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Abstract

A multi-physics and multi-scale computational approach is proposed in the present work
to study the evolution of microcracking in polycrystalline Silicon (Si) solar cells com-
posing photovoltaic (PV) modules. Coupling between the elastic and the electric fields
is provided according to an equivalent circuit model for the PV module where the elec-
trically inactive area is determined from the analysis of the microcrack pattern. The
structural scale of the PV laminate (the macro-model) is coupled to the scale of the poly-
crystals (the micro-model) using a multiscale nonlinear finite element approach where
the macro-scale displacements of the Si cell borders are used as boundary conditions
for the micro-model. Intergranular cracking in the Si cell is simulated using a nonlinear
fracture mechanics cohesive zone model (CZM). A case-study shows the potentiality of
the method, in particular as regards the analysis of the microcrack orientation and dis-
tribution, as well as of the effect of cracking on the electric characteristics of the PV
module.
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Figure 1. Sketch of the composite stack of a PV module.

Figure 2. Microstructure of a polycrystalline Si cell. The lateral size of the cell is 125
mm.

1 Introduction

Photovoltaics (PV) based on Silicon (Si) semiconductors is one the most growing
technology in the World for renewable, sustainable, non-polluting, widely available
clean energy sources. Standard PV modules are laminates composed of a glass
superstrate 4 mm thick, an encapsulating polymer layer (EVA) 0.5 mm thick,
a layer of Si solar cells 0.166 mm thick, another layer of EVA with the same
thickness as the previous one, and finally a thin multi-layered backsheet made
of Tedlar/Aluminum/Tedlar 0.1 mm thick, see Fig.1. For more details about the
geometrical and mechanical properties of these constituent materials, the reader
is referred to [1]. The majority of solar cells available on the market are made of
either mono or polycrystalline Si and are separated by a thin amount of EVA in
their plane. Two main semiconductors, called busbars, connect the cells together
and are placed on the upper and the lower sides of the cells. The microstructure of
a polycrystalline Si cell is shown in Fig.2, where we note a significant elongation
of the grains due to production issues.

So far, theoretical and applied research has focused on the increase of the solar
energy conversion efficiency of the cells. Although efficiencies up to 40% have been
reached in the laboratory using single junction GaAs and multijunction concen-
trators, the technology based on mono and multicrystalline Si is still the most
competitive on the market due to the low price of Si semiconductor and the widely
established material processing developed in the field of electronics [2].

Another important issue is the problem of durability, which, however, has received
much less attention by the scientific community so far. In the 1990s, warranties
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Figure 3. Comparison among warranty specifics declared by various producers of PV
modules.

of PV producers allow one to replace PV modules in case of power losses larger
than 10% in the first 10 years, and then larger than 20% in the next 15 years.
The maximum life of PV modules is considered to be of 25 years. More recently,
with more and more field data of installed modules available, a linear decreasing
performance of the PV module is expected (see the comparison among various
warranty specifics in Fig.3).

The quality control of these composites is of primary concern from the industrial
point of view. On the one hand, the aim is to develop new manufacturing processes
able to reduce the number of cells or modules rejected by quality control [3]. On
the other hand, even if all the damaged cells are theoretically discarded during
manufacturing, it is impossible to avoid the occurrence of microcracking. Sources
of damage in Si cells are transport, installation and use (in particular impacts,
snow loads and environmental aging caused by temperature and relative humid-
ity variations). The existing qualification standards IEC 61215 require passing of
severe laboratory tests in a climate chamber. However, microcracking is not used
as a quantitative indicator for the quality assessment of PV modules. Recently,
Kajari-Schröder et al. [4] have analyzed microcracking resulting from snow tests
and artificial aging in the laboratory using the electroluminescence technique, see
Fig.4. Microcracking can lead to large electrically disconnected cell areas, with
up to 16% of power-loss [5]. In addition to laboratory tests on single panels, field
data published in [6] have shown that microcracked cells have a non constant
current-voltage characteristics in time and an undesirable increase of the operating
temperature.

The aim of the present work is to understand the phenomena leading to microcrack-
ing in Si cells and to quantify the connection between cracking and power-loss. In
this study, an innovative multi-scale (multi-resolution) and multi-physics numerical
method is proposed. Since Si cells operate in the presence of elastic, thermal and
electric fields, a multi-field (multi-physics) perspective is considered to be essen-
tial to achieve a predictive stage of any computational model. The multi-resolution
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Figure 4. Electroluminescence image of a micro-cracked PV module. Dark regions are
electrically inactive areas [4].

approach, on the other hand, is adopted to simplify the actual 3D problem in a sim-
pler 2D one, where microcracking in Si cells is numerically simulated under plane
stress conditions and nonlinear fracture mechanics formulations. To the knowledge
of the present authors, the present model is the first proposed in the literature for
the simulation of microcracking and the resulting prediction of power-loss of PV
modules.

2 A multi-physics approach

The study of durability of PV modules requires the characterization of the effect of
microcracking induced by mechanical loads and thermal excursions on the electric
response of the solar panel. Mechanical loads are induced by vibrations and im-
pacts during transportation, installation and use of the modules. Deformations are
also induced by the night and day alternating temperature variation. Moreover,
temperature affects the electric performance of the PV module, since the semicon-
ductor differential equations present temperature dependent coefficients. Hence, to
achieve a predictive stage, a computational method should account for the coupling
between the elastic, the thermal and the electric fields. In other words, a multi-field
(multi-physics) approach has to be pursued.

A conceptual diagram of the interplay among the various fields is shown in Fig.5.
The coupling between the elastic and the thermal fields can be accounted for by the
classic equations of thermoelasticity. However, in presence of cracking, a specific
treatment of the partial differential equations describing heat conduction should
be considered, as well as its inherent nonlinearities.

Regarding the interplay between the electric and the thermal fields, a rigorous
approach should consider the partial differential equations describing the electric
and magnetic fields inside the semiconductor, according to the physics of the pho-
tovoltaic effect (see Fig.6). In the present work, a simplified approach is proposed
by considering an equivalent electric circuit of the cells and of the module, see
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Figure 5. Interplay among the elastic, the thermal and the electric fields in PV modules.
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Figure 6. Physics of a solar cell.
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Figure 7. Single diode equivalent circuit model.

Fig.7. Although mathematically less rigorous since the interplay of the thermal
and elastic fields is accounted for in a global way, this approach is considered to
be particularly appealing from the industrial point of view, since it can be im-
plemented in Matlab/Simulink or in commercial finite element (FE) software as a
user-defined subroutine.

The basic idea is to consider the photovoltaic effect as the source of a photonic
current Iph due to the movement of electrons and holes in Si as a result of the
so-called p − n junction. The p − n junction effect can then be modelled with
one or two diodes [7]. In the present study, a one single diode model is used.
Series and parallel resistances complete the circuit. Particular important is the
series resistance, which takes into account the bulk resistance of the semiconductor,
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contacts and interconnectors. The parallel resistance, also called shunt resistance,
is used to model the effect of impurities and non idealities of the p− n junction.

The equation describing the current-voltage response of a PV module with Si cells
connected in series is [7]:

I = Iph − Is

{

exp

[

e(V/n+ IRs)

aκT

]

− 1

}

−
V/n+ IRs

Rp

, (1)

where n is the number of cells, Iph (A) is the photonic current, Is (A) is the
saturation current, V (V) is the module terminal voltage, I (A) is the module
terminal current, Rs (Ω) is the series resistance, Rp (Ω) is the parallel resistance,
e = 1.6 × 10−19 C is the electronic charge, a ∼= 2 is the diode quality factor for
polycrystalline Si, κ = 1.38 × 10−23 J/K is the Boltzmann’s constant, and T (K)
is the ambient temperature.

The main quantities in Eq.(1) depend on the cell temperature T [7]:

Iph = IT=300
ph [1 + k0(T − 300)] , (2a)

Is = k1T
3 exp

(

−
eVg

κT

)

, (2b)

Rs = RT=300
s [1− k2(T − 300)] , (2c)

Rp = RT=300
p exp (−k3T ), (2d)

where Vg (V) is the band gap voltage and the coefficients ki are determined from
experiments [7].

From the mathematical point of view, Eq.(1) is implicit and nonlinear. Hence, for a
given value of voltage V , its solution has to be obtained using a numerical method.
Here, the Newton-Raphson method is adopted to achieve a quadratic convergence
of the numerical scheme. After a suitable manipulation, Eq.(1) becomes:

f(I) = I − Iph + Is

{

exp

[

e(V/n+ IRs)

aκT

]

− 1

}

+
V/n+ IRs

Rp

= 0. (3)

At the generic iteration i+1, the solution is sought from the approximation at the
previous step i:

Ii+1 = Ii −

[

df

dI

]

−1

Ii

f(Ii), (4)

where the derivative df/dI is:

df

dI
= 1 + Is exp

[

e(V/n+ IRs)

aκT

]

eRs

aκT
+

Rs

Rp

. (5)
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Equation (4) is iterated until convergence, i.e., until |Ii+1 − Ii| < tol, where tol =
0.001 is a used prescribed tolerance. The state I0 = ISC is selected as the starting
point for the iteration procedure.

To model the effect of cracking on the electric field, we note that the the saturation
current Is is linearly dependent on the electrically active cell area, as found in [8].
Electrically inactive cell areas are those whose electric flux directed towards the two
main conductors connecting the cells (busbars) is interrupted by a crack. Examples
are shown in Fig.8, where we note that cracks parallel to the busbar are the most
dangerous ones, whereas cracks perpendicular to the busbar might have a negligible
effect on the I−V characteristics [5], since they do not interrupt the electron flux.
Intermediate situations can occur and are related to intermediate inclinations of
microcracks. According to this criterion, we introduce a damage variable for each
cell defined as follows:

D =
Ainactive

Atotal

, (6)

where Ainactive and Atotal are, respectively, the inactive and the total cell areas. The
same definition applies also to an ensemble of cells in series (a PV module). In this
case the damage variable is the maximum of the damage variables of the various
cells. As a result of damage, the saturation and photonic currents become:

Is = ID=0
s (1−D), (7a)

Iph = ID=0
ph (1−D). (7b)

In general, the graph of the output current I as a function of voltage V is almost
constant and equal to the short circuit current I0 = Isc for a voltage less than the
open circuit voltage Voc. For V → Voc, the I − V curve is rounded up and the
current comes to zero for V = Voc. The output power is equal to the instantaneous
product of the PV current intensity and the PV voltage, P = I V . Due to the shape
of the I − V curve, the P − V characteristics is linear up to a maximum, called
maximum power point, and then comes down to zero for V = Voc. The electric
performance can be synthetically described by the fill factor :

FF =
VMPIMP

VocIsc
, (8)

where VMP and IMP are the voltage and the current of the maximum power point.
Hence, the power-loss due to microcracking can be estimated by comparing the fill
factors of the intact module and of the damaged one.
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Figure 8. Representation of electrically inactive cell areas, adapted from [5].

Macro-model:

Multi-layered plate
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Polycrystalline Si cells 

with interfaces

Figure 9. A real PV module and its macro- and micro-models.

3 A multi-scale (multi-resolution) computational method

Photovoltaic modules are laminated composites where the thickness of the various
layers are very different from each other, as outlined in the Introduction. Moreover,
Si cells are separated by a thin interspace of EVA and are made of a polycrystalline
material whose microstructure has to be considered to predict microcracking. These
complexities suggest the use of 3D methods, which are however computationally
expensive. In the present study, a simplified approach to reduce the computational
complexity is proposed and it is based on two levels of resolution, see Fig.9.

The macro-model consists in a laminated composite analyzed in the framework of
the small-deflection theory with homogeneous Si cells. The layers are considered
to be fully bonded along their interfaces. The grain boundaries in the material
microstructure of Si cells and the related intergranular fracture are neglected here.
The weak form for the macro-model problem is:

δW = −
∫

Ω
δ (∇w)T D∇w dΩ +

∫

Ω
qδw dΩ, (9)
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with simple support boundary conditions on the border of the plate:

w(∂Ω) = 0. (10)

where Ω and ∂Ω are, respectively, the laminate plate and its border. The vari-
able w is the transversal displacement that, together with the vector θ = [θx, θy]

T

containing the nodal rotations in directions X and Y , will represent the unknown
generalized displacements of the continuum. To simulate the snow test prescribed
by the standard IEC 61215 for the qualification of PV modules, a uniform transver-
sal pressure q is imposed to the upper surface of the PV module.

The operator ∇ in Eq.(9) is given by:

∇ =

(

∂2

∂2x
,
∂2

∂2y
, 2

∂2

∂x∂y

)T

. (11)

The constitutive matrix D is

D = K















1 ν 0

ν 1 0

0 0
1− ν

2















(12)

and the coefficient K of the multi-layered plate depends on the layer arrangement
[9]:

K =
AC −B2

A
, (13a)

A =
∑

k

Ek

1− ν2
k

(zk − zk−1), (13b)

B =
∑

k

Ek

1− ν2
k

z2k − z2k−1

2
, (13c)

C =
∑

k

Ek

1− ν2
k

z3k − z3k−1

3
, (13d)

where k is the total number of layers, zk is the absolute value of the distance of
the lower interface of the considered layer from the upper side of the plate, and Ek

and νk are the Young’s modulus and the Poisson’s ratio of the k−th layer (see Fig.
10). Since Si cells are not continuous in the plate plane, two different values of K
will be used for the finite elements belonging to the portions of the plates with Si
cells and without Si cells (see also Fig.1 for a visual representation).

The FE implementation of the macro-model is done by using standard linear elas-
tic plate elements, see Fig.10. Using quadrilater finite elements with linear shape
functions, the unknown displacements and rotations are discretized with the use

9



Figure 10. The plate element used in the macro-model and its degrees of freedom.

of standard interpolation functions:

w = Nη, (14a)

θ = N θη, (14b)

where η = [w1, θx1, θy1, ..., w4, θx4, θy4]
T and:

N = [N1, 0, 0, ..., N4, 0, 0], (15a)

N θ =







0 N1 0 ... 0 N4 0

0 0 N1 ... 0 0 N4





 . (15b)

Introducing these relations in the weak form (9), we have:

δW = δηT

(

−
∫

Ω
(∇N)T D∇N dΩη +

∫

Ω
NTq dΩ

)

, (16)

and setting it equal to zero, for the arbitrariness of δη, the standard expressions
for the stiffness matrix, K, and for the external load vector, F , are obtained:

(
∫

Ω
(∇N)T DA∇N dΩ

)

η =
∫

Ω
NTq dΩ ⇒ K η = F . (17)

The displacements u (in the x direction) and v (in the y direction) in the plane of
the cells are computed from the nodal rotations as follows:

u = θy z, (18a)

v = −θx z, (18b)

where z = −1.953 mm is the distance from the center of mass of the cross-section
to the Si cell plane.

It is notable to remark that these displacements impose a tensile stress state to
the cells, since they are positioned far below the neutral axis of a generic 2D cross-

10



section (see [1] for an analysis on the overall stiffness contribution of the various
layers).

In the multi-scale approach, the in-plane displacements at the boundary of each
cell are transferred to the micro-model, where a higher resolution of analysis is
considered. Namely, the material microstructure of polycrystalline Si is taken into
account and the progress of intergranular decohesion at grain boundaries is ana-
lyzed under plane stress conditions. Node matching at the cell boundaries for the
macro-scale and micro-scale FE meshes is not necessary, since linear interpolation is
used to project the boundary displacements from the regularly spaced macro-scale
FE mesh to the non regular micro-scale mesh.

In the present modelling, it is implicitly assumed that the in plane displacements
are responsible for cracking and that bending configuration of the cell can be
neglected, so that the deformed configuration is confused with the undeformed one
in the micro-model. As a result of these approximations, the principle of virtual
work for the micro-model reads:

∫

V
(∇δu)Tσ dV −

∫

S
δgTt dS =

∫

∂V
δuTf dS, (19)

where the first term on the l.h.s. is the classical virtual work of deformation of the
bulk V and the r.h.s. is the virtual work of the tractions acting on the boundaries
of the cell ∂V . The second term on the l.h.s. is the contribution to the virtual
work of the interface normal and tangential cohesive tractions t = (τ, σ)T for the
corresponding relative sliding and opening displacements g = (gT, gN)

T at grain
boundaries S. According to the cohesive zone model (CZM), tractions normal
and tangential to the interface are opposing to the relative opening and sliding
displacements of the grains evaluated at the interface level. In the present study,
the Mixed Mode formulation by Tvergaard [10] is adopted, since it is suitable for
modelling grain boundary decohesion in polycrystalline materials. The nonlinear
equations relating the cohesive tractions to the normal and tangential relative
displacements, gN and gT, are:

σ =
gN
lNc

P (λ), (20)

τ = γ
gT
lTc

P (λ), (21)

where P (λ) = 27σmax(1 − 2λ + λ2)/4 and λ =
√

(gN/lNc)
2 + (gT/lTc)

2. The FE
discretization of the micro-model is performed by using linear triangular elements
for the grains and linear interface elements for the interfaces [11,12]. The discretized
interface contribution in Eq.(19) becomes:

∆δWint = δuTRT
∫

S
BTt dS, (22)

where δu = [u1, v1, . . . , u4, v4]
T is the displacement vector, R is the rotation matrix
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of the interface element, and the matrix B contains its shape functions:

B =







−N1 0 −N2 0 N2 0 N1 0

0 −N1 0 −N2 0 N2 0 N1





 (23)

Due to the nonlinearity of the interface constitutive relation given by the CZM,
the Newton-Raphson scheme is used, which allows to achieve a quadratic conver-
gence in the computation. The reader is referred to [11] for more details about the
computational issues. In this context, linearization of Eq.(22) yields:

∆δWint = δuTRT
∫

S
BTCBRu dS, (24)

where C is the tangent constitutive matrix of the interface element containing the
partial derivatives of the cohesive tractions w.r.t. the opening and sliding relative
displacements [11].

In the micro-model, microcracking is originated by the in plane displacements
passed as input from the macro-model (see Fig.11). This allows us to compute the
updated stiffness of the Si cell, which coincides with that used in the macro-model
at the first iteration only in absence of cracking. Moreover, the electrically inactive
cell areas are determined from the inspection of the crack pattern. This updated
information is passed back to the macro-model where the problem is solved again
with the updated constitutive matrices. This procedure is iterated until convergence
in the computed macro-displacement field is achieved. Since cracking affects only
the Si cells, whose contribution to the overall stiffness of the plate element is small
as compared to the the other layers, convergence is very fast.

This solution scheme implies the uncoupling between the microstructures of the
Si cells analyzed in the micro-scale computations. This additional source of error,
which is however limited by the fact that Si cells are not continuous but sepa-
rated by EVA interlayers, is also minimized in the iterative convergence scheme.
Regarding the computation of the tangent Young’s modulus of the homogenized Si
polycrystalline to be used in the macro-model computations, different techniques
could be invoked. In the present study, the Young’s modulus of Si is estimated
by the ratio between the average stress and strain in the micro-model of the Si
cell. The Poisson’s ratio at the macro-level is not updated, since we do not expect
significant variations due to microcracking.

4 A numerical example

In this section, a numerical example showing the applicability of the proposed nu-
merical method to a realistic case study is proposed. The aim is the determination
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Macro-model of the PV panel:
• Multi-layered plate

• FE simulations to compute  displacements

• Computation of electric power-loss

Displacement BCs,

thermal field

Micro-model of the Si cell: 
• Heterogeneous with interfaces

• Possible interface micro-cracks

• FE computation of inactive areas

• Update of cell stiffness

Updated homogenized stiffness, 

thermal properties, 

inactive cell area

Figure 11. Iterative procedure involving the macro- and micro-models.

of microcracking in Si cells, the quantification of the electrically inactive cell areas
and finally the computation of the I−V and P −V characteristics of the PV mod-
ule. The comparison between the characteristics of the intact and microcracked
modules will provide a measure of power-loss due to cracking.

A square PV module composed of 3 × 3 polycrystalline Si cells subjected to a
uniform pressure q = 5400 N and simply supported along its sides is analyzed (see
Fig.12 for the numeration of the Si cells). This type of load is recommended in the
qualification standards to simulate the effect of a heavy snow. All the geometrical
and mechanical parameters used for the plate elements in correspondence of Si
cells and their separating domains are reported in Tab. 1 and 2, respectively. The
flexural rigidity coefficient K of the FE inside the cells is equal to 552746 Nmm,
whereas in the separating domains is equal to 412138 Nmm. It is worth noting that
the approximation of the PV panel as a homogeneous glass plate by disregarding
the stiffening contributions of the layers below it, as considered in [4], leads to a
flexural rigidity coefficient K = 409, 135 Nmm. Such a value is considerably lower
than the flexural rigidities used by accounting all the layers, with a consequent
over-estimation of the displacements.

For the micro-model, the microstructure of the Si cells is obtained from the real
image in Fig.2. Although a statistical variability of the grain size distribution and
orientation takes place from a cell to another, we prefer here to use the same
microstructure for all the cells. In absence of fracture anisotropy, the boundary
cell displacements computed from the macro-model should induce the same crack
pattern in the cells n. 1, 3, 7 and 9. The same reasoning applies to the cells n. 2,
4, 6 and 8. Hence, the comparison between different crack patterns in the various
cells will put into evidence the role of the orientation of the grain boundaries.

The generation of the FE meshes for the micro-model is not a trivial task and

13



Layer Hk zk Ek νk

(mm) (mm) (MPa) (−)

Glass 4.000 4.000 73000 0.22

EVA 0.500 4.500 10 0.10

Si 0.166 4.666 130000 0.22

EVA 0.500 5.166 10 0.10

Backsheet 0.100 5.266 2800 0.10

Table 1
Geometrical and mechanical parameters for FE elements inside Si-cells (macro-scale
model).

Layer Hk zk Ek νk

(mm) (mm) (MPa) (−)

Glass 4.000 4.000 73000 0.22

EVA 1.166 5.166 10 0.10

Backsheet 0.100 5.266 2800 0.10

Table 2
Geometrical and mechanical parameters for FE elements inside the domain between two
adjacent cells (macro-scale model).

a specific pre-processor developed in house is used. First, starting from a photo
of the material microstructure, the grain boundaries are identified. Afterwards,
all the grains are shrunk with respect to their center of mass and the interface
nodes defining their polygonal geometries are duplicated. At this point, all the
grains are meshed in their interior and interface elements are placed along the
grain boundaries. The resulting FE connectivity matrices are given as input to the
finite element analysis programme FEAP [13], where cohesive interface elements
have been implemented by the first author [11]. The properties of the CZM are
chosen to represent the fracture properties of an EVA-incapsulated Si (E = 169
GPa, ν = 0.22, σmax = 190 MPa, γ = 1, lNc = lTc = 0.0156 mm).

After applying the uniform pressure q to the simply supported PV module, the
macro-micro iterative scheme is applied and, at convergence, the macro and micro
stress fields are computed. The contour plot of the macro-stress σxx (the stresses
in the horizontal direction x) in the PV module and the corresponding maxi-
mum micro-stress field in the central cell is shown in Fig.13. As expected, due
to microcracking, the micro-stress field components are in general lower than the
macro-stress ones, for the same applied cell boundary displacements.

The obtained microcrack pattern is shown in Fig.14. All the lines correspond to
interface cracks with λ > 2.8 × 10−3, which is a sufficient low value to select all

14



X
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1 2 3

4 5 6

7 8 9

Figure 12. A PV module with 3×3 cells. Sequence of operations for the generation of the
FE mesh of a Si cell for the micro-model: starting from a photo of the microstructure,
the grain boundaries are identified and the FE mesh with interface elements is generated.

[MPa][MPa]

Macro-stress σxx

Micro-stress σxx

Figure 13. Macro- and micro-stresses in the horizontal direction.

the microcracks present in the system. However, none of them has λ > 1, i.e.,
no stress-free macrocracks are present. This is consistent with the experimental
evidence showing that, although no cracks can be observed with naked eyes, their
effect on the electric performance of the module is quite relevant, as shown in
Fig.4 by the electrically inactive cell areas detected using the electroluminescence
technique.

Particularly interesting is the analysis of the distribution of the orientation of the
microcracks with respect to the busbars (shown with red lines in Fig.14). To do
so, the absolute angle of inclination of the numerically detected microcracks, |ϑ|,
is computed and the corresponding frequency of occurrence is determined. The
angle |ϑ| = 0◦ denotes cracks perpendicular to the busbars, whereas cracks with
|ϑ| = 90◦ are parallel to the busbars. The latter lead to the highest electrically
inactive cell areas and are therefore particularly harmful.
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Figure 14. Computed crack pattern for a uniform pressure acting on the simply-supported
PV module.

A comparison between the distribution of the orientations of microcracks inside the
Si cells n. 5 (central cell) and 9 (lower right corner cell) is proposed in Fig.15(a). A
quite uniform distribution is observed for the central cell, whereas a prevalence of
microcracks with |ϑ| = 45◦ ÷ 60◦ is observed for the corner cell. This is consistent
with the experimental spatial and orientational distributions reported in [4], where
it was noticed that microcracks tend to align perpendicularly to the direction of
the maximum principal tensile strain. In the plate corners, the maximum princi-
pal tensile strain is orientated at |ϑ| = 45◦ and it promotes the opening of the
corresponding interface microcracks.

However, in addition to the influence of the direction of the macroscopic strain field,
the orientation of Si grain boundaries might also have a role on the intergranular
crack distribution. This is shown in Fig.15(b), where the orientational distribution
of microcracks in cells n. 7 (lower left corner) and 9 (lower right corner) are com-
pared. Since the macroscopic strain field is basically the same for all the corner
cells, the difference is solely ascribed to the different grain boundary orientations.
The microstructure used for all the cells shows in fact an evident elongation of the
grains from the down right corner to the upper left corner. As a result of this, the
Si cell n. 7 is less prone to microcracking in the 45◦ direction than the cell n. 9.

The electrically inactive cell areas are also determined from the crack pattern in
Fig.14 and are shown in Fig.16. According to the criterion illustrated in Fig.8, each
cell is subdivided in three distinct regions: the first on the left of the first busbar,
the second between the two busbars and the third on the right of the second busbar.
For the first region, the inactive cell area is determined by the isolated cell area to
the left of the skyline given by the ensamble of microcracks closer to the busbar. For
the second region, the inactive cell area is represented by the isolated area between
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(5) Center (9) Down right corner

(a) Central vs. down right corner
cells

(7) Down left corner (9) Down right corner

(b) Left vs. right down corner cells

Figure 15. Distribution of the orientation of microcracks: comparison depending on the
cell position. The angle |ϑ| = 0◦ denotes cracks perpendicular to the busbars (shown
with red lines), whereas cracks with |ϑ| = 90◦ are parallel to the busbars.

two subvertical microcracks with the same vertical coordinates. Finally, for the
third region, the inactive cell area is defined by all the cell areas to the right of the
skyline given by the ensemble of microcracks closer to the busbar. This criterion
should be considered as the worst case scenario, since it is implicitly assumed that
all the microcracks are electrically insulated. Actually, partial conductivity in case
of closure effects due to temperature variations are likely to occur and might be
responsible for the oscillating electrical response of defective cells, as experimentally
observed in [6]. According to the present assumptions, the damage variable for each
cell can be computed as the ratio between the black and the whole cell areas. This
can be done with a simple post-processing of the cracked Si cell images in Matlab
by computing the amount of black and white pixels. The central cell is the most
damaged with D = 79%, whereas cells n. 1, 3, 7 and 9 have D = 32%, 12%,
12% and 30%, respectively. The less damaged cells are the n. 2, 4, 6 and 8, with
D = 11%, 4%, 5% and ∼ 0%, respectively. The damage variable for the whole PV
module is equal to D = 79%.

The electric response of the intact and microcracked PV modules (a = 2, ID=0
ph =

8.3 A, ID=0
s = 6×10−5 A, Rs = 0.007Ω, Rp = 410Ω) is finally compared in Fig.17.

For the computation we also consider an irradiance Ir = 1000 W/m2 and a working
temperature T = 27◦ (300 K). The effect of microcracking is particularly evident
and, in the present worst-case scenario, the power loss is particularly high, with a
fill factor of the microcracked module reduced down to 15% from 65% of the initial
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Figure 16. Computed electrically inactive cell areas according to the microcrack pattern
in Fig.14 (worst-case scenario in case of electrically insulated microcracks).
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Figure 17. Characteristic curves of the intact and micro-cracked PV module: current vs.
voltage (a) and power vs. voltage (b).

one.

5 Conclusion

In the present work, a multi-physics and multi-scale (multi-resolution) computa-
tional approach has been proposed for the study of the snow load-induced micro-
cracking in polycrystalline Si solar cells and its effect on the electric response of
PV modules. To the authors’ best knowledge, this is the first computational ap-
proach that attempts at studying the coupling between the elastic and the electric
fields. Moreover, it is the first computational method that explicitly considers the
polycrystalline grain microstructure of Si using a multi-resolution approach which
permits to study the structural response of a PV module without neglecting the
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role of the grain boundaries as a source of microcracking. The numerical application
shows that the proposed approach can be applied to realistic case studies.

Future research in this field will regard both the quantitative comparison with
experimental measurements [14], parameter identification, and the development
of additional computational features. In particular, the possibility of transgranular
cracking, not modelled in the present study, will be analyzed. The coupling between
the elastic and the thermal fields will also be put forward, in order to address
the important issue of durability of PV modules exposed to cyclic temperature
variations. The assumption of perfectly insulating microcracks will also be checked
with ad hoc experiments and new constitutive micromechanical models for partially
conducting microcracks will be implemented. The computationally efficient layer-
wise mixed theories for laminated plates proposed in [15] will also be considered
in addition to 3D FE simulations.
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