maximum number

of iterations K0, train the orthonormal dictionary Q ∈ R
n×n

such that ‖Y −QX‖F is reduced by iterating the alternative

steps:

1. With the fixed dictionary Q, compute the sparse repre-

sentations with target sparsity s0 by computing X =
QTY and keeping the largest s0 absolute value entries

on each column.

2. Using the new matrix X , the new orthonormal dictio-

nary is computed via the SVD decomposition

Y XT = UΣV T (4)

and the updated dictionary is taken to be

Q = UV T . (5)

Details regarding this approach are presented in [8]. No-

tice that each data item can use atoms originating from dif-

ferent orthobases. This definitely allows for better sparse ap-

proximation at the expense of using the slow OMP algorithm

that cannot exploit the orthogonal structure of the dictionary.

With a good initialization, the procedure needs to run only for

a few iterations to reach very good results (K0 < 5).

Based on the previous result, we present the general train-

ing algorithm for the union of L ONBs.

Union of L orthonormal bases dictionary learning

(UONB). Given the dataset Y ∈ R
n×N , the target sparsity

s0, the number of orthobases L and the maximum number of

iterations K, construct the dictionary D = [Q1 . . . QL] ∈
R

n×Ln, column-wise concatenated, and the sparse repre-

sentations matrix X ∈ R
Ln×N such that ‖Y − DX‖F is

reduced.

• Initialization:

1. Choose an initial dictionary D0 (a very good starting

point can be U from Y = UΣV T , a SVD decompo-

sition on the whole dataset).



2. Update the sparse representation using the OMP algo-

rithm to construct X = [XT
1 . . . XT

L ]
T , row-wise

concatenated.

• Iterations: for k = 1, . . . ,K

1. Update the dictionary. For each orthobase i = 1, . . . , L

(a) Extract the working dataset: Yi = Y −
∑

j 6=i QjXj .

(b) Compute the SVD: YiXi = UΣV T .

(c) Update the dictionary: Qi = UV T .

2. Compute X , the new representations matrix, using

again the OMP algorithm.

3. Possibly check additional stopping criterion.

This method works well in practical applications but it is

relatively slow. The focus of the paper herein is to improve

the running time of the sparse reconstruction strategy.

3. THE PROPOSED METHOD

In this section we present a different approach to the union

of ONBs dictionary learning problem than the one described

earlier. We propose a new way to construct the sparse repre-

sentations such that the OMP algorithm is avoided, and thus

the running time of the learning procedure is greatly reduced.

One of the biggest issues with the current state-of-the-art

dictionary learning algorithms is the poor running time. This

is what we address in this section of the paper. We identify

the source of the problem as being the usage of slow sparse

reconstruction algorithms, like the Orthogonal Matching Pur-

suit (OMP). The utilization of algorithms that are faster than

OMP is not actually a viable option since these methods have,

in the general case, a series of undesirable properties (e.g.

they perform much worse in terms of representation error, sit-

uations can be constructed where the same atoms are selected

multiple times in the same iterative process). The only situa-

tion where sparse reconstruction algorithms can be avoided is

the orthonormal case. When dealing with an orthonormal dic-

tionary, the sparse approximation problem reduces to comput-

ing the projections of the target signal and keeping the largest

absolute value entries. To select the largest entries, per signal,

a fast partial sorting algorithm [11] is used whose complexity

is only O
(

n
)

.

Taking this observation into account we propose a new

strategy for the construction of the sparse representations in a

union of ONBs: instead of using atoms from different ONBs,

we attach each data item to a particular ONB and use only its

atoms for the reconstruction. This way, we group data items

together that can have a sparse construction in a single ONB.

We construct an algorithm that at each step grows the cur-

rent dictionary with one more ONB that is trained by looking

at the worst constructed data items from the available dataset.

Overall, these observations play an important role when look-

ing at the scaling capabilities of the proposed method.

The algorithm, called Single Block Orthogonal Dictio-

nary Learning (SBO), is presented next in detail.

Single Block Orthogonal Dictionary Learning (SBO).

Given the dataset Y ∈ R
n×N , the target sparsity s0, the

target representation error ǫ, construct the dictionary D =
[Q1 . . . QM ] ∈ R

n×Mn and the sparse representations ma-

trix X = [XT
1 . . . XT

M ] ∈ R
Mn×N that allocates each data

item to a single ONB such that ‖Y −DX‖F is reduced.

• Initialization:

1. Iteratively train M0 individual ONBs by randomly se-

lecting each time P0% of the available dataset and ap-

plying the 1ONB iterations K0 times.

2. Allocate each data item yi, i = 1, . . . , N to only one of

the previously computed ONB Qm⋆

i
by:

m⋆
i = argmax

m=1,...,M0

s0
∑

k=1

|QT
myi|[k], (6)

where z[k] stands for the kth largest component of z.

Indices allocated to Qm are denoted by the set Im.

• Iterations:

1. Construct the set of indices:

W =

{

1

‖yi‖22

s0
∑

k=1

|QT
m⋆

i

yi|
2
[k]

}

<1,...,⌈PN⌉>

, ∀i (7)

where z<k> stands for the index of the kth smallest

component of z, m⋆
i is the current allocation of yi and

train using 1ONB initialized with the SVD result U ,

YW = UΣV T . Add this new orthobase to the current

union (M = M + 1).

2. Use (6) to produce the new sets Im,m = 1, . . . ,M .

3. Since the union can be treated as a queue, in a last in

first out (LIFO) order, update each ONB using 1ONB:

[Qm,XT
m] = 1ONB(YIm

,K0),m = M, . . . , 1. (8)

4. Check stop condition: ‖Y −DX‖ ≤ ǫ.

A discussion on each step of SBO follows.

In the initialization step we construct M0 orthonormal

dictionaries using a randomly selected fraction (P0%) of

the dataset. Typical values of M0 are included in the range

[1, . . . , 5] but this choice should also consider the total dimen-

sion of the dataset and the target sparsity imposed. For large

datasets or when the target sparsity is large (relative close



Table 1: Representation errors and training running times (in

seconds) achieved by UONB and SBO.

L s0 ǫUONB tUONB (s) ǫSBO tSBO (s) M

3

4 0.676 12.9 0.672 3.9 10

8 0.418 16.3 0.417 6.8 13

16 0.233 26.6 0.231 12.0 16

4

4 0.640 15.0 0.639 5.7 12

8 0.394 21.0 0.394 10.6 17

16 0.224 36.2 0.222 14.1 18

5

4 0.613 17.6 0.611 9.7 16

8 0.378 25.9 0.376 13.1 20

16 0.212 48.7 0.210 19.5 22

6

4 0.591 21.8 0.591 11.1 19

8 0.366 35.2 0.363 16.5 23

16 0.200 71.8 0.199 20.6 26

to the working dimension n) experimental runs show that a

good choice is to select larger values of M0. In the allocation

step, each data item is attributed to one of the orthobases -

the one where the item has the smallest reconstruction error.

Since we are dealing with orthobases (energy is preserved),

the representation residuals need not be computed. It suffices

to compute the energy of the representation coefficients from

X and select the orthobase where this energy is highest. This

initialization step is very important since in general it has an

important impact on the total number M of bases that will be

added to the dictionary.

Each iteration serves to expand the union of ONBs such

that the overall representation error is reduced. Each iteration

starts by identifying the P% worst reconstructed data items

from the dataset. This set is the working set for the con-

struction of a new orthobase to expand the union. In some

sense, the dictionary is built, gradually, in a greedy manner

that should lead to a significant reduction in the representa-

tion error. An expansion idea in this spirit also works well

for general dictionary learning algorithms [12]. After the new

orthobase is added to the union, the allocation process is re-

peated. Here we expect the worst constructed data items to

be attached to the new constructed base. Since the new al-

location may have changed the data pool of every orthobase,

we check and train for K0 iterations each such base allowing

it to adapt to its newly allocated data items. Each iteration

checks if the target total representation error was reached and

the algorithm stops accordingly.

Clearly, the dictionaries designed by SBO will compen-

sate the constraint imposed on the reconstruction by produc-

ing larger dictionaries. From this point of view, to be compet-

itive with UONB, we expect that Ls0 > M . The inequality

comes from comparing the computational complexity of the

OMP algorithm O
(

Ls0n
2
)

with the complexity of the indi-

vidual block orthonormal representation O
(

Mn2
)

.
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Fig. 1: Speedup (tOMP/tALLOC) for the sparse approximation

step offered by the block orthonormal algorithm when com-

pared against OMP for various sizes M (N = 5000, L = 3
and s0 = 8).

4. RESULTS

In this section we describe numerical experiments to validate

the method proposed in this paper. Comparisons are provided

with the UONB method presented in [8]. When using UONB,

in the sparse approximation step where OMP is used we uti-

lize the, publicly available, library OMP-box outlined in [5].

The test data consists of image data extracted from pop-

ular test images (such as: lena, peppers, boat). Simulations

are executed on a random sample of N = 5000 normalized

patches of size 8× 8 extracted from these images.

In each experimental run, we first apply the UONB algo-

rithm to produce a target representation error that is then pro-

vided to the proposed SBO method. In terms of performance

we are interested in the following indicators:

1. ǫUONB, ǫSBO - the representation errors achieved by the

UONB and the SBO algorithms relative to the number

of data items N .

2. M - the number of ONBs needed by SBO to reach the

representation error of UONB.

3. tUONB, tSBO - the running times of the UONB and the

SBO algorithms. We also denote tOMP and tALLOC the

running times of the OMP algorithm and of allocation

procedure (6) respectively.

We consider different sparsity levels s0 and different

union lengths L for UONB. In all cases, the number of it-

erations per single ONB training is K0 = 3, the number of

iterations for UONB is K = 25 and the number of initial

orthobases for SBO is M0 = 5. In the case of SBO, the



dimension parameters are taken P0 = 10% and P = 3%,

chosen after some numerical simulations were conducted.

The performance (design dimensions, representation errors

and running times) of SBO is depicted in Table 1.

Since we have concluded that, overall, the SBO training

procedure is faster than UONB we now focus only on the

sparse approximation step. We are interested to see the run-

ning time of OMP versus the running time of orthonormal

block approximation. In this context, to make a fair compari-

son, we use a Matlab implementation of OMP, with Cholesky

decomposition, instead of the implementation provided by the

authors of [5] that is a C compiled version. The results ob-

tained over a selection of N = 5000 data items are presented

in Figure 1. An important obvious observation is that run-

ning time equality is achieved for a very large M = 72, when

compared to the benchmark Ls0 = 24. This seems to be a

consequence of the simplicity of the proposed solution and

its ability to take full advantage of simple, well studied, oper-

ations (namely block matrix multiplication, sorting).

5. CONCLUSIONS

In this paper we have proposed a new method for constructing

unions of orthonormal bases that is significantly faster than

the previous approaches. The main idea presented in this pa-

per is the development that allows avoiding sparse approxi-

mation algorithms that are relatively slow (like OMP). This

is achieved by using in the approximation step only single

orthonormal bases. At the cost of a larger dictionary, we de-

velop constructions where each data item of the dataset is al-

located to the orthobase where its representation error is low-

est. Experimental runs clearly show that the proposed cod-

ing mechanism is faster for similar representation capabili-

ties. Future work should address the issue of memory usage

when using such large dictionaries or the development of an

efficient pruning mechanism to lower their size.
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