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We study two driven dynamical systems with conserved energy. The two automata contain the basic
dynamical rules of the Bak, Tang, and Wiesenfeld sandpile model. In addition a global constraint
on the energy contained in the lattice is imposed. In the limit of an infinitely slow driving of the
system, the conserved enerffybecomes the only parameter governing the dynamical behavior of the
system. Both models show scale-free behavior at a critical vigluef the fixed energy. The scaling
with respect to the relevant scaling field points out that the developing of critical correlations is in a
different universality class than self-organized critical sandpiles. Despite this difference, the activity
(avalanche) probability distributions appear to coincide with the one of the standard self-organized
critical sandpile. [S0031-9007(98)06024-4]

PACS numbers: 64.60.Lx, 05.40.+j, 05.70.Ln, 46.10.+z

In the study of nonequilibrium critical phenomena, cel-as adsorbing critical point [9], have been enlightened.
lular automata (CA) showing self-organized criticality However, many important issues are still open. It is
(SOC) have acquired a very special role [1,2]. Differentlynot clear the interplay among the self-organization into
from the usual continuous phase transitions, they woul@ stationary state due to the energy balance and the
spontaneously evolve into a critical state without explicitdynamical developing of correlations. Also numerically
fine tuning of control parameters. Another reason of in-many important features, such as critical exponents,
terest lies in the fact that numerical computations basedniversality classes, and the upper critical dimension are
on SOC ideas have shown that slowly driven systems cavery difficult to obtain to a sufficient degree of precision
lead to a stationary state with a dynamical activity characf10,11]. This is mainly due to the inherent strong effect
terized by avalanches of widely distributed amplitude [2].of finite size corrections present in the original model;
Avalanche behavior is a basic feature of many experimerthe boundary size plays an active role, being the only
tally observed phenomena ranging from magnetic systendissipative ingredient leading to the stationary state [7].

[3] to microfracturing process [4] and earthquakes [5]. In this Letter we introduce a stochastic CA which
The prototypical model for SOC is represented by Bakcontains the basic elements of the sandpile model, but
Tang, and Wiesenfeld (BTW) sandpile automata [1], inis defined on a lattice with periodic boundary conditions,
which an infinitesimally slow external driving of sand par- and has a global constraint in the energy accumulated.
ticles associated with a threshold rearrangement dynamid&he average energy contained in the system is therefore
leads to a stationary state with activity (avalanches) diseonstant and fixed from the outside. This resembles a
tributed on all length scales [1]. More widely, the model microcanonical definition of the sandpile automata. The
is generalized by identifying the sand grain as energyreason for studying this model is twofold: First, it seems
stress, or pressure quanta. In this way the analogy witimore appropriate to represent some phenomena in which
other physical phenomena appears more clearly. the dissipation is not intrinsically linked to the activity of

Despite the vast activity in the field, the general picturethe systems. Second, it could shed light on many prop-
of SOC phenomena contains many ambiguities. It hasrties of the SOC sandpile by allowing its analysis in
been pointed out by several authors [2,6,7] that the driving framework which looks closer to the usual statistical
rate acts exactly as a control parameter that has to be firghysics. Finally, it turns out that microcanonical sand-
tuned to zero in order to observe criticality. For instancepiles do not suffer heavily of finite-size correction effects
in sandpile the stationary state results from the balancbecause of the possibility of using effectively periodic
of the driving field and dissipation rates intrinsically boundary conditions. Thus, the microcanonical sandpile
operating because of the system open boundary. Thepuld be used to settle universality classes and upper criti-
critical point is reached only through a limit process incal dimension issues.
which both driving and dissipation rates tend to zero. We consider two models with conserved energy. In
This point corresponds to a locality breaking of theboth we start from a given sand configuratin}, that
dynamical rules [7] that determines the onset of thecan be random or the result of a former run (if needed
critical correlation properties [8]. In this framework many after modifying its energy), where= (x, y) labels thel.?
relations with nonequilibrium critical phenomena, suchsites of & — d lattice with periodic boundary conditions.
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The total amount of sand (the energy of the system) ishe critical energy density turns out to coincide with the
E = >, e;. The system is supposed to be in contact withstationary energy density of the BTW model.
an external reservoir with which it can exchange energy We study the CS sandpile model as a function of the
in both directions; an incoming as well as an outcomingcontrol parametek: we start with smallE (few energy)
energy flux is present. We think of the system as in a sorand small correlation length, and we incredsgekeep-
of thermal equilibrium with a fixed value of energy. This ing the correlation length smaller that the lattice size in
implies the two fluxes on average are equal. order to make finite size effects small (we present here

In both models, the first stage of the dynamics is theonly results that do not change when going frame= 256
addition of an energy unit on a random site. In order toto L = 512). We can characterize the system’s activ-
preserve the total amount of energy, we have to introducity by defining the probabilityP,(s) that an avalanche is
an extraction flux that takes away one unit of energy fromconstituted bys relaxation events. In the same way we
the system. We do that in two ways. In the first modelcan study the probability distributionB,(z) and Py, (s,)
(that we callrandom subtractionRS) we take away one which refer to the avalanche time duration and number of
unit of energy in a random site: this model is discretedistinct sites involved, respectively. Whdh— E. the
ande; can only take integer values frothto 4. In the average avalanche size diverges, together with the av-
second model (with aontinuous subtractionCS) we erage avalanche duratign) and the average number of
have a homogeneous dissipation, where each site loosd#gferentsites touched during an avalancke,). The sys-
energy proportionally to the local energy density. Heretem reaches in this case a critical point, and we have de-
we transforme; — ei%. The basic variables of this termined numerically the probability distribution(s),
second model are continuous, and can take values betwe@n(z), andP;,(s,) as well as the exponents of their asymp-
0 and4. totic power law decay.

The internal dynamics of both models is supposed In Fig. 1 we show the avalanche average s{zg, for
to be very fast with respect to the energy additionL = 512, as a function of£, together with the best fit to
and extraction rates, in analogy with the slow drivinga simple power divergence (done by using all the points
assumption commonly used in SOC models. After theplotted in the figure). We fit the asymptotic behavior:
energy addition and extraction, the avalanching process 1
follows in the usual way. Ig; is larger or equal td (the (s) ~ —, Q)
critical threshold for local stability), the energy on the site (Ec — E)
gets shared among the nearest neighbors sites (relaxatiBAd we findE, = 2.596 = 0.001 and y = 1.41 = 0.03
event). On their turn, these sites can exceed the threshold2]. The average avalanche size can be shown to scale
because of the energy received, and transfer their ener@pymptotically as the system response functign that
on nearest neighbors sites, and so on. This process igplies yz ~ (E. — E)””. The latter expression charac-
called an avalanche and it is followed until a stable state i§efizes how the system reacts to external perturbations [7].
reached. After the avalanche stops, the update continuesFor the energy range whexe) > 20 we have com-
with the deposition and extraction of a new energy unit. puted an effective, energy dependent power exponent for

We impose periodic boundary condition on the systemthe avalanche distribution. We show in Fig. 2 the typical
i.e., e(i,0) = e(i,L + 1) ande(0,j) = e(L + 1,j). In  situation (forL = 512, atE = 2.586): since we are not at
the usual sandpile this would lead to troubles becatise E. the power law decay is truncated (at a value that turns
can only increase. Thus after a finite time a state with a®ut to be of orders)). We always fit the power law,
infinite avalanche that goes on forever is reached. Thi€s(s) ~ s~ ™ in a range ofs that goes froml to (s)®).
state obviously is not related with the critical stationaryOne sees from the figure that the fit (the dashed straight
one. For this reason periodic boundary conditions have
never been used to determine the critical properties of

sandpile models. The price to pay for that is the inclusion 700

of the strong finite size corrections induced by the finite 600 | |

boundary dissipation. {
In the CS and RS models the energy dissipation is 500 /

acting as an independent driving, while in the usual , 400 /

sandpile it is always linked to the toppling event itself. In Vo300 j

SOC sandpile also the average energy is dependent upon 200 |

driving and dissipation because of the energy balance, e

while in our microcanonical model this self-organization 100 e

is ruled out. Thus in these models, the total enefy e :

is a free parameter, that can be freely tuned. Here we 25252 254 256 258 26

will mainly present the CS model and some evidences for E

an analogous behavior of the RS discrete model, wher€IG. 1. (s) versusk, with the best fit to a power divergence.

4218



VOLUME 80, NUMBER 19 PHYSICAL REVIEW LETTERS 11 My 1998

0.1 acteristic length that close to the critical point scales as
0.01f se ~ (E. — E)"Y7_ In order to test the scaling assump-
0.001 tion and find an estimate of the exponent we have used
0.0001¢ a data collapse technique. For energy values close to the
& 1e-05¢ critical one, the plot oP(s)/(E. — E)™/“ as a function of
.  le06¢ the rescaled variable/(E, — E)~'/? must collapse into
12:8;: the same universal curve by using the correct values of
1e-09 | ando. InFig. 3 we show the data collapse from avalanche

distributions obtained witfiE. — E) ranging over almost
‘ ‘ ‘ ‘ ‘ 1 order of magnitude. The values we obtain for the ex-
1 10 100 1000 100001000001le+06 ponents are = 1.20 = 0.05 ando = 0.55 = 0.03. By

s using Eq. (3), we can immediately write the relation

le-10+
le-11

FIG. 2. P(s) versuss in log-log scale (the solid line is a
smooth interpolation of the numerical data) and best power fit

)= [ 7P ds ~ (B~ BTV, @
(see text).

which immediately gives the scaling relation= (2 —
7)/o. The latter relation is satisfied by the exponent val-
line) is very good on three decades (the solid line is 4'€S We obtain, providing a further consistency check for
smooth interpolation to the numerical data). the numerical results. In the usual sandpile models, a sta-
The exponents one finds at finit&. — E) have to tionary state is reached only if we allow the system to
be extrapolated to the critical point.c We fit to an dissipate energy through its boundary or an effective bulk
asymptotic value with corrections linear in ldg — dissipation. Characteristic lengths and scaling exponents
E)"! (by following Manna [13]): we findry(E.) = ©&n thus be defined with respect to the effective dissi-
1.26 + 0.02, where again the error is only statistical. Pation or boundary length and actually measured in nu-
Still, in the limit of such a statistical accuracy (that is Merical simulations [7]. It is interesting to remark that
of the same level it can be reached for the BTW model)the values of critical exponents obtained from numeri-
we find the same exponent that is believed to describe thg?! Simulations of the usual sandpileg € 1, o = 0.77

BTW scaling. The same procedure works for the timel14]) are very different from those obtained in the present

duration of an avalanche. Here by assuming that paper. _ _ o
: From the previous analysis we can therefore identify
(t) ~

SR S— (2) two main dynamical mechanisms in SOC models. The
(E. — E)? first is the self-organization that is driven by the energy
we find a very good best fit with. = 2.597 = 0.001 and  balance condition. The sandpile evolves in order to set its
6 = 0.80 * 0.04. With the same approach used foy(s)  €nergy density so that the avalanche finds a background
we find thatP,(r) ~ t~™, wherer,(E,) = 1.49 = 0.04. that allows it to dissipate enough energy. This process
It is worth remarking that in measuring the time durationdoes not imply criticality. The second mechanism is the
of an avalanche different definitions of time can be used.
Here we adopt the one commonly implemented in SOC
automata: at each integer time step all currently active
sites topple. Again, in the error bars given by the fitting
procedure, we find a remarkable agreement with the
T = % that one expects for the BTW model. The same S
procedure applied to the different sites touched from an®_
avalanche(s,), leads again to a divergencemt = 2.597 ,
with an exponent equal td.34 = 0.03. Again, P;,(s4) w’
shows a clear power law behavior, and we find that ﬁ
75,(E.) = 1.27 = 0.04, again in good agreement with the
BTW result.

We can also define a natural characteristic length in the
system. Ingeneral, close to the critical point the avalanche

distribution has the scaling form -20.0 : :
-10.0 -5.0 0.0 5.0

P(s) = s_TG<i>, 3 S/|E-E| e

s
_ _ o _ FIG. 3. Scaling plot ofP(s)/(E. — E)”/” versuss/|E, —
where G(x) is a universal function ands. is the Eg|-/o in a log-log scale. For the sake of clarity we report

avalanche cutoff size. The latter is the system charalso binned data points on top of the full data curves.

10.0

0.0

-10.0 -
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