ISSN 2279-9362

Collegio Carlo Alberto

Efficient versus inefficient hedging strategies in the
presence of financial and longevity (value at) risk

Elisa Luciano
Luca Regis

No. 308
October 2013

Carlo Alberto Notebooks

www.carloalberto.org/research/working-papers

© 2013 by Elisa Luciano and Luca Regis. Any opinions expressed here are those of the authors and not
those of the Collegio Carlo Alberto.



Efficient versus inefficient hedging strategies in

the presence of financial and longevity (value at)
risk”*

Elisa Luciano’ Luca Regis*

October 5, 2013

Abstract

This paper provides a closed-form Value-at-Risk (VaR) for the net
exposure of an annuity provider, taking into account both mortality and
interest-rate risk, on both assets and liabilities. It builds a classical risk-
return frontier and shows that hedging strategies - such as the transfer
of longevity risk - may increase the overall risk while decreasing expected
returns, thus resulting in inefficient outcomes. Once calibrated to the 2010
UK longevity and bond market, the model gives conditions under which
hedging policies become inefficient.

JEL Classification: G22, G32.

1 Introduction

Longevity risk - which is the risk of unexpected improvements in survivorship -
is known to be an important threat to the safety of annuity providers, such as
pension funds. These institutions run the risk of seeing their liabilities increase
over time, when the actual survival rate of their members is greater than the
forecasted one. As of 2007, the exposure of pension funds and other annuity
providers to unexpected improvements in life expectancy has been quantified in
400 billion USD for the US and UK, more than 20 trillion USD worldwide (see
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Biffis and Blake (2010)). Annuity providers are also exposed to financial risks
on both assets and liabilities, as soon as the latter are fairly evaluated.

Fair evaluation may be justified on purely economic grounds or may be man-
dated by accounting rules and regulation. Nowadays, the IASB (International
Accounting Standard Board) forces evaluation of liabilities at fair value. Reg-
ulatory provisions of the Solvency II type require to align capital standards to
the market value of liabilities. Given the current accounting and forthcoming
regulatory rules, then, it is important to evaluate the effect of interest-rate risk
on both assets and liabilities. Regulatory and accounting interventions make
a fair-value based, possibly holistic view of longevity and financial risk matter,
since liabilities are subject to both, even when assets are subject to financial
risk only. As this paper will show, an holistic view permits also to highlight non
trivial trade-offs in risk hedging.

Numerical approaches to longevity or financial risk evaluation problem have
been the object of many efforts, both in the industry and in the Academia. A
number of them have concentrated on Value-at-risk (VaR), since, in spite of its
lack of coherence, it is the risk measure incorporated in the current and forth-
coming supervisory standards, such as the Solvency II directive. In Insurance,
most of the time VaR from market risk, including interest-rate risk, and mortal-
ity risk are computed separately. Mortality risk enters into such computations
in the form of idiosyncratic or systematic risk. In the former case there is an
implicit or explicit assumption that systematic longevity risk has been rein-
sured away, a circumstance that we rule out here, but which has been studied,
together with financial risk, by Hainaut and Devolder (2007) and Battocchio
et al. (2007). In the second case idiosyncratic risk is assumed to be negligible,
because the portfolio of the insurer is well diversified, while systematic risk is
captured by modelling the mortality intensity of annuitants as a stochastic pro-
cess instead of a (known) deterministic function of age. This is our approach.
Farr et al. (2008) provide a detailed survey of the current VaR practices and
simulation approaches in insurance, mainly related to economic capital compu-
tations. They conclude that ”Where stochastic models (for longevity risk) are
used, they are typically run as stand-alone models, separately from the modeling
of other risks [..] A fully integrated stochastic approach may also be possible,
where mortality is modeled together with other risks. This has the advantage
of allowing modeling for interactions between mortality and other risks, such as
economic risks. However, run times are usually a limiting factor.”

This paper aims at filling the gap pointed out by Farr et al. (2008), by
obtaining a closed-form expression for VaR of the net exposure (assets minus
liabilities) of a simple insurance portfolio, in the presence of interest-rate and de-
mographic risk. This overcomes the problem of run times and permits to study
analytically the efficiency versus inefficiency of hedging strategies. Strategies
which are a priori expected to reduce the overall riskiness of an insurance port-
folio - at the price of a reduction in its expected return - turn out to be able
to increase it too. Specific circumstances under which this occurs, i.e. under
which the strategy is inefficient, are given, both in theory and in an application
to the UK bond and longevity data. In order to obtain closed-form evaluations,



we choose a parsimonious continuous-time model for longevity risk, together
with a standard model for interest rates. The description of the actuarial and
financial market allows us to obtain easy-to-compute analytical expressions for
both the expected return and the risk associated to a portfolio of assets and
liabilities. For the sake of simplicity - but without loss of generality - we focus
on the portfolio of an annuity provider, such as a pension fund.

The paper is structured as follows. Section 2 formalizes our set up for both
longevity and financial risk. Section 3 measures their effects on the net exposure
of the annuity provider. Section 4 introduces a VaR measure for the overall risk
of assets and liabilities. Section 5 spells out the trade-offs between risk and
return, pointing to the existence of efficient and inefficient parts of the frontier
(VaR, Expected Return). It describes the different fund strategies along that
frontier and how they can be matched with the preferences of the fund. Section
6 provides a calibrated example using financial and demographic data from the
UK market. Section 7 concludes.

2 Set up

Let us place ourselves in a standard, continuous-time framework. Consider a
time interval 7 = [0,7],T < oo, a complete probability space (Q2, F,P) and a
multidimensional standard Wiener W (w,t),t € T. The space is endowed with
the filtration generated by w, F* = {F;}. We adopt a stochastic extension of
the classical Gompertz law for mortality description and we stick to the Hull-
White model for interest-rate risk, as in Luciano et al. (2012a).

2.1 Demographic risk

Mortality risk - which, with a slight abuse of terminology, we call also longevity
or demographic risk - exists since death occurs as a Poisson process, with an
intensity which, instead of being deterministic as in the classical actuarial frame-
work, is stochastic. This permits experienced mortality to be different from the
forecasted one. At each point in time there is an actual mortality intensity, A(t),
which may differ from its forecast at any previous point in time, the forward
intensity. If the forecast is done at time 0, we denote it as f(0,t). So, longevity
risk arises because the actual intensity A(t) may differ from the forward mortal-
ity intensity f(0,t).

This stochastic intensity - or stochastic-mortality - approach, which is by-
now quite well known in the literature, has the advantage of making closed-
form evaluations, as well as description of age, period and cohort effects in
mortality, possible. If the intensity is described by linear affine processes, the
survival function is indeed known in closed form and can be calibrated using
a limited number of parameters. In order to stay in the linear class and to
keep the distinction between age, period and cohort effects, but to be extremely
parsimonious, we assume that - under P - the mortality intensity of a head aged
x at calendar time t - which belongs to the generation and gender born at time



1 = t—ux - is described by a so-called Ornstein-Uhlenbeck process, without mean
reversion (OU):
d)\l(t) = a'i/\i (t)dt + O'idWi(t),

where a; > 0, o; > 0, W, is a standard one-dimensional Brownian motion in
W. In the notation we omit the dependence on z, since once calendar time and
generation or gender are specified, age is uniquely determined.

This intensity extends - with the inclusion of a diffusive term - the classical
Gompertz law

where a; > 0 is the rate of growth of the force of mortality. Expected intensity
increases over age:

2
0

2a2
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E:(\i(t + At)) = N (¢) exp(a; At) = fi(t, t + At) + [1 —exp (aiAt)]2 , (1)

The instantaneous volatility of death intensity is constant, while the overall
variance increases exponentially in time:

2
g3

Var:(Ai(t + At)) = —— [1 — exp (2a;At)] . (2)

a;

By assuming that there is an intensity process for each generation, we intend
to capture longevity discrepancies, especially improvements, over generations.
We indeed have (and will calibrate) one drift and one diffusion for each gener-
ation (and gender, obviously). This - together with the OU choice - makes the
overall mortality model flexible but still parsimonious. Empirical explorations
have shown that it fits well actual per-cohort mortality (see Sherris and Wills
(2008), among others).

Since it belongs to the affine class, the model provides a closed-form expres-
sion for the survival probability of generation i at any point in time ¢ and up to
any horizon 7. Using a transformation from Jarrow and Turnbull (1994), the
survival probability can be written as

ST) = E [exp (— [ Ai(s)dsﬂ -
= m exp [—X;(t, T)I;(t) — Y;(¢t,T)],

where S;(0,7) and S;(0,t) are the survival probabilities at time 0, X; and Y;
are deterministic functions
(T—=1)—1
X,(t.1) o= ORI

Q;

o? [1 — exp (2a,;t)] X;(t, T)?
e 1) = - U Q) KT




and I;(t) is the difference between the actual mortality intensity of generation
i at t and its forecast at time 0, f;(0,t). We interpret this difference as the
mortality or demographic risk factor:

Li(t) == N\i(t) — £i(0,1).

It is the discrepancy between realization and forecast which makes the pension
fund exposed to mortality risk. Indeed, only the survival probabilities at the
current date (¢ = 0) are known, while the probabilities which will be assigned
at any future point in time (¢ > 0) are random variables. We will see below
that this makes the reserves of the pension fund at any future point in time
stochastic, and generates the demographic risk it has to cover. Randomness
enters through the factor I;(¢t) and affects the whole survival curve, namely
Si(t,T) for every T. From now on, since we focus on a specific generation, we
omit the dependence on 1.

2.2 Financial risk

In order to seize the effects of interest rate changes on assets and liabilities we
need to select a model for financial risk. The natural choice is to assume that
interest rates follow an Ornstein-Uhlenbeck (OU) or constant-parameter Hull-
and-White one-factor model. This is a standard choice in Financial modelling,
able to provide us with closed form formulas for pricing and hedging, parsi-
monious but flexible enough to be popular in applications. The instantaneous
interest rate in the Hull-White model is assumed to have the following dynamics
under a measure! Q equivalent to P:

dr(t) = g(0 — r(t))dt + EdWp (1), (3)

where 0, g > 0, > 0 and Wp is a univariate Brownian motion independent? of
W; for all 7; 6 is the long-run mean of the short-rate process, while the parameter
g is the speed of mean reversion. As a consequence, the instantaneous rate has
expectation and variance equal to

Eq [r(t + At)] = r(t)e 92 + 6 11— efgm] , (4)

Vary(r(t+ At)) = 292 [1 —exp (—2gAt)]. (5)

No arbitrage and completeness hold in the financial market. The correspond-
ing zero-coupon bond price - if the bond is evaluated at ¢t and has maturity 7" -

IThe short-rate process is given directly under the risk-neutral measure, so that no as-
sumption on the market price of financial risk is needed. The parameters of the interest-rate
market will be calibrated accordingly.

2Under the original measure we have W = (W1, Wa, ...Wx, W§) where N is the maximum
number of generations alive in 7, while W;’: is the Brownian motion which corresponds to
W according to Girsanov’ theorem. Independency of financial and actuarial risk is assumed
under P and preserved under Q because of the diffusive nature of uncertainty: see Dhaene
et al. (2013).



is

B(t,T) = E2 lexp (— /tT r(s)ds)

_ % ((%’f)) exp [~ X (t, T)K(t) - Y (¢,T)]

where B(0,t), B(0,T) are the bond prices as observed at time 0 for durations
t,T,X and Y are deterministic functions
5 1 —exp(—g(T' - t))

X(¢,T):= ,
g

Y, T) = % [1 — exp(—2gt)] X2(t, T),

and the difference between the time-¢ actual and forward rate, denoted as R(0, ¢):
K(t) :=r(t) — R(0,1)

is the financial risk factor, akin to the demographic factor I(t). As in the
longevity case, the financial risk factor is the difference between actual and
forecasted rates for time ¢, where the forecast is done at time 0. It is the only
source of randomness which affects bonds. It is clear that - for any maturity T'
- the bond value at any point in time ¢t > 0 is random. Values at time ¢t = 0
only are known.

3 Risk measurement

This section studies how specific forecast errors in mortality or interest rate
impact on the net exposure (assets minus liabilities) of the pension fund, given
that

e he can transfer part or the whole longevity risk to a reinsurer

e ha can hedge the financial risk of assets by duration matching.

This section permits to assess the impact of randomly distributed forecast
errors. The last task, together with the study of the trade-off between risk and
returns, will be the subject of the sections to follow.

3.1 Demographic risk measurement

Consider an annuity issued on an individual of generation i, aged = at t. Make
the annuity payment per period equal to one, for the sake of simplicity, and
assume that the annuity is fairly priced and reserved. Assume that financial
and demographic risks (Brownian motions) are independent and that no risk



premium for longevity risk exists®. The cash flow of the annuity at tenor T has
a fair value at time ¢ equal to the product of the survival probability S and the
discount factor B:

Si(t, T)B(t,T)

The whole-life annuity - which lasts until the extreme age w - is worth

w—x
VAR = Y Silt,u)B(t,u)
u=t+1
The fund incurs demographic risk, in the sense that at any point in time ¢
the fair value and reserve V;4(¢) can change because the intensity process does.
Such change can be approximated up to the second order as follows:

1
AVAM (1) = AN ()AL (L) + fﬁf (AL} (), (6)
where the Deltas and Gammas are
AN () =— > B(t,u)S,(t,u)X,(t,u) <0,
u=t+1
i) = Z B(t,u)S,(t,u)[X,(t,u)]* > 0.
u=t+1

The annuity value is decreasing and convex in the risk factor.
From now on, we take the point of view of a pension fund which issued such
contract at a price P > V/4(0) and can

e cither run into demographic risk, evaluated at its first-order impact
AN ()AL(t), or

e transfer the risk to a reinsurer, at least partially.

We want to build the risk-return frontier linked to such hedging policy. We
assume that - in order to absorb demographic risk - reinsurers charge the fund
with a price C' which is not smaller than its fair price, determined consistently
with the model. To establish the fair price, we assume that - when risk is
transferred to the reinsurer - the latter covers it using short death contracts
in his portfolio, i.e. death contracts he issued or absorbed from insurers. This
is the so-called natural hedging, which is likely to be feasible for reinsurers,
given the diversification of their portfolios.* We ask ourselves at what fair price

3Since there is no price for demographic risk, expectations of functionals of the intensity -
such as the survival probability - under the historical measure P and the risk-neutral one/ones
@ coincide. Extensions to constant risk premiums are trivial.

41f the reinsurer has no death contract on the same generation available for hedging, which
is possible for pensioneers, he may use death contracts on - say - younger generations. The
natural hedging tecnique we describe in Luciano et al. (2012b) can be used in order to deter-
mine the fair price in that case. In this paper we assume that both life and death contracts
contracts on the same generation are available to the reinsurer, in order to separate our main
focus, VaR and efficiency, from the availability of natural hedging strategies for reinsurers.



the reinsurer can absorb the demographic risk of the annuity. To this end, we
assume that coverage of risk is done by the reinsurer up to first-order changes.
It Delta-covers risk® by using a position in N death contracts on individuals of
the same generation, gender and age, as in Luciano et al. (2012b). At time ¢, a
death contract which covers the period (¢,T) is priced

T
VP, T)= Y Blt,u)[S(tu—1) = S(tu)],
u=t+1
and has the following Delta:
T
AR ET) = Y Btu) [=Si(t,u— 1) Xi(t,u— 1) + Si(t,u) X;(t,u)] > 0. (7)
u=t+1

The position N is determined so that the Delta of the portfolio made by the

annuity and the death contract, (=AY + NAM)AT(¢), is zero:5
Dty B(t,u)S, (t,u) X, (t,u)

S Bt u) [<Si(tu— D)X (tu— 1) + Si(t,u) Xi(t,u)]

u=t+1

N(¢t,T)=— <0.

The fair cost of such coverage is the value of the death contracts needed for
hedging:

T
V(t,T)=-N > B(t,u)[Si(t,u—1) - Si(t,u)].
u=t+1
From now on, the transfer price C' will be not smaller than V. At that price,
the fund may decide to transfer a part i of its longevity risk to a reinsurer, by
paying a price nC, n € [0,1]. If it does so, it remains exposed to the part of
demographic risk which it did not transfer. Approximating the exposures to the
first-order, the longevity risk of the fund is

(L= mMAL®) S Bltu)S;(tu)X,(t,u).

u=t+1

In section 4 the discrepancy between C and V, i.e. the profit of the reinsurer
- or the lack of competition in the reinsurance market - will play a key role in
determining the efficiency of given hedging strategies.

5We maintain the assumption of Delta - as opposite to Delta-Gamma - coverage for all
risks below. In principle, going from delta to Delta-Gamma coverage just requires the use
of additional death contracts and the introduction of more equations. No major conceptual
difference is at stake. For this reason, we disregard the extension in the whole paper.

6The reinsurer is short the death contract, since the annuity value increases when longevity
is greater than forecasted, while the death value decreases. As a consequence, the increase in
the payments to annuitants due to an unexpected shock in longevity is compensated by the
decrease in the expected payments due to life-insurance policyholders.



3.2 Financial risk measurement

Any bond on the asset side is subject to financial risk. If for simplicity we
consider zero-coupon bonds only, their sensitivity to changes in K - AK - is
well known: -
AL, T)=-B(t,T)X(t,T) <0, (8)
e, T) = B(t,T)X?(t,T) > 0. (9)
Bond values are decreasing and convex in discrepancies between the actual and
forecasted interest rates.
The annuity value, which enters the liabilities, is subject to financial risk,

since it is fairly priced. The effect of a change in K on the annuity value -
approximated at second order - is:

AVAT(1) = AS(HAK (D) + ST (A1)

where
Ai(t) == Z B(t,U)S,L(t, U)X(ta U) < 07
u=t+1
PR = S Bt w)S( o)X (0 > 0.
u=t+1

The annuity is decreasing and convex in discrepancies between the actual and
forecasted interest rates, exactly as the bonds are.

In order to evaluate the change in the whole value of assets and liabilities,
for any specific realization of AK, we have to specify how the premium P of
the annuity is used for asset purchases. We assume that a duration-matching
strategy is pursued. The maturity T of the bonds is chosen so as to equal the
annuity one, i.e.

o Demiar WX Si(t,u)B(t, u)
VA®)

Given that bonds are zero-coupon, the asset duration, before reinsurance is
bought, is P x (T —t). So, the two match if and only if

P
T =t 4 —. (10)
T

Once the bond duration is identified, the part of the premium which is not used
for demographic-risk transfer, P — nC, is invested in bonds. The number of

bonds bought is
P—-nC
e ——— 11
" T BT (11)
Everything else being equal, n* is decreasing in 7: the higher the level of rein-
surance, the lower is cash available for bond purchasing. The financial risk



incurred by the fund, as a consequence of this asset policy, can be evaluated at
first order as follows.
P—-nC
“AR) + ————AE@, T | AK(t) =
-850+ G AT AK(
P —nC =
= |-Af () — B(t,T)X(t,T*)| AK(t
-850 - e BTOX (0.7 AK()

AK(t).  (12)

= l z_: B(t,u)S;(t,u) X (t,u) — (P —nC) X (t,T*)
u=t+1

The expected financial return of the fund is

E, [—Vf(t +dt) + VE) + g(t_ ;C) [B(t+dt, T*) — B(t, T*)]} (13)
~ By [AK(D)] [Aiﬁ + MAQ] - (14)

i B(t,w)Si(t,u) X (t,u) — (P — nC) X (t,T)

u=t+1

Ei [AK(1)] (15)

Two extreme situations arise, when the demographic reinsurance policy is
either n = 0 (strategy 1) or n = 1 (strategy 2):

1. n = 0: the fund does not transfer demographic risk. It has financial risk
from assets, since n* = P/B, as well as from liabilities. Financial risks
are

AL(t) > B(t,u)S,(t,u)X,(tu),
u=t+t+1

AK(t) [MZT B(t,u)S;(t,u) X (t,u) — PX(t,T)| . (16)

u=t+1

while expected returns equal

E, {—Vf(t +dt) +VE@) + [B(t + dt, T*) — B(t, T*)]} (17)

B(t,T")

wim B(t,u)S;(t,u) X (t,u) — PX(t,T)
u=t+1

~ B [AK(1)] (18)

2. n = 1: the fund transferred all demographic risk. It has financial risk from
assets, since n* = (P — C)/B, and liabilities. This risk is equal to

AK(t) [ wi: B(t,w)Si(t, u) X (t,u) — (P — C) X (¢, T%)] . (19)

u=t+1

10



The expected returns of this strategy equal

P-C
_yvF F *) *
E; { Vi+dt)+Vy(t)+ BT [B(t +dt, T*) — B(¢,T )]}
~ EJAK®)] | Y BtwSi(t,u)X(t,u) — (P —C) X(t,T7)] .
u=t+1
3.3 Overall impact
Let us introduce the following notation:
a o= Z B(t,uw)S,(t,u)X,(t,u) >0,
u=t+1
B = Z B(t,u)S,(t,u)X (t,u) > 0,
u=t+1
v o1 =B (P—nC)X(t,T),
) =v+CX(t,T*) > 7.

where « is the Delta of the portfolio with respect to mortality risk in strategy 1,
while v and § are the Deltas of the portfolios for the two strategies with respect
to financial risk. Correspondingly, v is the financial risk of each intermediate
strategy, obtained by setting 1 € (0, 1).

Let C* be the cost associated with any fixed reinsurance policy: C* = nC.

With this notation, strategies 1 and 2 are as described in Table 1. Expected
financial returns are evaluated at the end of the interval At and are net of the
costs C'A, of demographic-risk transfer, obtained as AtC*/(w — z). We denote
them with p.7

Strategy n* C* | Dem risk | Fin risk | Net expected return
1 P/B 0 aAl YAK ~E [AK]
2 (P-C)/B | C 0 0AK SE[AK] - C},

Table 1: Risks and expected return

The column devoted to demographic risk obviously says that it has an higher
impact under the first than under the second strategy, where it is null. The
column devoted to financial risk says that bonds partially offset the effect of
forecast errors in rates AK on liabilities. For instance, with AK < 0, assets

"Notice that we could subtract the whole cost of reinsurance — which lasts for the whole
annuity maturity, w — « — to compute financial returns. This would lower financial returns.
The model can accommodate any splitting of the reinsurance cost over the maturity of the
annuity.

11



increase in value when v and (a fortiori) § are positive. Since § > -+, the
offsetting effect is larger when the whole amount of the premium P is used to
buy bonds, under strategy 1, than under strategy 2.

4 VaR

In order to go from the impact of a specific forecast error in interest rates
or mortality to an overall risk evaluation, which takes the distribution of the
forecast errors into account, we compute VaR. With that, we can study the
risk-return trade-offs of the two strategies — and all the intermediate ones. We
aim at going from the change in the portfolio net exposure corresponding to a
specific difference between forecasted and actual mortality Al; or interest rate
AK to a synthetic risk-and-return couple valid for every scenario (AI;, AK).
In order to reconstruct a risk/return tradeoff, without losing the information
about the effect of the two sources of risk, in this section we proceed in three
steps. We first recognize the link between the scenario-based risk representation
and a VaR risk-measurement for each risk factor. Then, we pass from the VaR
of the factor to the VaR of the portfolio strategy. Third, we sum up the VaRs
due to financial and demographic risk to obtain the Overall VaR.

4.1 One-standard deviation shocks and VaRs

This section formalizes the move from risk-factor changes to risk appraisal
through VaR. The main advantage of the Delta approach taken here consists
in making the factor approach to VaR computation with Gaussian innovations
possible. To this end, observe first that the expected values of the risk-factors
changes, AI; = AILi(t + At) and AK = AK(t + At), are equal to the expected
values of the mortality intensity and interest rate, A;(t + At) and r(t + At),
which we computed above, in (1) and (4), net of the corresponding forward
rate. The variances are the ones computed in (2) and (5). So, using (1), (4),
(2) and (5), we can compute E[ALL], Var[AL], E[AK], Var[AK].

Consider a positive or negative one-standard-deviation shock on the longevity
of generation ¢ and on interest rates:

AK = E[AK]+£1x /Var[AK]. (21)

Since both the intensity and the interest rate are Gaussian, looking at a one-
standard-deviation shock means to examine the worst occurrence for I and K
in 84% or 16% of the cases. Expressions (20) and (21) give the VaR of the risk
factors at the level of confidence 84% - if we take —1 x /Var[AIL] - and 16%,
if we take +1 x /Var[AL]. In general, we can fix a confidence level 1 — € (say
99%, 95%, 84%) or € (1%,5%, 16%) at which the VaR of the risk factors can
be evaluated, by choosing appropriately the constant in front of the standard
deviation. Let n(e) be that constant. The VaR of the two risk factors at the

12



confidence level 1 — € is

VaR,_.(AIL) = E[AL]—n(e)v/Var[AL], (22)
VaR,_.(AK) = E[AK]—n(e)yv/Var[]AK]. (23)

However, in the end we are interested in the VaR of the portfolio, not in the
VaR of the risk factors. According to Table 1, the realizations of the portfolio
gains/losses are of the type kAI; or kAK, where the constant k can be either
positive or negative (k = «, 3,7,0). An increase in the risk factor corresponds
to a portfolio loss if k£ < 0, to a gain if £ > 0. Hence, we consider as ”worst case
scenarios” the outcomes in the left tail of the distribution of AI; and AK — and
thus VaR;_.(-) — when k > 0 and the outcomes in the right tail — thus VaR ()
— when k£ < 0. With a slight abuse of terminology, let us define VaRy(-) the
difference between the demographic VaR-component and its expected value:

EVaRy_(AL) — kE[AL] = —kn(e)\/Var[AL] it k>0,

kEVaR (AIL) — kE[AL] = +kn(e)/Var[AL] if k < 0.
Similarly for the financial VaR-component:

VaRy(k;e)=

kEVaR;_(AK) — kE[AK] = —kn(e)y/Var[AK] if £ >0,
kVaR.(AK) — kE[AK] = kn(e)\/Var[AK] if £ <0.

Table 2 reports the values of the financial and demographic VaR-component
for each strategy.

VaRp(k;e)=

Table 2: Demographic and Financial VaR-components for the two strategies

Contribution to the strategy VaR

Strategy | Demographic VaR-component | Financial VaR-component
1 VaRy (o €) + aE[AL] VaRp(vy;¢e) + vE[AK]
2 0 VaRp(d;€) + 0E[AK]

If we aggregate the appropriate scenario-based risks or VaRs (where appro-
priate stands for “which use VaR.(-) or VaRi_.(:), as needed”) taking into
account the diversification benefit due to our independence assumption, we ob-
tain the Overall VaR (OVaR):

OV&R(kM, kF; 6) = kME[A]Z} + kFE[AK} — \/(VCLRM(I{?M))Q + (VCLRF(]{?F))Q,

(24)
where ks is « for strategy 1 and 0 for strategy 2, kr is v for strategy 1 and ¢ for
strategy 2. VaR(-) and VaRp(-) are evaluated at the same confidence level e.
Formula (24) represents the worst case outcome for the change in the value of
the net position of the fund. This is why we take the negative sign in front of
the square root, because bad outcomes are those associated to negative changes
of the net exposure. In what follows, for simplicity, we will always focus on the
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absolute value of OV aR itself: greater values will then mean greater risks. We
report Overall VaR for the competing strategies in Table 3, together with the
corresponding financial expected return. This representation opens the way to
representing the trade-offs of the strategies in a familiar way, by associating to
each strategy a point in the plane (Overall VaR, Expected Financial Return).

Table 3: Overall VaR and Expected Financial Return for strategies 1 and 2

Strategy (OVaR, 1) combination
1 ( aE[AL] + VE[AK] — /(VaRa (@) + (VaRr(7))2 ,7]E[AK]>
2 (|OE[AK] + VaRp(8)|,0E[AK] — Cat)

5 Risk-return frontier; efficiency versus ineffi-
ciency

We represent the limit strategies 1 and 2, as well as the intermediate ones —
in which demographic risk is partially reinsured — in the plane (Overall VaR,
Expected Financial Return). Expected financial returns, net of the cost of
reinsurance are:

u=vE[AK] — Cj,.

Strategies are characterized by the following couple of values, when 7 goes from
1 to O:

(

For any given confidence level € for OVaR, this is a curve between point Ps,
which represents strategy 2, and point P; for strategy 1 (Figure 1).

]{:A[E[AIZ'} + k;FE[AK] - \/(V&R]y[((l - 77)04))2 + (VaRF(V))2 ,VIE[AK} - Czt) . (25)

[Insert Here Figure 1]

Notice that the derivatives or Deltas of the portfolio change with respect to
demographic and longevity risk (with their signs) are (1 — )« and v, which we
denote as AM and AF. Since AM > 0 the effect of demographic risk AM is null
at P, where n = 1, and positive at all other points of the line, where n < 1. This
means that, when 7 decreases from 1 to 0 and we move from strategy 2 towards
1, demographic risk increases. The financial Delta AT is positive between P,
and the point @Q, it is negative between Q and P;. The point Q where the
Delta of the portfolio with respect to financial risk is null is characterized by
the reinsurance level  which solves the equation A (n) = 0. Its value is

_ AN+ PX(t,T)
=T exe, )
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We concentrate on the most interesting case in which 0 < 7 < 1.8 Moving
from P, to P, the demographic component of OV aR decreases, since AM does.
The financial risk component instead decreases first, since between P; and () its
absolute value decreases to reach zero in ), and then increases, since between
Q and P, AT is always greater than zero and increasing. In order to analyze
the effects of this move along the frontier, we denote with H the point of the
frontier itself where the Overall VaR reaches its minimum. This point may be
interior or may coincide with P,. This depends on the value of n at H, n*. If n*
does not lie inside the interval [0,1), H coincides with P. In this case, the line
between P, and P; is always positively sloped. This is the situation depicted
in Figure 1. It means that increasing the reinsurance level leads to both lower
risk and lower returns, as intuition would command. As a whole, the hedging
strategy is efficient. If n* lies inside the interval [0,1), H is interior. In this
case the part of the frontier between H and P, is negatively sloped. Reducing
7, i.e. reinsuring less demographic risk, always increases the expected portfolio
return. This is the situation depicted in figure 2. The peculiarity of the frontier,
which defies our naive intuition about the usefulness of hedging longevity risk
by transferring it, emerges exactly in this case.

When H and P, coincide - as in Figure 1 - VaR decreases with 7, and the
strategies are efficient along the whole frontier, both between ) and P, and be-
tween @ and Py, even though there A" > 0. When H is interior - as represented
in Figure 2 - the reduction in demographic risk counterbalances the increase in
financial risk only between @) and H.

[Insert here Figure 2]

Overall risk decreases, while returns go down. Between H and P, instead, the
increase in financial risk overcomes the reduction in demographic one. The over-
all effect is an increase of portfolio VaR which makes the whole set of strategies
in this part of the curve inefficient.

Briefly, when moving from @ to P> the VaR component due to demographic
risk decreases, while the one due to financial risk increases. Where the first effect
prevails, the frontier is positively sloped and the transfer is efficient. Where the
second does — i.e. between H and P, — the frontier is negatively sloped and the
transfer is inefficient. In the latter case, each point on the curve between P, and
H represents a strategy which is dominated by the corresponding strategy (same
OVaR) on the upper part of the frontier, since the latter has higher return. An
example of such a situation is in Figure 2, where strategy p is dominated by p'.
This inefficiency cannot be captured by those approaches which do not take a
holistic view of risk. The possible existence of an inefficient part of the frontier,

8If 7 > 1, then AF is always negative. In this case, the financial risk component of OVaR
is always decreasing for 0 < 1 < 1, as the demographic one is: the frontier is always efficient.
If 7 < 0, AF is always positive. In this case, the same reasoning of the case in which 0 < 7 < 1
applies, since OVaR can increase or decrease with 0 < n < 1. The frontier may present an
efficient and an inefficient part. Indeed, strategy n = 0 might also constitute the only efficient
strategy, if it coincides with the minimum value of OV aR among all possible strategies.

15



made by dominated strategies, depends not only on the coefficients in Table
1, but also on the characteristics of the risk factors distributions, on the VaR
confidence level and on the cost of reinsurance.? The condition for the existence
of an inefficient part of the frontier is

Jargmin OVaR(kar; krje) # 1
n
s.t. 0<n<1.

which in turn depends on whether the derivative of the absolute value of OVaR
with respect to 7 is neutralized at 0 < n* < 1 or not. This derivative takes the
value:

(1— a)E[AL] + E[AK]CX (t, T*)+
72(17a)277Var(AI7;)(n(e))2+2VCX(t,T*)(n(e))QVar(AK) if Overall VaR > 0
2\/((VaRM(kM))2+SVaRF(kF))2 -
~(1 - a)E[AL] - E[AK|CX (t,T%)+
2(1—a)?nVar(AL)(n(e)?+2vCX (¢,T%) (n(e))*Var(AK) .
+ o (Valtar (ko) P2 (VR ()2 if Overall VaR < 0.

Neutralizing it, we obtain the value(s) at which local minima lie. The cor-
responding equation is highly non linear and must be solved numerically. If we
find that none of the solutions lies between 0 and 1, then the whole frontier is
efficient. Otherwise, we have an inefficient part.

5.1 Efficiency and optimality

As an example of the application of the efficiency just pointed out, let us now
introduce a decision criterion for optimal hedging of the insurance portfolio,
which works on the efficient part of the frontier. We define the risk-return
preferences of the fund through a utility function defined on the plane (Overall
VaR, Expected Return). This choice does not pretend to be axiomatically based,
but simply to be consistent with a VaR-based measurement of risk. Given these
preferences, we can choose n* € [0, 1] which maximizes an expected utility of
the type:

U(p, OVaR (ks kri€),€), (26)

with U’ > 0,U"” < 0, where £ is a parameter (or, possibly, a set of parameters)
describing the risk attitude of the fund. Graphically, the best strategy is iden-
tified as the point on the efficient part of the frontier that crosses the highest
possible indifference curve, as represented in Figure 3. This point determines
the optimal level of reinsurance demanded by the fund.

[Insert Here Figure 3]

9The reason why there is still financial risk left, in spite of duration matching, is that the
duration itself is a classical one, not the Delta or Delta-Gamma duration matching which can
be performed in the Hull-White setting (see for instance Avellaneda (2000)). The latter one
would eliminate any riskiness up to first or second order approximations, but would leave no
room for exploiting the risk-return trade-off, i.e. for optimization.
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5.2 Larger portfolios

Up to now we have limited ourselves to a simple portfolio, made by one annuity
on the liability side, bonds and cash on the asset side. A portfolio in which sev-
eral life contracts are sold on the same generation can be easily described, since
it would depend on the same demographic risk factor K and the same interest
rate factor I. Only the Greeks should be adjusted so as to reflect the pres-
ence of more than one contract. Abstracting from reinsurance considerations,
in the presence of n annuities and m death contracts on the same generation,
for instance,'® we would have the following first-order value change due to the
mortality risk factor:
(nAY +mAY)AL(),

where the death contract Greek has been defined in (7). In case the same
generation had both life and death contracts in force with the insurer, the
Overall VaR due to the generation would then be easy to compute too, according
to formula (24) with ky; = nAY + mAM.

In the presence of several generations, our estimates can be easily extended if
the factors affecting the mortality of several generations are perfectly correlated
and all independent from the financial risk factor. If the correlation between
the intensities of different generations is not one, the above formulas represent
however an upper bound for the VaR of the insurer’s portfolio.

In all cases, the efficiency problem remains. In order to appreciate the VaR
efficiency and its effect on the optimal reinsurance policies - as representative
of hedging policies in general - let us now introduce and comment an example
calibrated on UK mortality and financial data.

6 VaR, efficient and inefficient frontier on UK
data

Let us compute the VaR and study efficient versus inefficient strategies using
data from the UK market. To be specific, we consider a whole-life annuity sold
on a UK male aged 65 at strategy inception, December 30, 2010; we take finan-
cial data from the UK Government market on the same date. We presume that
the revenues from annuity sales are invested in UK Government bonds whose
maturity matches the annuity duration. The Hull-White model is calibrated to
zero-coupon bond prices at the same date. Under the risk-neutral measure its
parameters are g = 6.32%, 6 = 16.33%, ~ = 3.32%, while r(0) = 0.42%. The
market price of risk is chosen so that the long-run mean under the historical mea-
sure is around 4%, which is the average UK short (1-month) rate in the previous
10 years. The survival rates are calibrated from projected IML92 tables. ! For

108ee also Luciano et al. (2012b).

H1IML92 projected rates are derived from an underlying model which differs from ours. Our
choice to fit our mortality model to these rates is driven by the idea that our framework can
also describe with a limited number of parameters survival curves obtained with complex and
possibly accurate projection methods.
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the generation we consider, the model parameters are a; = 10.94%, o; = 0.07%
and A;(0) = 0.885%. Table 4 summarizes all relevant parameters. Table 5

Table 4: Calibrated parameters

Symbol | Value
Financial risk

g 6.32%

D) 3.32%

0 16.33%

r(0) 0.42%

Demographic risk

a; 10.94%

o 0.07%

i (0) 0.885%

reports prices and Deltas of the instruments we use in the example.

Table 5: Risk exposures and prices of instruments

Figure \ Symbol \ Value
Annuity

Price vA 13.14
Exposure to longevity risk AT -378.72
Exposure to financial risk AL -85.03

10-year bond

Price B(0,9.69) | 0.725

Exposure to financial risk AL -5.25

The fair price of the annuity — which is also its selling price — is V4 =
P = 13.14.!12 Being short the annuity, which has exposures A4 = —378.72
and AL = —85.03 the fund remains exposed to both risk factors change. The
fund operates on the financial market using a bond whose maturity is computed
according to (10) and is T* = 9.69. We assume the existence of such a bond,
which is priced B(0,9.69) = 0.725 and has AL = —5.25. We evaluate the hedg-
ing strategies we described above at an horizon At = 1 year. The longevity risk
factor I(1) is expected to be positive, Eq[I(1)] = 2.73%10~7 while its variance is
Varg[I(1)] = 5.47 % 10~7. Demographic risk can be transferred to a reinsurer at
its fair price C' = 3.61. The expected value of the financial risk factor under the
historical measure is slightly negative, equal to Eo[K(1)] = —0.10%, while its
variance is Varg[K(1)] = 0.00087. For the sake of realism, we charge expected

12In the computation, we considered an extreme age w = 110 years.

18



returns not with the whole reinsurance cost, but with the part which refers to
the cover of the horizon considered. As a consequence, financial returns are
Eo[K(1)] — Cat and Cay = 0.0803.

The coefficient § is positive, 16.05, while v is negative, -10.10. In Table 6 we

report the exposures, the expected financial return net of the reinsurance cost
and the remaining liquidity of strategies 1 and 2. Strategy 1 invests all P in

Table 6: Risk exposures, VaR and expected returns

Figure Strategy
Symbol 1 2
Number of bonds n* 18.12 | 13.14
Cost of reinsurance C* 0 3.61
Exposure to longevity risk a/0 378.72 0
Exposure to financial risk v/ -10.10 | 16.05
Expected financial return I 0.010 | -0.096
Demographic VaR-component 99.9% | VaRa(;99.9%) + oE[AL]/0 | 0.84 0
Financial VaR-component 99.9% Iyg}f?&%gg%@):%%[@[g]/ 0.88 144
Overall VaRgg 99 OVaRgg 9% 1.22 1.44

n* = 18.12 bonds. It offers a positive expected return, 0.01, since the fund has
negative exposure to financial risk (¢« = —10.10) and the expected value of the
risk factor is negative too. The overall VaR, computed at a one-year horizon
and at a 99.9% confidence level, is 1.22. The financial VaR-component (0.88)
is slightly more prominent than the demographic one (0.84). The presence of a
diversification benefit is evident, since OV aR is way lower than the sum of the
VaR-components (1.72).

Strategy 2 hedges against longevity risk and invests the remaining resources
P — C to buy n* = 13.14 bonds. Comparing the two strategies, we find a
first interesting result. As expected, u is lower in strategy 2 (-0.096 vs. 0.01),
partly due to the cost of reinsurance which is paid for the longevity risk transfer.
However, despite reinsurance against demographic risk, overall VaR increases
from 1.22 of strategy 1 to 1.44 of strategy 2. This happens because reinsuring
against demographic risk prevents the fund from offsetting the financial risk due
to the annuity position by purchasing enough bonds. Financial risk is indeed
the only source of risk in strategy 2.

In the end, strategy 1 dominates strategy 2, showing higher expected returns
and lower risk, measured through OVaR.
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6.1 Choosing the optimal strategy

Let us now turn to the analysis of strategy selection when all the intermediate
proportional reinsurance strategies with n € (0,1) can be pursued. Figure 4
represents the set of all possible strategies in the plane (Overall VaR, Expected
Financial Return).

[Insert Here Figure 4]

It is a curve between P;, which represents strategy 1 and P, which shows
the risk/return couple of strategy 2. As 7 increases (moving from P; towards
Py), demographic risk exposure decreases (and so does the demographic VaR-
component), to reach 0 at P». The financial VaR-component decreases in the
first part of the curve, and reaches its minimum (which is zero) at point Q.
After Q, it starts increasing until P,. If we specify a utility function for the
fund, defined with respect to expected returns and overall VaR, we know that
the fund can optimally choose between the competing strategies the strategy
that maximizes utility. Let us consider for example a simple expected utility
function

U (1, OVaR(kys; k3 99.9%)) = 1 — € (OVaR(+;199.9%))%,

in which & > 0 is a measure of risk aversion correlated with the risk aversion
coefficient. Let us set & = 0.05. The dotted line in Figure 4 represents the
highest indifference curve that crosses the set of admissible strategies. The
tangency point O between the two curves determines the optimal fund strategy
according to this utility criterion. This optimal strategy consists in reinsuring
no = 27.91% of the longevity exposure (at a total cost of 1.00, of which 0.022
imputed to the first year of the contract) and buying 16.73 bonds. It implies
more exposure to demographic (0.61) than to financial (0.25) risk and it is
characterized by Up = —0.0409 - which is higher than the utility of strategy 1
- OVaR = 0.65, and an instantaneous expected return p = —0.02.

6.2 Efficient and inefficient outcomes

In our UK-calibrated case transferring longevity risk may increase OVaR. With
the parameters at hand, even when the price of the transfer is fair, part of the
frontier is inefficient.'® Figure 4 clearly shows this feature.

The curve connecting strategies 1 and 2 is positively sloped in its upper
part. Starting from strategy 1 and increasing the reinsurance level, OVaR first
goes down, since both its components do, up to point Q. OVaR reaches its
minimum at H (0.49). Between @ and H the decrease in the demographic
VaR-component offsets the increase in the financial one. Point H represents
the strategy in which 46% of the demographic risk is transferred. Beyond that

131f we consider a loading factor on the cost of reinsurance, * lowers and the set of inefficient
strategies enlarges.
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point, the curve becomes negatively sloped and OV aR starts increasing while
expected return continues to lower. The financial VaR-component increases so
much that it offsets the relief in demographic risk. All the combinations of risk
and return on the part of the frontier between H and P, are clearly suboptimal,
since for each of them a strategy with same OV aR and higher expected financial
return exists. We conclude that any transfer in excess of 46% is inefficient. We
could not have captured this effect by looking only at financial or longevity risk,
or modelling them separately and differently.

7 Conclusions

This paper explores analytically the risk-return trade-off of a pension fund,
when risk is measured by VaR. By so doing, it separates efficient from ineffi-
cient hedging strategies. It takes a holistic view of financial and longevity risk
management, since demographic risk transfer impacts on interest-rate risk expo-
sure. We build a (VaR, Expected Return) frontier, where VaR comes from both
financial and longevity shocks. Our main result is that transfer of longevity risk
may decrease or increase VaR in absolute value, since it decreases its longevity
part, but may either increase or decrease the financial one. This phenomenon
cannot be captured by those approaches which do not take a holistic view of
risk. We provide a fully calibrated example - which reproduces a 65-year old
UK annuity coverage - which shows that if demographic risk can be transferred
at a fair value, any transfer in excess of around 46% is inefficient. This happens
because the risk/return frontier includes strategies which are inefficient from
the point of view of fund managers.

Our conclusions provides a rationale for some of the recent mortality-transfer
deals, which cover only part of the mortality risk of the underlying portfolio.
Obviously, we take a stylized view of the problem. We cover a single annuity,
which stands for a homogeneous group of them. On the asset side we allow
only for bond purchasing. Reinsurance through derivatives is not formalized.
Last, we concentrate on a single generation (as Delong et al. (2008) and Cox
et al. (2013) do) and disregard minimum capital requirements. All the real-
istic features, such as a richer liabilities portfolio with idiosyncratic risk or a
richer investment opportunity set, or more complex liability-risk transfer, us-
ing g-forwards or s-forwards, are left for future extensions. Multiple-generation
versions are an obvious extension too.

Even in this stylized setting, we feel that the VaR frontier convey an impor-
tant policy message. There is general consensus on the fact that longevity risk,
as well as other risks, is ”"too large to be managed by one sector of the society
(IMF, 2012)” and that there should be better risk sharing between the private
business sector, the public sector and individuals. Our set up shows that, even
for a single category of agents, namely the private business sector, not all risk
sharing strategies are optimal, especially in the presence of illiquid markets for
risk transfer, in which profits may be high. This is one more reason for fostering
the development of alternative risk transfer possibilities, which may lower the
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transfer price.
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Figure 1: This figure shows the risk-return combinations of strategies 1 and
2 and intermediate ones, for all the possible values of 7. The strategies are
represented by the black curve. H in this case coincides with P, and hence the
whole frontier is efficient.

23



Risk and Return of the strategies

AF>0 AF<0
| | |
\[ |
E - P1
X R Q
p e Overall VaR
e t
cu
tr
e n .
d H ( P
‘ P,
v
AM>0

Figure 2: This figure shows the risk-return combinations of the set of strategies
1 and 2 and the intermediate strategies for all the possible values of 7. The
frontier has an inefficient part, which comprises the strategies depicted between
H and Ps.
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Figure 3: This figure shows the risk-return combinations of strategies 1 and 2
and the intermediate ones for all the possible values of 7. On the horizontal axis
the OVaR at a certain level € is reported, while the expected financial return
net of reinsurance costs lies on the vertical axis. The strategies are represented
by the black solid line. The dotted curve is the highest indifference curve which
is tangent to the set of strategies. The optimal strategy lies at the intersection
between the curve and the line.
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Figure 4: This figure shows the risk-return combinations of the set of strategies.
On the horizontal axis the OV aR at level 99.9% is reported, while the expected
financial return net of reinsurance costs lies on the vertical axis. The dotted
line represents the highest possible indifference curve of the utility function that
crosses the set of strategies.
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