
Learning Relatedness Measures for Entity Linking

Diego Ceccarelli1,2,3, Claudio Lucchese1, Salvatore Orlando1,4,
Raffaele Perego1, Salvatore Trani1,2

1 National Research Council of Italy 2 University of Pisa
3 IMT Lucca 4 Ca’ Foscari University of Venice

{firstname.lastname}@isti.cnr.it

ABSTRACT
Entity Linking is the task of detecting, in text documents,
relevant mentions to entities of a given knowledge base. To
this end, entity-linking algorithms use several signals and
features extracted from the input text or from the knowl-
edge base. The most important of such features is entity
relatedness. Indeed, we argue that these algorithms benefit
from maximizing the relatedness among the relevant enti-
ties selected for annotation, since this minimizes errors in
disambiguating entity-linking.

The definition of an effective relatedness function is thus
a crucial point in any entity-linking algorithm. In this paper
we address the problem of learning high-quality entity relat-
edness functions. First, we formalize the problem of learn-
ing entity relatedness as a learning-to-rank problem. We
propose a methodology to create reference datasets on the
basis of manually annotated data. Finally, we show that our
machine-learned entity relatedness function performs better
than other relatedness functions previously proposed, and,
more importantly, improves the overall performance of dif-
ferent state-of-the-art entity-linking algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—|Information Filtering, Search
process

General Terms
Algorithms, Design, Experimentation.

Keywords
Entity linking, relatedness measures, learning to rank

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505711.

1. INTRODUCTION
Document enriching is today a fundamental technique to

improve the quality of several text analysis tasks, including
Web search [21, 24]. In this work we specifically address the
Entity Linking Problem: given a plain text, the entity linking
task aims at identifying the small fragments of text (in the
following interchangeably called spots or mentions) referring
to any named entity that is listed in a given knowledge base,
e.g., Wikipedia. The ambiguity of natural language makes it
a non trivial task. The same entity can be in fact mentioned
with different text fragments, e.g., “President Obama” or
“Barack Obama”. On the other hand, the same mention
may refer to different entities, e.g., “President” may refer to
the U.S. president or to Alain Chesnais, the president of the
Association for Computing Machinery.

A typical entity linking system performs this task in two
steps: spotting and disambiguation. The spotting process
identifies a set of candidate spots in the input document,
and produces a list of candidate entities for each spot. Then,
the disambiguation process selects the most relevant spots
and the most likely entities among the candidates. The spot-
ting step exploits a given catalog of named entities, or some
knowledge base, to devise the possible mentions of entities
occurring in the input. One common approach to address
this issue is resorting to Wikipedia [12, 19]: each Wikipedia
article is considered to be a named entity, and the anchor
texts associated with Wikipedia links a rich source of possi-
ble mentions to the linked entity. The spotter can thus pro-
cess the input text looking for any fragment of text matching
any of the Wikipedia mentions, and therefore potentially re-
ferring to an entity. Indeed, the spotter should detect all the
mentions and find all the possible entities associated with
such mentions. The coverage of the source knowledge base
and the accuracy of the spotter have in fact a strong impact
on the recall of the entity linking system [4]. To isolate the
impact of spotting, we implemented a general framework for
entity linking that uses the same spotting technique to feed
several state-of-the-art disambiguation algorithms.

Let us introduce a simple example to describe how the
entity linking process works:

On July 20, 1969, the Apollo 11 astronauts - Neil
Armstrong, Michael Collins, and Edwin “Buzz”
Aldrin Jr. - realized President Kennedy’s dream.

The text “President Kennedy” can be easily spotted and
linked to John F. Kennedy, since in Wikipedia there are 98
anchors exactly matching such fragment of text and linking
to the U.S. president page. In addition, the text “Apollo 11”

may refer to two distinct candidates: the famous spaceflight
mission, or the 1996 film directed by Norberto Barba. Simi-
larly, the text “Michael Collins” may refer to either the well
known astronaut, or to the Irish leader and president of the
Irish provisional government in 1922. Indeed, mentions to
the latter (408) are much more frequent than those to the
former (141)1.

The above spots and the relative candidate entities are
further processed during the disambiguation step. The goal
of disambiguation is twofold. First, only relevant spots have
to be filtered. For instance, the word “the” may refer to the
entity associated with the definite article, but this linking
might be relevant only for documents discussing the English
grammar. Second, the best candidate entity for each spot
has to be selected. This is usually done by considering the
context of close mentions and by maximizing some measure
of relatedness among the linked entities [6, 8, 13, 19, 22].
In our example, the astronaut “Michael Collins” and the
“Apollo 11” spaceflight mission entities are preferred since
they are clearly strongly related to each other and to the
other entities found in the document, i.e., Buzz Aldrin and
John F. Kennedy.

The effectiveness of the entity relatedness function adopted
is thus a key-point for the accuracy of any entity-linking al-
gorithm. In this work we propose a machine learning ap-
proach to devise a high-quality entity relatedness function.
The main contributions of this paper are:

• a formalization of the problem of devising entity relat-
edness functions as a learning-to-rank problem;

• a novel technique to build benchmark datasets for learn-
ing and testing entity relatedness functions;

• an extensive experimentation showing that our auto-
matically learned function outperforms state-of-the-
art relatedness functions. More importantly, our ap-
proach can improve the performance of a whole class
of entity-linking algorithms;

• an open source publicly available framework for ad-
dressing the entity linking problem and evaluating new
algorithms in a fair test environment.

The paper is organized as follows. In Section 2 we for-
malize the problem of learning automatically a entity relat-
edness function. In Section 3 we discuss related works, and
how entity relatedness functions are used in these works. In
Section 4 we evaluate some machine learned entity related-
ness functions, and in Section 5 we evaluate their impact
on entity linking algorithms. Finally, Section 6 draws some
final conclusions.

2. ENTITY RELATEDNESS DISCOVERY
Given a set of known entities E from a knowledge base KB,

and an unstructured text document D, entity linking aims
at identifying all the relevant mentions in D to the entities
of E . The entity linking process involves two steps that we
are going to detail in the following.

Spotting and Candidate Selection. Spotting aims at
identifying spots, i.e., contiguous sequences of n terms (n-
grams) occurring inD that might mention some entity e ∈ E .
1Throughout this paper, we used the 04/03/2013
dump, available at http://dumps.wikimedia.org/enwiki/
20130403/enwiki-20130403-pages-articles.xml.bz2

A common method to identify the spots SD = {s1, s2, . . .} is
to exploit a controlled vocabulary of spots L, and to search
the input document for the n-grams that exactly match an
entry of this vocabulary.

When Wikipedia is used as KB, each Wikipedia article
identifies an entity, and the vocabulary L can be easily built
by considering the article titles along with the anchor texts
of all internal Wikipedia hyperlinks.

Each spot si ∈ SD is then associated with a set of candi-
date entities C(si) ⊆ E . This is done by considering all the
entities of E that are referred to in KB by using spot si as
an anchor text. Unfortunately the same spot si can occur in
different places of KB (and even of D!) and refer to distinct
entities. Finally, we denote by ε(si) ∈ C(si) the entity that
is actually mentioned by si in D.

Figure 1 illustrates the three spots {s1, s2, s3} detected
in our text example. For each si, the outgoing dashed di-
rected edges identify the set of candidate entities C(si),
where ε(si) ∈ C(si), i.e., the entity that is actually men-
tioned by si, is represented as a rectangle.

To limit the set of spots and candidate entities to the most
meaningful ones, link probability and commonness properties
can be usefully exploited [17]. The link probability for a spot
si is defined as the number of times si occurs as a mention
in KB, divided by its total number of occurrences. This
permits to discard spots that are rarely used as a mention to
a relevant entity. For example the spot“July 20”, introduced
in the example of Section 1, occurs hundreds of times in
Wikipedia, and, even if it is the title of an article, only in a
few cases it used as anchor text.

The commonness of a candidate c ∈ C(si) for spot si is
instead defined as the fraction between the number of oc-
currences of si in KB actually referring to c, and the total
number of occurrences of si in KB as a mention to an entity.
For example, the spot “Michael Collins” may refer to more
than 20 different entities, but the Irish revolutionary leader
(421 mentions, commonness 0.5), the film about his life (126
mentions, commonness 0.15) and the astronaut (132 men-
tions, commonness 0.15) are largely the most common.

Setting a threshold on minimum linking probability and
minimum commonness has been proven to be a simple and
effective strategy to limit the number of spots and associated
candidates, without harming the recall of the entity linking
process [19].

Disambiguation and Linking. Since in many cases we
have several candidates for a single spot si (i.e., |C(si)| >
1), the spot has to be disambiguated by choosing the right
entity ε(si) among the candidates C(si). For each spot, a
disambiguation algorithm outputs the selected entity and a
confidence score. This confidence score can be used to select
the most likely matching entities, and to trade precision with
recall.

In order to choose the best entity for a spot, disambigua-
tion may exploit different signals and features. These in-
clude commonness and linking probability, and many others
features considering the text surrounding the spot, and the
other spots of the document. The most important of such
features is entity relatedness, usually defined as a real func-
tion ρ : E × E → [0, 1], where 0 and 1 are the minimum and
maximum relatedness measure, respectively. To guarantee
the accuracy of entity linking, the entities selected by the
disambiguation process to be linked to the detected spots
have in fact to be strongly related to each other.

http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2

On July 20, 1969, the Apollo 11 astronauts - Neil Armstrong, Michael Collins,
and Edwin “Buzz” Aldrin Jr. - realized President Kennedy’s dream.

Irish leader

Astronaut

Film

Computational Linguist

John F. KennedySpace Flight

Film

s1

s2

s3

Figure 1: Entity relationships for spotting and disambiguation. Three spots extracted from the above
example are underlined: s1 = “Apollo 11”, s2 = “President Kennedy”, and s3 = “Michael Collins”. The graph
shows relatedness edges connecting candidates entities. For simplicity of representation the candidates for
spot s3 are omitted. Rectangles are used to indicate correctly disambiguated entities, while ellipses refer to
other candidate entities.

Figure 1 shows the relatedness graph referred to our exam-
ple. The selection of the best entities is often implemented
on top of this relatedness graph, where edges are weighted
by some entity relatedness function. Therefore, the role of
such entity relatedness function is crucial for the accuracy
of the disambiguation process.

Even if the definition of a entity relatedness function is
not a trivial task, several works agree on the effectiveness of
the Wikipedia-based relatedness function proposed by Milne
and Witten [19, 18]. The relatedness between two entities
a and b is in this case computed by exploiting the graph
structure of Wikipedia:

ρMW(a,b) = 1− log(max(|in(a)|,|in(b)|))−log(|in(a)∩in(b)|)
log(|W |)− log(min(|in(a)|,|in(b)|))

where W is the set of all Wikipedia entities, while in(a) and
in(b) are the sets of Wikipedia articles linking to a and b,
respectively. When |in(a) ∩ in(b)| = 0, we have ρMW(a,b) =
0. In addition, ρMW is maximum (equal to 1) when in(a) ∩
in(b) = in(a) = in(b), and thus all the articles that cite a
also cite b, and vice versa.

The ρMW function, promoting entities that are co-cited by
the same Wikipedia articles, is considered the state-of-the-
art relatedness measure, adopted also in [8, 12, 14]. On the
other hand, there is no guarantee that ρMW would produce
a proper scoring of the candidate entities.

Example 2.1. Given the entities a=“Andronicus of Rho-
des”, b=“Chondrichthyes”, and c=“Aristotle” occurring in a
document, we have that ρMW(a, b) = 0.54 and ρMW(a, c) =
0.562. The connection between entities a and c is very strong
since Andronicus of Rhodes is credited with the production
of the first reliable edition of Aristotle’s works. The (un-
expected) high relatedness score between entities a and b is
instead due to a single co-citing Wikipedia article (which is
c) that reports about Aristotle’s studies of a group of fishes

2The values to compute the two ρMW measures are: |in(a)| =
24, |in(b)| = 261, |in(c)| = 3502, |in(a)∩ in(b)| = 1, |in(a)∩
in(c)| = 17, and |W | = 4, 255, 306.

he named selachians, a.k.a. chondrichthyes. Therefore, in
this case a single co-citation is enough to produce an unex-
pected high value ρMW(a, b), which is similar to the expected
large value of ρMW(a, c).

Another interesting observation is that ρMW is symmetric:
Andronicus of Rhodes is relevant to Aristotle, to the same
degree Aristotle is relevant to Andronicus of Rhodes.

Our claim is that a good entity relatedness function ρ can
improve the performance of a large class of entity linking
algorithms. In Section 3 we will discuss related works and
show the crucial role of entity relatedness functions in many
proposals. Here, we propose a set of properties that an op-
timal entity relatedness measure should satisfy, and we for-
malize the problem of discovering a good entity relatedness
function into a learning-to-rank problem.

Relatedness as a Ranking Function. Suppose that an
entity linking algorithm identifies only two spots sh and si
for a document D, and for these spots it generates the two
sets of candidate entities C(sh) and C(si) respectively. Most
disambiguation algorithms assume that if one of the candi-
date entities in C(sh) is highly related to another entity in
C(si), then it is very likely that they are the entities ε(sh)
and ε(si) actually mentioned by the two spots.

We claim that a good entity relatedness function ρ should
promote the relatedness of correct entities: given entity ε(sh),
its relatedness with ε(si) should be larger then that with any
other candidate in C(si). This should hold for every spot
si 6= sh.

Proposition 2.1. Given D, SD = {s1, s2, . . .}, and, for
each spot si, C(si) and ε(si), a relatedness function ρ im-
proves entity-linking accuracy if the following constraint holds:

∀sh ∈ SD, ∀si ∈ SD \ {sh}, ∀c ∈ C(si) \ {ε(si)} :

ρ(ε(sh), ε(si)) > ρ(ε(sh), c). (1)

Indeed, the constraint in Eq. 1 nicely fits into a learning-
to-rank based formulation [16]. The relatedness function ρ

can be in fact modeled as a ranking function, with entity
ε(sh) used as a query. According to the above Proposition,
function ρ should score all the entities actually mentioned
in the document, i.e. ε(si) for all si 6= sh, higher than any
other false-positive candidate, i.e. c ∈ C(si)\{ε(si)}) for all
si 6= sh.

Given document D and spots SD = {s1, s2, . . . , sh, . . .},
we denote by RhD = ∪i6=hC(si) the set of candidates to be
ranked for query ε(sh), and by EhD = ∪i 6=hε(si) the set of
relevant entities for the query, where EhD ⊆ RhD. From an
information retrieval perspective, items in RhD are relevant
for query ε(sh) if and only if they belongs to EhD. Note that
we are considering the spots of D altogether, and there-
fore there are potentially many related entities to the query
ε(sh) that should be ranked high. Let us denote with πhρ
the score descending ordering of RhD induced by our rank-
ing relatedness function ρ for query ε(sh). According to
Proposition 2.1, a scored list πhρ is effective when entities in

EhD are in the top positions of the list. We can thus mea-
sure the effectiveness of our ranking relatedness function by
using common information retrieval quality metrics such as
NDCG [15]. In our context we define DCG(πhρ) as:

DCG(πhρ) =

|πhρ |∑
j=1

Jπhρ [j] ∈ EhDK
log(j + 1)

where πhρ [j] denotes the j-th item of the scored list, and JxK
equals 1 if x is true and 0 otherwise. NDCG is defined as
the usual normalized version of DCG.

We can now introduce the Entity Relatedness Discovery
problem.

Problem 2.1 (Entity Relatedness Discovery).

Let D be a collection of entity-linked documents,
where for each document D ∈ D and every relevant spot
si of SD we know ε(si). Given the entity ε(sh) and the
set RhD, a ranking relatedness function ρ induces an
ordering πhρ of RhD.
The Entity Relatedness Discovery Problem requires to
find the function ρ that maximizes the ranking quality:

1

|D|
∑
D∈D

1

|SD|
∑

sh∈SD

NDCG(πhρ)

In our experiments, we chose to optimize NDCG to find a
good entity relatedness function, but we used several other
ranking quality functions to assess the goodness of results.

Unlike previous approaches, we do not suggest a spe-
cific novel entity relatedness function. Rather, we define
a learning-to-rank framework to discover the optimal entity
relatedness function.

3. RELATED WORKS
In the following we discuss how the notion of entity re-

latedness is exploited by state-of-the-art entity linking algo-
rithms. Emphasis is given to the solutions proposed in [19]
and [12] and [8] which are the most relevant proposals in
the field, and they are all adopting ρMW as entity related-
ness function. We show that the entity relatedness function

defined in Proposition 2.1 can replace ρMW since it fits better
the framework and the objectives of the above algorithms.

WikiMiner [19]. Given a document D, let us consider
its spots SD and for each spot si the associated set of can-
didates C(si). Let us suppose that a subset of the spots
are associated with only a single entity. We denote with
U ⊆ E the context : the set of unambiguous entities linked
to spots in SD, i.e., U =

⋃
|C(si)|=1 ε(si). The WikiMiner

algorithm exploits the entities in U as safe reference points
to help the disambiguation of the other ambiguous spots for
which |C(si)| > 1 holds. The idea is to select for every
ambiguous spot of SD the entity which is, on average, the
most related with the “safe” entities in U . The relatedness
function adopted is ρMW. It is worth noting that not all the
entities in U have the same impact: an entity u ∈ U is in
fact considered of high quality if it is strongly related to the
other entities in U , and if the link probability of the corre-
sponding spot is high. These two criteria allow a weight wu,
0 ≤ wu ≤ 1 to be assigned to each entity u in U . Note
that the main aim of this weight is to reduce the impact
of low-quality entities occurring in U . When applied to our
simple example, the low resulting weight would demote the
importance of the safe entity “July 20”.

Every candidate c in C(si) is scored according to the fol-
lowing function:

score(c | U) =
1∑
u wu

∑
u∈U

wu · ρMW(u, c). (2)

It is easy to show that the accuracy of the disambiguation
would improve if we adopted, instead of ρMW, a relatedness
function ρ that satisfies our Proposition 2.1.

Given an entity u ∈ U , we can rewrite Eq. 1 and derive
as follows:

ρ(u, ε(si)) > ρ(u, c) ⇒
1∑
u wu

∑
u∈U

wu · ρ(u, ε(si)) >
1∑
u wu

∑
u∈U

wu · ρ(u, c) ⇒

score(ε(si) | U) > score(c | U)

Therefore, a relatedness function satisfying Proposition 2.1
would always correctly rank entity ε(si) higher than any
other candidate for the corresponding spot si even when in-
tegrated in the WikiMiner framework.

Interestingly, the authors of [19] use machine learning to
combine the above relatedness score with other two features:
commonness and context quality (measured as

∑
wu). They

experiment with a training set built from 500 Wikipedia arti-
cles. However, machine learning is not exploited to improve
the relatedness function as in our proposal.

Referent Graph [12]. Referent Graph, a graph-based
method still exploiting the relatedness function ρMW, is pro-
posed in [12]. Let RG(V,E) be a weighted directed graph
where the nodes includes all the spots si of SD and can-
didates C(si). RG has a directed edge from si to every
c ∈ C(si), and reciprocal edges connecting every pair of
candidate entities a and b, a ∈ C(si), b ∈ C(sh), i 6= h.
Spot-candidate edges (si, c) are weighted according to the
cosine similarity between the Wikipedia article correspond-
ing to entity c and a local context window of 50 words
around the spot si. The candidate-candidate edges (a, b)
are weighted by using ρMW. Finally, weights are normalized

so that weights on outgoing edges from a given node always
sum up to 1. The graph shown in Figure 1 is a toy referent
graph, where relatedness edges connecting candidates enti-
ties for the spot s1 with candidates entities for the spot s3
are omitted for clarity.

The score of a candidate entity for a given spot is given by
the steady state distribution of a random walk with restarts
[20] in RG, where candidate nodes have restart probability
0, and spot nodes have a restart probability proportional
to their inverse document frequency score in the Wikipedia
corpus. Also in this case, assigning a different restart proba-
bility to spot nodes, and weighting as above explained spot-
candidate edges is aimed to limit the impact of non relevant
or incorrectly matched mentions.

The rationale of the random walk approach is to evaluate
the relationships among the whole set of candidates simulta-
neously, in contrast to previous methods where the scores of
candidate entities are assigned independently of each other.
Also in this algorithm the choice of the entity relatedness
function ρ has a strong impact on the performance since it
drives the random walk process. A set of entities being very
related to each other is likely to produce a reinforcement
loop, and eventually include the most probable states of the
random walk.

Even if we do not provide a formal proof as for WikiMiner,
it is clear that a good relatedness function should promote
the reciprocal relatedness among the right entities in the
graph, thus helping the random walk to converge to the
correct ranking of candidates.

A similar approach is used in [26], where a slightly dif-
ferently weighted referent graph is pruned progressively by
removing iteratively the node with the lowest weighted de-
gree (sum of the weights of incoming edges). Even in this
case, the weights of candidate-candidate edges are computed
with the ρMW relatedness function. The paper do not com-
pare performances with those of [19], [12], or other algo-
rithms, and it is thus difficult to estimate the impact of this
proposal.

TAGME [8]. TAGME is an annotation framework fo-
cussing on efficiency that exploits two main features: com-
monness and the ρMW relatedness. First, candidate entities
for a spot si are ranked according to their average related-
ness with other candidate entities for spots sj 6= si, weighted
by their commonness. Then, from the top 30% candidates
of the resulting ranked list, the entity with the largest com-
monness is finally selected.

Also this algorithm would benefit by a relatedness func-
tion satisfying Proposition 2.1, since it would help to boost
the score of the actual entities mentioned in the document.
However, the benefit is limited, since the relatedness func-
tion impacts more on the pruning irrelevant candidates, while
the final choice of the best entity is mainly driven by the
commonness feature.

Other approaches. Relatedness function ρMW is par-
tially inspired by the so-called Normalized Google Distance
(NGD) [5], which borrows from Kolmogorov complexity and
information distance concepts. While NDG is tailored to
measure similarity between words or phrases, ρMW measure
is specifically tailored to entities represented in a graph struc-
ture such as the one of Wikipedia. In [10] another Wikipedia-
based relatedness measure, named ESA, is proposed. A word
is represented in a high dimensional space by considering for

each Wikipedia article the relevances of the word in the ar-
ticle, and by summing such score vectors for longer text
fragments. Also [13] investigates new text-based relatedness
measures that try to go beyond link-based similarities. The
study conducted in [18] shows however that ESA has a per-
formance similar to that of ρMilne, with the latter being much
cheaper to be computed since it does not require to index
the whole Wikipedia textual content. In [22], the authors
improve only slightly the solution proposed in [6], but they
do not provide any comparison with [19, 12].

The authors of [23] propose a machine learning approach
to rank entity-based facets related to a given Web search
query. Since the paper focuses on a special set of entities,
such as monument and celebrities, the presented technique
exploits information coming from image search queries and
Flickr image tags. The goal of [23] is not to discover the
degree of relatedness between entities, but rather to suggest
entities that are most likely to generate a large click through.

Finally, several works [7, 8, 19] exploit machine learning
techniques for entity linking, but in this paper we use learn-
ing to rank for improving the relatedness function, which is
important for improving quality of entity linking task as well
in other tasks, such as entity ranking [1] or entity sugges-
tion [2].

4. ENTITY RELATEDNESS EVALUATION
In the following we describe the methodology adopted to

build a reference dataset for the learning process, the feature
used to describe entities, and finally the performance of two
automatically learned relatedness functions.

4.1 Building a benchmark dataset
In order to evaluate the impact of different relatedness

functions, we built a benchmark dataset for Problem 2.1.
This dataset, used to train and test our relatedness func-
tion, contains a set of tuples in the form 〈ε,Rε, Eε〉, where ε
is an entity occurring in a document D, Rε is a set of can-
didate entities possibly occurring in D, and Eε ⊆ Rε are the
relevant entities occurring in D besides ε.

In order to build these tuples, we need both positive and
negative examples, i.e., positive ones from Eε and negative
ones from Rε \ Eε. In most entity-annotated datasets, each
document is annotated by one or more human assessors,
who manually performed some kind of spotting and entity
disambiguation tasks. Therefore, for each document D we
only have positive examples, i.e. the set AD of entities ac-
tually occurring in D. In addition, we do not know the spot
in D that actually mentions each entity in AD.

Hence, to generate our dataset for training our related-
ness function, we have to devise a sort of reverse annotation
process, aimed at discovering the spots associated with the
known entities, and the potential candidates of such spots.
In this way, we identify also the negative examples to build
the tuples 〈ε,Rε, Eε〉. In more detail, we generate our bench-
mark dataset as described below:

1. we set up a knowledge base KB of entities based on
Wikipedia. This contains entities, their mentions, i.e,
anchor text of incoming links and page title, and the
hyper-link structure; we created a vocabulary of entity
mentions L containing only spots with link probability
larger than 2%. Finally, for each spot we disregarded
entities with commonness smaller than 3%;

2. we generate all n-grams of every given document D,
with n ≤ 6, and we match them against L to devise
the spots SD;

3. for each spot si in SD, we retrieve the candidate enti-
ties C(si) as the set of entities linked in Wikipedia by
the same n-gram;

4. we finally consider the set of relevant entities AD of D,
as annotated by the human assessors. Since we do not
know the real association between each spot si and the
human annotated entities in AD, for each spot si we
look for the actual entity ε(si) in the set C(si) ∩ AD.
If C(si)∩AD = ∅, we assume that ε(si) is not known,
and thus discard si. If |C(si) ∩ AD| > 13, we also
throw away si, since we are not able to disambiguate.
Finally, if |C(si) ∩ AD| = 1, then ε(si) ∈ C(si) ∩ AD
is the actual entity to link to si.

At the end of the process, for each document D we have:
a set of spots SD and, for each spot si, a set of candidate
entities C(si) and also the mentioned entity ε(si).

Thus, for every spot sh of every document D, we can gen-
erate a tuple 〈ε,Rε, Eε〉 for the benchmark dataset that con-
tains: (i) the actually mentioned entity ε(si), (ii) the set of
candidate entities for every other spot in the document, and
(iii) the set of correctly linked, and thus related, entities in
the document. By assuming that close spots are more likely
to be related, we did not consider in this tuple generation
step those spots occurring at a distance larger than ω = 150
characters from the current spot associated with entity ε.

In our experiments we used a subset of the CoNLL 2003
entity recognition [14] task dataset, which includes anno-
tated news stories of the Reuters Corpus V1. The dataset
contains 1494 documents with an average length of 187 terms.
Each document contains on average 11.7 entities.

We processed the corpus as explained above, and we thus
built a dataset for evaluating the relatedness containing over
1.6 million tuples. We split the tuples in training, valida-
tion, and test set, respectively containing 977, 514, 369, 798
and 302, 529 records. Please observe that we take care of
producing each dataset from a disjoint subset of documents
in the collection, so that the tuples in the training and test
sets were actually generated from a different subset of doc-
uments.

4.2 Features
A pair of entities a and b, for which the relatedness ρ(a, b)

has to be estimated, is represented by a set of 27 features
shown in Table 1. The choice of such features is driven by
the following considerations. First, we want to maximize
their applicability by using publicly available data, and by
using measures that can be easily applied to other entity
knowledge bases, e.g., FreeBase.4 For this reason we do not
use click-through, access log, or query log based data, which
are very difficult to obtain. We use instead several features
related to the link structure of our knowledge base, such as
the number of in-links in(e) and out-links out(e) of an entity
e.

Second, there are applications of the entity relatedness
function where the concept of spot is not applicable. Con-
sider, for instance, the case of related entity recommenda-
tion where the query is a entity that is not associated with
3In our datasets, this happens in only 2% of the cases.
4http://www.freebase.com/

any spot. Therefore, we do not include features such as link
probability and commonness.

Finally, we do not include text-based similarity measures,
such as cosine similarity between Wikipedia articles pages,
because this kind of approaches have been proven to perform
similarly to the ρMW measure, but are much more computa-
tionally expensive [18].

Note that, by using the proposed machine learning ap-
proach, the feature set we adopt can be easily enriched with
any additional feature, or by analyzing any other different
knowledge base.

We categorize the features listed in Table 1 in three cate-
gories: singleton, asymmetric and symmetric.

Singleton features regard a single entity. They include
only frequency and entropy, computed on the basis of the fre-
quency of Wikipedia links to the entity article page. These
features are computed for both entities of a given pair (a,
b), resulting in four scores.

We claim that a relatedness function should not be sym-
metric. Consider for example the entities Neil Armstrong
and United States of America: it seems reasonable that the
relatedness of United States of America given Neil Arm-
strong is greater than the relatedness of Neil Armstrong
given the United States of America. For this reason we in-
cluded five asymmetric features, which are computed in both
directions of the pair, resulting in ten scores.

Last, we considered 13 symmetric features, such as ρMW.
Some of these features derive from asymmetric ones, and
others are variations computed by considering outgoing links
of an entity instead of incoming ones.

All the above features are computed on the basis of the
same Wikipedia dump mentioned in the Section 1. There-
fore, features are not extracted on the training or test dataset.

4.3 Quality of entity relatedness
To solve the Entity Relatedness Discovery problem, we

used an existing tool for learning ranking functions, named
RankLib.5 This includes the implementation of several ef-
fective algorithms. We report the results of the two most
effective: Gradient-Boosted Regression Trees [9] and Lamb-
daMart [25]. We denote the models built with those algo-
rithm ρGBRT and ρλMART.

Note that the two models differ significantly in the objec-
tive function being optimized. The ρλMART model was built
by a list-wise algorithm and minimizing NDCG@10. This
is indeed in perfect agreement with our definition of entity
relatedness problem, and with the benchmark created. On
the other hand, the ρGBRT model optimizes the error in pre-
dicting the class label (i.e., relevant vs. not relevant) of a
given instance. Therefore, the prediction can be used to pro-
duce a ranking, but the model does not optimize the ranking
directly.

In Table 3 we report the performance of the two relat-
edness functions ρGBRT and ρλMART, and compare it against
ρMW. The improvement of using a machine learned func-
tion that exploits 27 features is apparent with every ranking
quality measure adopted. If we consider NDCG@10, ρλMART

improves over ρMW by a factor of 25%. The two learned func-
tions have very similar performance, with no significant dif-
ference. Recalling to the Example 2.1, ρGBRT(a,b) = 0.0015
while ρGBRT(a,c) = 0.66: the value of ρGBRT (a,b) (Androni-
cus of Rhodes and Chondrichthyes) is low as we expected.

5http://people.cs.umass.edu/~vdang/ranklib.html

http://www.freebase.com/
http://people.cs.umass.edu/~vdang/ranklib.html

Singleton Features

P(a)
probability of a mention to entity a:
P (a) = ‖in(a)|/|W |.

H(a)
entropy of a:
H(a) = −P (a) log(P (a))−(1−P (a)) log(1−P (a)).

Asymmetric Features

P(a|b) conditional probability of the entity a given b:
P (a|b) = |in(a) ∩ in(b)| / |in(b)|.

Link(a→b) equals 1 if a links to b, and 0 otherwise.

P (a→b)
probability that a links to b:
equals 1/|out(a)| if a links to b, and 0 otherwise.

Friend(a, b)
equals 1 if a links to b,
and |out(a) ∩ in(b)|/|out(a)| otherwise.

KL(a‖b)
Kullback-Leibler divergence:

KL(a‖b) = log
P (a)
P (b)

P (a) + log
1−P (a)
1−P (b)

(1− P (a)).

Symmetric Features

ρMW (a, b) co-citatation based similarity [19].

J(a, b) Jaccard similarity: J(a, b) =
in(a)∩in(b)
in(a)∪in(b) .

P (a, b)
joint probability of entities a and b:
P (a, b) = P (a|b) · P (b) = P (b|a) · P (a).

Link(a↔b) equals 1 if a links to b and vice versa, 0 otherwise.

AvgFr(a, b) average friendship: (Friend(a, b) + Friend(b, a))/2.

ρMW
out (a, b) ρMW considering outgoing links.

ρMW
in-out(a, b)

ρMW considering the union of the incoming and
outgoing links.

Jout(a, b) Jaccard similarity considering the outgoing links.

Jin-out(a, b)
Jaccard similarity considering the union of the in-
coming and outgoing links.

χ2(a, b)

χ2 statistic:

χ2(a, b) =(|in(b) ∩ in(a)| · (|W | − |in(b) ∪ in(a)|)+
−|in(b) \ in(a)| · |in(a) \ in(b)|)2·
· |W |
|in(a)|·|in(b)|(|W |−|in(a)|)(|W |−|in(b)|)

χ2
out(a, b) χ2 statistic considering the outgoing links.

χ2
in-out(a, b)

χ2 statistic considering the union of the incoming
and outgoing links.

PMI(a, b)
point-wise mutual information:

log
P (b|a)
P (b)

= log
P (a|b)
P (a)

= log
|in(b)∩in(a)||W |
|in(b)||in(a)|

Table 1: Features for entity relatedness learning.

In order to gain some insight on the learned functions, and
on the role of the different features, we run a study based
on a näıve feature selection algorithm [11]. This algorithm
ranks features by leveraging their similarity and the score
of single-features models. It promotes effective features and
demotes features similar to any other already selected one.
Our objective here is not to find the best performing subset
of features, but rather to investigate the importance of ρMW

compared with other features not considered by state-of-the-
art algorithm.

We measured the performance of the models built by means
of LambdaMart algorithm when exploiting a single feature.
In Table 2 we reported for each feature the score it can
achieve. Recall that the relatedness function is required to

Features Rank NDCG@5 NDCG@10 P@5 P@10 MRR

P(c|e) 1 0.68 0.72 0.47 0.33 0.80
J(e, c) 2 0.62 0.66 0.44 0.31 0.75
Friend(e,c) 24 0.59 0.64 0.42 0.31 0.71

ρMW (e, c) 19 0.59 0.63 0.42 0.31 0.72
Jin−out(e, c) 26 0.60 0.63 0.42 0.30 0.74
AvgFr(e, c) 3 0.57 0.62 0.40 0.30 0.69
P(e,c) 27 0.56 0.60 0.39 0.28 0.70

ρMW
in-out(a, b) 9 0.56 0.60 0.40 0.29 0.71
Jin−out(e, c) 4 0.54 0.58 0.39 0.28 0.67

ρMW
out (a, b) 17 0.52 0.55 0.37 0.27 0.65
χ2(e, c) 25 0.51 0.55 0.37 0.27 0.64
P(e|c) 22 0.48 0.54 0.36 0.28 0.60
H(c) 5 0.48 0.51 0.30 0.20 0.68
χ2
out(e, c) 16 0.47 0.50 0.34 0.24 0.61

AvgFr(c, e) 21 0.44 0.49 0.33 0.25 0.56
P(c) 13 0.47 0.49 0.29 0.19 0.66
PMI(e, c) 23 0.42 0.48 0.32 0.25 0.53
χ2
in−out(e, c) 11 0.44 0.46 0.33 0.23 0.58
P (e→c) 18 0.37 0.38 0.24 0.15 0.55
Link(e→c) 20 0.37 0.38 0.24 0.15 0.55
P (c→e) 12 0.35 0.36 0.22 0.14 0.52
Link(c→e) 15 0.31 0.33 0.21 0.14 0.46
KL(c‖e) 10 0.32 0.32 0.19 0.12 0.51
Link(c↔e) 14 0.28 0.29 0.17 0.11 0.45
KL(e‖c) 8 0.26 0.28 0.17 0.11 0.44
P(e) 6 0.08 0.11 0.06 0.06 0.17
H(e) 7 0.08 0.11 0.06 0.06 0.17

Table 2: Entity ranking performance with a single
feature. Features are sorted by NDCG@10.

Features NDCG@5 NDCG@10 P@1 P@5 P@10 MRR

ρMW 0.59 0.63 0.62 0.42 0.31 0.72
ρλMART 0.75 0.79 0.80 0.51 0.36 0.87
ρGBRT 0.75 0.78 0.80 0.51 0.35 0.86

Table 3: Entity ranking performance of learned re-
latedness functions.

learn a score of a candidate entity w.r.t. to a correct entity,
which in the table are denoted with c and e respectively.
Therefore, P (c|e) is the conditional probability of finding
the candidate entity c given our actually mentioned entity
e, while P (e|c) is the converse.

Results are very similar for every quality measure. Let’s
consider NDCG @10. The function ρMW is the fourth most
effective feature with a score slightly below that of Jaccard
and Friend functions. The most effective feature is P (c|e),
that is the conditional probability of the finding a mention to
entity c given a Wikipedia page that mentions the entity e.
Note that this quite intuitive feature behaves largely better
than ρMW with a score of .72, but it is however far from the
score achievable with the full set of features. Also, note that
statistic P (c|e) comes from a collection being completely
different from the test set, since it was computed on the
Wikipedia corpus and not on the train collection. A third
interesting property is the asymmetry of this feature.

The second column of Table 2 reports the rank assigned
by feature selection algorithm. While P (c|e) is ranked first
being the most effective features, ρMW is ranked only 19-th.
This is due to the heuristic strategy of the algorithm, which
demotes features if they are similar to previously selected
ones.

Figure 2 shows the result of a multidimensional scaling
mapping of the 27 features into a 2-dimensional space, thus

Figure 2: Multidimensional mapping of feature sim-
ilarity computed using Kendall’s τ coefficient. The
size of each circle is proportional to the single-
feature model score.

approximately preserving feature similarity. We measured
the similarity between a feature pair according to the Kendall’s
τ coefficient. We can identify two interesting clusters. The
first contains ρMW together with Jin-out and χ2, and, indeed,
the first two have identical performance. The second cluster
includes the two best performing features P (c|e), P (e, c) and
also Jaccard similarity. Even if the features in those clusters
are similar w.r.t. the Kendall’s τ coefficient, the score of
the corresponding single feature model is very different, in
particular for the best scoring P (c|e). This suggest that the
Kendall’s τ coefficient may not be the best indicator in this
context, and the feature selection may not be trivial.

Finally, in Figure 3 we measured the relative improve-
ment provided by each feature. Features are sorted accord-
ing to the ranking given by the feature selection algorithm
mentioned above, and we measured the performance of the
model by adding features incrementally. The model achieves
almost optimal performance with the first 5 features. Opti-
mal performance are achieved after 9 features are introduced
in to the model. This shows that not all the features are
necessary, and that a wisely chosen subset of features can
provide optimal performance, or help in trading accuracy
with efficiency. Several existing feature selection techniques
can be used to this end. However, this is outside the scope
of this work.

5. IMPACT ON ENTITY LINKING
We run a set of experiments to show how the automati-

cally learned relatedness function can be profitably exploited
by a class of entity disambiguation algorithms. We plugged
the learned function into several annotation methods, which
can be considered the state-of-the-art ones:

WikiMiner. The method proposed by Milne and Witten
that exploits the relatedness function to identify a sub-
set of not ambiguous entities called context. Given an
ambiguous spot, the relatedness function is employed
again to select the entity that is more coherent with
the context;

0 5 10 15 20 25

0.7

0.75

0.8

Feature ID

N
D
C
G

@
k

k = 5

k = 10

Figure 3: Incremental performance of ρλMART.

Referent Graph. This method takes into account all the
possible entities associated with the set of detected
spots. The disambiguation is performed by modeling
the entities as nodes of a complete graph, where the
weight of each edge is the relatedness between the con-
nected nodes;

TAGME. This annotator computes the weighted average
relatedness between an entity and all the other possible
entities associated with the spots. It disambiguates
the entity by selecting the most common entities in
the subset of the possible meanings with the highest
average relatedness with the others.

With the exception of WikiMiner, the source code of the
frameworks proposed is not publicly available. Furthermore
the code released is not easy to extend for implementing
other annotators. Annotation depends on several subtasks,
i.e., (i) process Wikipedia (parse the dump, generate the
possible spots, filter stop-words, etc.); (ii) perform the spot-
ting (relying on a dictionary or using a name entity recog-
nition framework, like the Stanford Named Entity Recog-
nizer6); (iii) disambiguate the ambiguous spots, and (iv)
rank entity candidates.

It is worth to observe that a good performance obtained in
the first tasks may heavily impact on the performance of the
whole system, as well as using a different dump of Wikipedia
(i.e., old dumps contain less entities, but also have less am-
biguity for each spot), or a different commonness or link
probability thresholds. For these reasons, we strongly be-
lieve that for this kind of research it is important to share a
unique framework where these tasks are well separated and
easy to isolate in order to study their performance. This
would also allow us to experiment hybrid solutions combin-
ing subtask solutions of different methods (e.g., the TAGME
spotter with the WikiMiner disambiguation algorithm).

We developed Dexter [3], an entity annotator framework,
containing several utilities to manage the Wikipedia dump,

6http://www-nlp.stanford.edu/software/CRF-NER.
shtml

http://www-nlp.stanford.edu/software/CRF-NER.shtml
http://www-nlp.stanford.edu/software/CRF-NER.shtml

Referent Graph TAGME WikiMiner

ρMW ρλMART ρGBRT ρMW ρλMART ρGBRT ρMW ρλMART ρGBRT

P@1 0.59 0.68+15% 0.74+25% 0.78 0.81 +4% 0.80 +3% 0.78 0.86+10% 0.83 +6%
P@5 0.51 0.62+22% 0.61+20% 0.65 0.66 +2% 0.66 +2% 0.64 0.68 +6% 0.69 +8%
P@10 0.44 0.50+14% 0.51+16% 0.50 0.50 +0% 0.51 +2% 0.50 0.51 +2% 0.53 +6%
iPr=0.10 0.76 0.84+11% 0.87+14% 0.87 0.89 +2% 0.89 +2% 0.88 0.92 +5% 0.91 +3%
iPr=0.50 0.55 0.69+25% 0.70+27% 0.67 0.68 +1% 0.69 +3% 0.66 0.73+11% 0.77+17%
NDCG 0.64 0.70 +9% 0.72+13% 0.68 0.69 +1% 0.69 +1% 0.66 0.72 +9% 0.75+14%
MRR 0.73 0.81+11% 0.84+15% 0.87 0.89 +2% 0.89 +2% 0.87 0.92 +6% 0.90 +3%
NDCG@5 0.55 0.67+22% 0.68+24% 0.72 0.74 +3% 0.73 +1% 0.71 0.76 +7% 0.77 +8%
NDCG@10 0.57 0.68+19% 0.70+23% 0.70 0.70 +0% 0.71 +1% 0.69 0.73 +6% 0.75 +9%
Recall 0.76 0.77 +1% 0.77 +1% 0.68 0.69 +1% 0.69 +1% 0.64 0.70 +9% 0.75+17%
Rprec 0.46 0.58+26% 0.60+30% 0.56 0.58 +4% 0.58 +4% 0.56 0.60 +7% 0.64+14%

Table 4: Entity Linking performance

a spotter based on the anchors and titles extracted from
the dump, and data structures for retrieving all the features
used by the annotators. Unlike WikiMiner, our framework
does not rely on an external database to store the labels.
In addition, during the execution it can maintain the model
either on the disk or in main memory to improve perfor-
mance. The framework runs also on normal hardware, since
we exploit efficient data structures in order to maintain com-
pressed data in main memory. The dataset we used, the
source code and more detailed informations can be found at
this address: dexter.isti.cnr.it.

We implemented WikiMiner, Referent Graph and TAGME
in our framework, in order to verify if our relatedness func-
tion is able to improve the annotator performance. Dur-
ing the implementation, we slightly modified WikiMiner and
TAGME: in WikiMiner we decided to rank the entities using
a linear combination of commonness, link probability, and
average relatedness with the context (the authors employed
a classifier trained with several features that were heavy to
retrieve); in TAGME we relied on our spotter that returns
all the possible spots detected in the text, while in the orig-
inal version the authors employ a specific policy for deleting
spots in case of overlaps (we remove overlapping annotations
at the end of the process, relying on the final ranking of the
entities). We set the commonness threshold to 0.03 and we
discard spots with link probability lower than 0.02.

Note that we are not interested in the absolute entity-
linking performance of WikiMiner, TAGME, and Referent
Graph, but rather on how the relatedness function impacts
on the disambiguation process. For this reason, we im-
plemented all the three algorithms within the same frame-
work, and thus providing them with the output of the same
spotter. For the same reason, the results of the Web ser-
vices implementation of WikiMiner and TAGME are not
reported. Those services use a different dump of Wikipedia,
which is processed in a different way (e.g., tokenization,
etc.), and they exploit a slightly different spotting algorithm,
and this makes such results non significant within the scope
of this work. However, it is important to report that we
observed that our implementation always improves over the
WikiMiner online service, and that it behaves only slightly
worse then TAGME after the top 5 results, probably due to
a different processing of Wikipedia.

We compared the results obtained by embedding different
implementations of ρ: ρMW, ρλMART, and ρGBRT. Note that
by embedding ρMW we are replicating the original algorithms

that we consider as baselines to evaluate our proposed re-
latedness function.

The quality of the resulting algorithms is evaluated with
the usual Precision@k (k = 1, 5, 10), Recall, and NDCG mea-
sures. We also report the interpolated precision at a certain
recall cutoff r, iPr with r = 0.1 and r = 0.5, the Mean Re-
ciprocal Rank MRR and the Precision after R documents
have been retrieved, where R is the total number of relevant
entities for the document (RPrec).

We remind that in this evaluation we want to evaluate
the number of correctly annotated entities for a given doc-
ument ; the evaluation is not spot-based, but we are rather
considering the entity linking process as a whole, and its
goodness on the full document.

The test dataset adopted is the same as the one of previ-
ous experiment, meaning that there is no overlap among the
documents used for training the function ρ, and the docu-
ments used to evaluate its impact on the entity annotation
process.

Table 4 reports the performance of the three annotators:
for each annotator we show the performance using the orig-
inal ρMW relatedness function, and then the effects of re-
placing the relatedness function with our learned relatedness
ρλMART and ρGBRT. The performance improvement given by
the trained functions is significant:

Referent Graph. The proposed functions improve the
ranking of results, in particular if we annotate only one
entity per document using the ρMW relatedness only
the 59% is correctly annotated, while with ρGBRT the
percentage of correct documents is 74%. The related-
ness function also reinforces the correct entities, im-
proving the final ranking on the top entities as showed
by the NDCG measure which exhibits from a 14% up
to a 25% of performance gain;

WikiMiner. ρGBRT improves both recall and NDCG, with
gains superior to 10%. In both ρGBRT and ρλMART the
entity annotated with the largest confidence is correct
in more than the 80% of the documents, with a im-
provement of 6% (ρGBRT) and of 10% (ρλMART) with
respect to ρMW;

TAGME. Recall, NDCG, and precision exhibit a positive
improvement (from 1% up to 4%). The reader will note
that ρGBRT and ρλMART does not improve TAGME in
the same measure as the other annotators: this is not
surprising because the TAGME annotator is designed

dexter.isti.cnr.it

to manage short texts, and relies less on the relatedness
and more on the commonness.

In general, the best result quality was obtained using the
ρGBRT function.

6. CONCLUSIONS
In this work, we have proposed a machine learning based

approach aimed at discovering the entity relatedness func-
tion that can better support the entity linking task. We
illustrated some of the properties that such function should
preserve, and we presented a simple method to generate a
training set form a collection of document human assessed
entity linked documents. We casted the problem of discov-
ering a suitable entity relatedness function into a learning
to rank formulation. Our proposed approach is thus able to
learn how to wisely blend the available features to generate
a good entity relatedness function. We demonstrated that
by exploiting our framework it is possible to better estimate
the relatedness of two entities, and to compare and improve
the performance of different state-of-the-art entity linking
algorithms.

The proposed framework opens up a wide spectrum of
improvement opportunities. In particular, We plan to in-
vestigate the tread-off between feature computational cost
and benefit, and to embed our machine learned relatedness
function into other entity-based tasks.

Acknowledgements
This work was partially supported by the EU projects In-
GeoCLOUDS (no. 297300), MIDAS (no. 318786), E-CLOUD
(no. 325091) and the Regional (Tuscany) project SECURE!
(FESR PorCreo 2007-2011).

7. REFERENCES
[1] M. Bron, K. Balog, and M. de Rijke. Ranking related

entities: components and analyses. In Proceedings of
CIKM, 2010.

[2] D. Ceccarelli, S. Gordea, C. Lucchese, F. M. Nardini,
and R. Perego. When entities meet query
recommender systems: semantic search shortcuts. In
Proceedings of SAC, 2013.

[3] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and
S. Trani. Dexter: an open source framework for entity
linking. In Proceedings of the Sixth International
Workshop on Exploiting Semantic Annotations in
Information Retrieval (ESAIR), 2013.

[4] S. Chakrabarti, S. Kasturi, B. Balakrishnan,
G. Ramakrishnan, and R. Saraf. Compressed data
structures for annotated web search. In Proceedings of
WWW, 2012.

[5] R. Cilibrasi and P. Vitanyi. The google similarity
distance. Knowledge and Data Engineering, 2007.

[6] S. Cucerzan. Large-scale named entity disambiguation
based on wikipedia data. In Proceedings of
EMNLP-CoNLL, 2007.

[7] M. Dredze, P. McNamee, D. Rao, A. Gerber, and
T. Finin. Entity disambiguation for knowledge base
population. In Proceedings of COLING, 2010.

[8] P. Ferragina and U. Scaiella. Tagme: on-the-fly
annotation of short text fragments (by wikipedia
entities). In Proceedings of CIKM, 2010.

[9] J. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist, 2001.

[10] E. Gabrilovich and S. Markovitch. Computing
semantic relatedness using wikipedia-based explicit
semantic analysis. In Proceedings of IJCAI, 2007.

[11] X. Geng, T.-Y. Liu, T. Qin, and H. Li. Feature
selection for ranking. In Proceedings of SIGIR 2007,
2007.

[12] X. Han, L. Sun, and J. Zhao. Collective entity linking
in web text: a graph-based method. In Proceedings of
SIGIR, 2011.

[13] J. Hoffart, S. Seufert, D. B. Nguyen, M. Theobald, and
G. Weikum. Kore: keyphrase overlap relatedness for
entity disambiguation. In Proceedings of CIKM, 2012.

[14] J. Hoffart, M. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. Robust disambiguation of named entities
in text. In Proceedings of EMNLP, 2011.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
2002.

[16] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of KDD, 2002.

[17] R. Mihalcea and A. Csomai. Wikify!: linking
documents to encyclopedic knowledge. In Proceedings
of CIKM, 2007.

[18] D. Milne and I. H. Witten. An effective, low-cost
measure of semantic relatedness obtained from
wikipedia links. In In Proceedings of AAAI, 2008.

[19] D. Milne and I. H. Witten. Learning to link with
wikipedia. In Proceedings of CIKM, 2008.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[21] P. Pantel and A. Fuxman. Jigs and lures: Associating
web queries with structured entities. In Proceedings of
the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, 2011.

[22] W. Shen, J. Wang, P. Luo, and M. Wang. Linden:
linking named entities with knowledge base via
semantic knowledge. In Proceedings of WWW, 2012.

[23] R. van Zwol, L. Garcia Pueyo, M. Muralidharan, and
B. Sigurbjornsson. Ranking entity facets based on user
click feedback. In Semantic Computing (ICSC). IEEE,
2010.

[24] G. Weikum and M. Theobald. From information to
knowledge: harvesting entities and relationships from
web sources. In Proceedings of PODS, 2010.

[25] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Inf. Retr.,
2010.

[26] M. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and
G. Weikum. Aida: An online tool for accurate
disambiguation of named entities in text and tables.
Proceedings of the VLDB Endowment, 2011.

	Introduction
	Entity Relatedness Discovery
	Related works
	Entity relatedness evaluation
	Building a benchmark dataset
	Features
	Quality of entity relatedness

	Impact on Entity Linking
	Conclusions
	References

