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ABSTRACT
The increasing diffusion of cloud technologies offers new opportu-
nities for distributed and collaborative computing. Volunteer clouds
are a prominent example, where participants join and leave the
platform and collaborate by sharing computational resources. The
high complexity, dynamism and unpredictability of such scenarios
call for decentralized self-* approaches. We present in this paper a
framework for the design and evaluation of self-adaptive collabora-
tive task execution strategies in volunteer clouds. As a byproduct,
we propose a novel strategy based on the Ant Colony Optimiza-
tion paradigm, that we validate through simulation-based statistical
analysis over Google workload data.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architectures; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search; I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence; D.2.11 [Software Engineering]: Software Architectures

General Terms
Distributed Algorithms, Distributed Architectures, Performance

Keywords
cloud computing, volunteer computing, self-* systems, ant colony
optimization, bio-inspired algorithms, spatial computing, peer-to-
peer, distributed tasks execution

1. INTRODUCTION
The wide adoption of the cloud computing paradigm is increasing

the efforts of the research community on investigating and devel-
oping approaches and techniques for engineering cloud-based plat-
forms. A special attention is being devoted to resource management
and optimization. Usually, cloud service providers arrange their
resources in sites that cooperate within the domain of the same com-
pany. However, new peer-to-peer (P2P), decentralized, open-world
paradigms such as Volunteer Computing [15] are gaining popular-
ity. Such paradigms envision platforms where, in addition to data
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Figure 1: Where should the ant go?

centers, less powerful computational devices participate to share
and use each others’ resources, and are characterized by a high,
unpredictable dynamism (participants may leave and join at any
time) and heterogeneity (participants may share and need different
computational resources).

The success of the volunteer paradigm is witnessed by a wide set
of existing platforms—among others, we mention: BOINC [8], HT-
Condor [33], OurGrid [11], Seattle [13] and Seti@home [9]. Most
of them rely on DHTs (Distributed Hash Tables) to save and locate
resources in the network. Task execution requests are submitted
(often in batch mode) to a centralized node manager, in charge of
finding the most promising nodes to execute them. Such a central-
ized control mechanism is a weakness, because of the central point
of failure problem, and may also be a bottleneck when the number
of the involved volunteer nodes scales to the size of a typical cloud.
Moreover, maintaining a global knowledge of the load on each node
is clearly hard to be realized in practice.

As global coordination and optimization techniques can be hardly
applied to volunteer clouds, the attention has shifted to the adoption
of agent-based techniques, as advocated in [32], like Ant Colony
Optimization (ACO) [19] and Spatial Computing [34]. Such ap-
proaches provide flexible and scalable solutions to distributed com-
puting problems, such as collaborative task execution (see e.g. [17]
and the references therein).

In this paper, we present a framework for the design and engi-
neering of highly efficient volunteer clouds with collaborative task
execution. Such a framework is as an evolution of our preliminary
work [6], which we extend here in several directions. First, in §2,
we introduce a distributed data structure — called Colored Compu-
tational Field — inspired by spatial fields, routing tables and ACO’s
pheromone-based stigmergy, which provides a suitable basis for
many agent-based collaborative task execution algorithms. Second,
by means of the aforementioned framework, in §3 we define a highly
parametric ACO-based algorithm, offering a decentralized solution
characterized by lightweight ant agents, which maintain and exploit
the colored computational field without requiribng any additional
data structures. In §4, we validate our approach by reporting an
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excerpt of the experimental evaluation of the ACO-based algorithm
we have conducted, where we assess the performance of various
alternatives and parameters, and we compare the algorithm against
some standard solutions. Our benchmark is based on the workload
described by the Google Cluster dataset [20]. In §5, we discuss our
main sources of inspiration and further related work. Finally, in §6
we provide some concluding remarks and outline our current and
future research efforts. 1

All in all, our work provides (i) a flexible framework where
existing or new agent-based algorithms for collaborative cloud com-
puting problems can be designed and evaluated; (ii) a novel, highly
parametric ACO-based algorithm, which we advocate as a strong
candidate for collaborative task execution problems.

2. COLORED COMPUTATIONAL FIELD
We consider a Volunteer Cloud as a network of participants (also

called nodes) equipped with a set R of computational resources,
which can enter and leave the system anytime, and submit and satisfy
task execution requests, subject to QoS requirements. When a node
is not able to execute a task of its own, it needs to find another
“collaborator” node able to do it. Such a search must take into
account that, as in social networks and the Internet’s autonomous
systems, the node’s visibility is restricted to its contacts up to a
certain degree, and, at the same time, the amount of spent time and
messages spread in the network should be minimized.

Figure 1 illustrates a situation in which a node a creates an (hun-
gry ant) agent, to search for a collaborator in a network. The depicted
network includes nodes b, c, d, e and f , some of their connections
(as arrows) and some additional nodes (not depicted for simplic-
ity). The dashed edge from node e to node f denotes an arbitrarily
long path between both nodes. Even if the picture includes the
information about memory resources within nodes (which is also
emphasized by the color intensity and node size), node a and its
agent are totally unaware of such information. Thus, a blind strategy
such as random walk seems the only option for the agent. Even
in presence of information, it is not clear which node should be
selected: node f is the one offering more memory, but may lie too
far away; node a is the direct neighbor with the highest memory
capacity; node d is not a direct neighbor but can be reached in two
hops and has higher memory capacity than b.

The approach we propose offers several parametrizable solutions
to these problems. The basic idea is to create a supporting structure,
to help agents in taking their decisions. Figure 2 illustrates the
situation described above, on a network whose links have been
enriched with information related to the amount of resources that
may be found by following them. We call such a supporting structure
the Colored Computational Field. In the particular example of the
figure, the field corresponds to the memory resource only, where
edge labels denote values related to the amount of memory. For
a more appealing visualization, such values are also emphasized
with the edge color intensity and thickness. The concrete field
being depicted assigns to the link between a and c the highest rank,
reflecting the fact that a near node with high memory capacity (d)
can be found through it. As we shall see, our algorithms will use
such information to make probabilistic choices in the quest for
collaborators.

DEFINITION 2.1 (COLORED COMPUTATIONAL FIELD). Let
K be a set of R+-valued computational pheromones. A K-colored
1An extended version of this work is available online for the con-
venience of the reviewers. It includes an appendix with some addi-
tional results and a snapshot of the colored computational field for
the memory, the cpu core and their combined version.
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Figure 2: Memory field supporting the ant’s quest.

computational field is a tuple 〈N,E, ρ,Φ〉 such that N is a set
of nodes (representing cloud participants), E ⊆ N × N is a
set of edges (representing contact relations among participants),
ρ : N → (R+)|R| is a resource map (i.e., a mapping of nodes
to their computational resources), and Φ : E → R|K| is the
pheromone table of each edge.

Usually,R ⊆ K, i.e., each element of K corresponds to a com-
putational resource (e.g., memory amount, number of cores, core
frequency), but it may also contain other values. We shall consider,
for instance, the predicted idle time (i.e., an estimate of when a node
will complete its current tasks) and a feedback pheromone (i.e., a
rate based on how often the node accepts and successfully executes
tasks) as elements of K in our examples. For the sake of simplicity
we assume that all nodes feature the same set of resources, which
are measurable in R+ (i.e., as non-negative reals).

The subset of QoS requirements of a task t, to be interpreted
as lower bounds on computational resources R, is denoted by a
vector tQ in (R+)|R|. Additional requirements such as deadlines
are treated separately.

The resource map ρ is used to represent each node’s computa-
tional resources. The pheromone table Φ is a mapping of edges into
a vector of pheromone values in R. Each value in the vector is a
“pheromone level” value, associated to one of the K computational
pheromones and indicates a sort of level of “goodness” of a con-
nection with respect to the resource. Obviously, Φ is intended to
be implemented as a distributed table where each entry Φ(i, j) is
maintained at node i.

We assume that both R and K are ordered sets, so that we can
refer to the individual components in the vectors returned by ρ and
Φ by their position. Indeed, we often refer to the pheromone k in
edge ej with Φk(ej). More in general, the i-th element of a vector
~x is denoted as ~xi. Sometimes, we refer to the set of edges (i, j)
outgoing from a node i with Ei. The pheromone table can be seen
as a sort of routing table or gradient map [34], used to ease resource
discovery, while minimizing communication.

3. ACO-BASED ALGORITHM
Several algorithms can be defined on top of a Colored Computa-

tional Field, including those based on local diffusion rules, which are
typical of spatial computing approaches [34]. This section presents
a novel paradigmatic example of a highly parametric ACO-based
algorithm. The algorithm uses ant-like mobile agents that are in
charge of maintaing and exploiting the Colored Computational Field.
It relies on two different types of ants: colored scout ants and hunter
ants. Colored scout ants (Listing 1 lines 1-2) periodically explore
the neighborhood of a node, to discover computational resources
and to update the field accordingly. Such ants are specialized by
computational pheromones: each color k corresponds to one of the
computational pheromones in K. Hunter ants (Listing 1 lines 4-8)
are spawned when a task execution request is issued. They exploit
the field to find a volunteer node, and update the field according to
the received feedback.



Listing 1: Ant Main Cycle
1 ∀ color k ε K with periodk:
2 antk.coloredAntStep(sourceNode);
3
4 when n ε N generates a task t:
5 if (n cannot execute t):

6 while (an executing node n
′
is not found) &&

7 (∃ hunterAnt attempts):

8 ant.coloredAntStep(n
′
);

The two types of ants are described in detail in §3.1 and §3.2,
respectively. It is worth to remark a common key feature: they
both exploit the field to make their exploration decisions. Namely,
when they are in a node they choose their next hop with a prob-
abilistic selection, weighted according to the corresponding level
of pheromone. Such an operation, called stigmergy, may eventu-
ally lead to an optimal situation in a static network, but may also
suffer (as all ACO-based approaches) from stagnation, specially in
dynamic networks. Stagnation occurs when the ants converge to an
apparently optimal decision, which may prevent the system to adapt
to the emergence of new, better solutions. Our ACO-based algorithm
features some standard techniques to prevent stagnation, such as
evaporation (pheromones are regularly decreased), as well as some
novel ones, such as temperature regulation (the likelihood of explor-
ing new paths is increased when the network is updated), memory
aging (in analogy with the standard aging, releasing pheromone
quantities in inverse proportion to the distance to resources) and
angry ants (a third kind of agents that remove pheromones along
outdated links).

3.1 Colored Scout Ants
Colored scout ants are periodically spawned in a process that

is independent from the request and execution of tasks (Listing 1
lines 1-2). Their goal is to explore the network and update the
pheromone field. Each ant releases and follows its own pheromone
color (k ∈ K). There may be computational colors with no asso-
ciated colored scout ants. In our case, for instance, no scout is in
charge of the feedback pheromone since this is up to hunter ants.
Listing 2 describes the behavior of scout ants by means of pseudo-
code. Each scout ant explores the network (line 7), probing the
neighborhood goodness while going away from its home node (the
one that spawned the scout ant). Each ant has an associated time-
to-live (TTL), which establishes the number of hops an ant must
try to perform during its exploration, before returning home. The
TTL prevents endless and unnecessary exploration efforts. When
its TTL is exhausted, the scout ant returns back to its source node
(line 14), releasing the pheromone according to a memory aging
approach (line 26). Below, we provide a detailed explanation of the
main features of the algorithm.

Choosing the Next Hop: Temperature-dependent Ex-
ploration & Exploitation. The behavior of ants is based on
online Reinforcement Learning (RL) [27], where at each step the
decision of which link to explore next involves a choice among
exploration (try to gather new information) and exploitation (focus
on the best decision, according to current information). Exploration
may be considered as a risk run by the node, with the hope to obtain
better knowledge and thus make better decisions in the future. A
common approach to face the “exploration-exploitation dilemma”
is the use of a Softmax method [27]. Each ant selects its next hope
by taking into account both the past path desirability (exploitation)

Listing 2: Colored scout ant algorithm
1antk.coloredAntStep(Node n){
2antk.pathAdd(n);
3antk.saveNodeGoodness(n, k);
4antk.updateTtl();
5
6if (antk.getTtl()>0){
7next := choose with probability
8pk((n, next), En \ {antk.path()});
9if (nextNode != null){
10antk.coloredAntStep(next);
11return;
12}
13}
14previousNode := antk.getPreviousNode();
15antk.coloredAntStepBack(previousNode, node);
16}
17
18antk.coloredAntStepBack(Node to, Node from){
19new_φk := antk.getMemoryAgingPheromone(to, from);
20if ( (new_φk > φk(to, from)) || (k != FINISHING_TIME ))
21φk(to, from) := new_φk;
22previousNode := antk.getPreviousNode();
23antk.coloredAntStepBack(previousNode, to);
24}
25
26antk.getMemoryAgingPheromone(Node to, Node from){

27memoryTrace := ~φ(subPath(to, from));
28best_φk := max(memoryTrace);
29return agingDiscount(pathLength(best_φk, to));
30}

and to the exploration compliance, according to the rate established
by the following equation

πk(ej) = e
Φk(ej)

Ti (1)

The probability pk(ej , E
′) that the k-colored scout ant at node i

chooses ej ∈ E′ ⊆ Ej is then defined by

pk(ej , E
′) =

πk(ej)∑
∀eqεE′ πk(eq)

(2)

Typically, E′ is selected to contain all the outgoing edges at node i,
excluding the one from which the ant arrived (see Listing 2, line 7).

According to the Softmax action selection method, we have cho-
sen the Boltzmann/Gibbs distribution, with a tunable temperature
function Ti, to probabilistically choose the next hop from node i,
while taking into account the expected reward, i.e., the probability
to find a node willing to perform a task. The temperature function
controls the exploitation/exploration tradeoff, i.e., if Ti → ∞ the
ant at node i tends to follow a more random approach (all paths
have the same preference), while if Ti → 0 the ant follows a greedy
approach, which reduces the exploration component. If instead, if T
is close to 1, the choice tends to be proportional to the pheromone
of each link. For instance, with T = 1, in the situation depicted in
Figure 2, a memory scout ant having to take a decision on a will
choose among the links towards nodes b, c and e with probability
0.4, 0.47 and 0.13, respectively.

One of the roles of the temperature is to prevent stagnation. In-
deed, if we choose the temperature to be a monotonically decreasing
function with respect to time, then, as time goes by, it is possible to
reduce exploration and make a more sound use of the knowledge
gathered so far. However, every time a new neighbor connects to
a node i, the corresponding function Ti should be re-initialized to
encourage the exploration of new resources.
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Figure 3: Scout ants depositing pheromone with memory aging.

Discounting the Distance: Memory Aging. Scout ants ex-
plore the network and record the nodes’ goodness (or nest value,
i.e., the resource value associated to the corresponding color) found
during their exploration. While returning home, a scout releases a
pheromone value, depending on the ant memory aging factor (to
prevent stagnation) and the node goodness in that part of the network
(Listing 2, lines 26-30, getMemoryAgingPheromone(·)).

We do not use the traditional concept of aging, where ants deposit
lesser and lesser pheromone as they move from node to node, be-
cause the information that the pheromone provides, in our setting, is
useful not only for the node where the scout has been spawned but
also for scout ants spawned at other nodes.

However, we still want to take into account the distance be-
tween a potential task execution requester and the node holding
the necessary resources. For this purpose, our memory aging
mechanism releases an amount of pheromone that is inversely
proportional to the distance from the best resource found so far,
and not to the distance from the node that spawned the ant (as
in traditional aging). In other words, our memory aging mech-
anism considers what the ant remembers from the goodness of
the best node, in the subsequent portions of the path it has fol-
lowed. This can be achieved, for instance, by implementing the
function agingDiscount(mem_aging on best_φ), illustrated in
Listing 2 at line 29, which, for example, could be instantiated as
best_φ− mem_aging · AgingFactor, where best_φ is the best
value found so far, mem_aging is the distance from it and the dis-
counting factor is AgingFactor

Fig. 3 exemplifies the memory aging approach, where the aging
discouting function is instantiated in the same way as the previous
example, and AgingFactor = 0.5. The figure represents a part of
the field that has been already explored by some scout ants, which
have been spawned at different nodes (not depicted for simplicity).
The scout ant is spawned at node a and follows the path a→ b→
c→ e→ e→ f (Fig. 3, top). When the TTL expires, after 5 hops
(at node f ), the scout ant returns home (node a). In the first step
back, the actual value of the resource at node f (i.e., 3) is taken into
account (see the label on the link from node e to d). Note, however,
that in the second step back the pheromone is updated with 2.5 and
not 3, as an effect of the aging function. At each step back, the
pheromone on the next link is updated only if its value is lower than
the one the ant would like to assign. Otherwise the current value is
kept, as in the third step back (from c to b), where the ant has found
a resource with value 3, but the previous pheromone is 4 (which
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Figure 4: CPU field (top), overlap of memory and CPU fields
(center) and their combination with the allocation heuristic.

may be the result from a previous exploration of some other nodes,
not depicted in the figure).

Discounting Information Age: Evaporation. In addition
to dynamic temperature and memory aging mechanisms, we also
use the evaporation technique to deal with stagnation in presence
of volatile resources. The finishing time, for instance, is a volatile
resource measure and its value should be updated frequently. A
higher amount of pheromone is assigned the more the declared
finishing time is closer to the current time. A new pheromone is
released only if the new value is higher than the previously released
one. Instead, if pheromone values would be updated regardless of
the best previously found values, they would be highly variable, thus
providing unstable information. We consider resources such as the
amount of RAM and CPU characteristics to be non-volatile, as they
cannot be allocated forever but only on a short-basis (i.e., to execute
tasks). Thus, until the node participates to the network, its resources
are stable, and the corresponding deposited pheromone does not
need to be updated by means of evaporation. When a node perceives
a new neighbor, the former increases its temperature to update the
field. Instead, when a node notices that one of its neighbors has left,
it uses angry ants (described below) to update the field.

Dealing with Dynamic Networks: Angry Ants. Despite
the non-volatile nature of resources, the unstable nature of the net-
work of participants [31] can lead to stagnation: when a node that
caused the update of the pheromone on several links goes offline,
all subsequent task execution requests on the nodes of those links
may follow a wrong path, without finding the desired resources. As
a remedy, we propose angry ants, which are spawned by scout ants
when they find an abrupt change in the field. Angry ants follow back
the path of colored scout ants, and throw away a certain amount of
pheromone of the corresponding color, to force the update of the
corresponding pheromone color by future scout ants.

3.2 Hunter Ants
When a node has a task for which it cannot respect the deadline,

it starts spawning multiple hunter ants (Listing 1 lines 4-8). Every
hunter ant tries to find a node ready to satisfy the task execution



request. To this purpose, the hunter ant starts exploring the network,
by exploiting the field and the task characteristics. Task execution re-
quests are sent to nodes that have been found by the hunter ants, until
one of them accepts, or the hunter ant attempts are exhausted. The
hunter ant brings with it only a task description with its requirement
—not the task itself—to minimize transmission overheads.

The behavior of hunter ants is sketched in Listing 3. Each hunter
ant tries to find a node willing to execute the task (line 4), following
the Colored Computational Field (line 8) built according to the
overall pheromone—see the explanation of Eq. 5 below. If the
hunter ant does not find any node willing to collaborate after its
TTL, it returns to its home node. In the following we provide a
detailed explanation of the main features of the algorithm.

Combining and Minimizing Resources: Resource Allo-
cation Heuristic. When choosing the next hop, hunter ants need
to take into account the various pheromones of the field, which may
offer contradictory information. As a simple example, consider the
memory field of Figure 2 and the CPU field on top of Figure 4. By
overlapping them, as in the center picture of Figure 4, we illustrate
the contradictory information: the memory-colored pheromone (red)
tends to promote the link from a to c (since it leads towards node
d, which has a good memory capability), while the CPU-colored
pheromone (green) tends to promote the link from a to b (which is a
node with lots of cores). Our approach is based on a weighted sum
of both fields, as we shall see.

An additional issue is the global need to maximize the number of
tasks that meet their deadline. Such a problem is clearly intractable
in a global manner (for instance, even the problem of finding the
best task-node match is well known to be NP-complete) and would
require perfect predictions of future task arrival times and charac-
teristics, which is totally unrealistic in open environment such as
volunteer clouds, where tasks requests and nodes participating in
the network change over time. Therefore, hunter ants use local
heuristics, based on the idea that minimizing wasted resources (the
ones that are reserved but not completely used) will increase the
probability to accommodate more requests in the future. These
heuristics rely on two functions, namely the single resource waste
ratio srwr and the combined resource waste ratio crwr , defined in
Eq. 3 and 4, respectively. Note that the latter function uses a vector
η of size |~x|, allowing to express preferences among resources.

srwr(x, y) =
min(x, y)

max(x, y)
(3)

crwr(~x, ~y) =
∑

∀k∈1..|~x|

ηk · srwr(~xk, ~yk)∑
∀σ∈1..|~x| ησ

(4)

Such functions are exemplified in Table 1, where two types of
resources are taken into account, both with the same weight (η1 =
η2 = 1). The first example is the best match, where required
resources ~x perfectly match the provided ones ~y. The other cases
exemplify the mismatches due to under/over resource utilization.
Smaller values of crwr suggest higher mismatch degree between
requested and provided resources.

A concrete example is illustrated at the bottom of Figure 4,
where memory and CPU pheromones are combined by a hunter
ant, looking for a node able to execute a task that requires 2 GB
of memory and 2 cores. The labels of the black edges outgoing
from node a are the result of evaluating crwr(〈2, 2〉,Φ(e′)) for
e′ ∈ {(a, b), (a, c), (a, e)} and with all η being identical.

It is worth to note that, even if the required resources are above
the ones that seem to be provided by a link, following it may still

Listing 3: Hunter ant algorithm
1ant.antStep(Node n){
2ant.pathAdd(n);
3ant.updateTtl();
4if (askExecutionToNode(node, t)){
5previousNode := ant.previousNode();
6ant.antStepBack(previousNode, n);
7} else if (ant.getTtl()>0) {
8nextNode := antChooseContact(pk(En \ {ant.path()}), t);
9if (nextNode != null){
10ant.antStep(nextNode);
11return;
12}
13}
14
15ant.antStepBackHome(ant);
16}
17
18ant.antStepBack(Node to, Node from){
19ant.depositPheromone(to, from);
20previousNode := ant.getPreviousNode();
21ant.antStepBack(previousNode, to);
22}
23
24depositPheromone(Ant ant, Node from){
25new_φfb := ant.agingPheromone(to);
26φfb(efrom) = new_φfb;
27}

Table 1: Example of Resources under/over utilization
~x ~y srwr(~x1, ~y1) srwr(~x2, ~y2) crwr(~x, ~y)

〈M,N〉 〈M,N〉 1 1 1
〈M/2, N〉 〈M,N〉 0.5 1 0.75
〈M/2, N/2〉 〈M,N〉 0.5 0.5 0.5
〈0, N〉 〈M,N〉 0 1 0.5

be worth. Indeed, the link may lead to a region of the network with
nodes having with the required resources. This is the reason why
the pheromone of all the three links in Figure 4 is considered by the
hunter ant’s decision mechanism.

Weighting links. Such heuristic functions are used to associate
goodness values to links. To this purpose, we also use a function
Φ(tQ) which provides the pheromone vector for the resources re-
quired by a task t obtained by applying the same functions used by
scout ants. Then, the goodness of a link e will be based on the value
of crwr(ΦR(e),Φ(tQ)), where ΦR(e) is the pheromone vector
associated to all computational resources inR (which coincide with
those expressed in the QoS of the task). Task requirements that are
closer to the available ones are preferable. For a single color, the op-
timal value is approached when the single resource waste ratio tends
to 1, while the worst case is when resources are reserved but not
completely used by the task, and the function tends to 0. In the other
cases, for each single resource component k we obtain Φk(tQ)/Φk(e)

when the resource is under-used, or Φk(e)/Φk(tQ) when the resource
is over-used.

Pheromone Release. When a hunter ant finds a node willing to
perform a task, it releases its own type of pheromone, which serves
to record a measure of the node’s availability to execute remote
tasks, its network stability, and also its load. The node’s willingness
to perform tasks can be regarded as a reputation assigned to the
node, and is subject to pheromone aging and evaporation, to take
into account the loss of knowledge about the node behavior. At each
hop, a hunter ant computes an overall pheromone value Ψ(e, t) for
a candidate edge e according to:

Ψ(e, t) = crwrα(ΦR(e),Φ(tQ)) ·Φβft(e) ·Φ
γ
fb(e) ·λδ(e, tQ) (5)



Table 2: Node attributes
type CPU freq. cores RAM Nodes
Volunteer 1− 2 GHz 1− 6 0.1− 2 GBs 100− 3, 000
Data Center 1− 3 GHz 2− 32 2− 6 GBs 7

Table 3: Task attributes
type duration Cores RAM Deadline Arrival

offset mean
small 0− 0.4 h 1 0− 0.5 GBs 0.2 200 ms
large 1− 12 h 1− 4 1− 4 GBs 0.4 600 ms

where Φft is the pheromone value associated to the node’s finishing
time, Φfb is the feedback pheromone released by hunter ants, and
λ(e, tQ) ∈ R+ is a heuristic measure which evaluates the estimated
performance of link e for a task with QoS tQ, in terms of data rate
and delay perceived in the last interaction along e. This measure
takes into account the network overhead for transferring the task to
the node that will execute it. The α, β, γ and δ parameters are used
as tunable weights for the components of the equation. The above
components are normalized in the range [0, 1].

Exploration. Unlike the function used by the colored ants, hunter
ants combine all types of pheromone colors (Listing 3, line 8). How-
ever, the probability to choose link e′ as the next hop is computed
in a similar manner based on the rate

πh(e′, t) = e
Ψ(e′,tQ)

Ti (6)

4. VALIDATION
We evaluated our ACO-based framework in a volunteer cloud

computing scenario modeled2 in the discrete event simulation envi-
ronment DEUS [7, 16]. DEUS is a general-purpose, open-source,
Java-based simulation environment, characterized by extreme ease
of use and flexibility, which supports the analysis of complex and
large scale systems. Simulation experiments have been enriched
with the functionalities offered by MultiVeStA [26,29], a distributed
statistical analysis tool. MultiVeStA provides a language (Multi-
QuaTEx) to express the system properties of interest in a compact
fashion. Such properties are evaluated by performing independent
distributed simulation runs, until the required accuracy is met.

4.1 Simulated Scenario
In the following, we describe the main characteristics of the sce-

nario used in the experiments. The network of participants includes
10 cloud sites, of which 7 sites have a central data center and several
volunteer nodes, while the rest of the sites are composed by volun-
teer nodes only. The specification of the node resources is reported
in Table 2. Volunteer nodes are less computationally powerful, as
they correspond to mobile devices such as laptops. We consider
different cloud configurations, which differ in the number of partici-
pating volunteer nodes (from 100 to 3, 000), each one belonging to
one cloud site. Every site is managed by a supernode which can be
run on top of a data center or a volunteer node. The overlay network
is semi-hierarchical, with supernodes connected with peers of other
sites, and normal nodes which have connections within the same
site only. Each node joining the network notifies its presence to
the corresponding supernode, and receives a list of neighbors — a
random subset of the volunteer nodes in the same site.

2Source code is available at http://bit.ly/18MunO4.

Figure 5: Pheromone field for a network with 30 nodes.

Nodes are both task producers and consumers. Nodes share their
resources to address tasks execution requests coming from other
nodes, but can also create requests for their tasks. Tasks are exe-
cuted in exclusive application environments. A task is accepted for
execution only if its timely completion can be guaranteed, otherwise
the task is discarded. A completed task marks a hit for the node on
which it has been executed. The cost of communication is computed
by means of the simple yet realistic network models described by
Saino et al. [28].

The workload model we considered is the Google Cloud Back-
end [20], described by Mishra et al. [24]. There, task requirements
are characterized by CPU cycles and memory occupation. The tasks
attributes we have considered are reported in Table 3, namely task
duration, required number of cores, required RAM, deadline offset
and arrival mean. As workload data are partially obfuscated [20],
we had to make some assumptions. An example is the quality of
service, in terms of task deadlines, after which task executions are
considered to be useless. We have considered a deadline offset with
respect to the actual duration of the task.

The arrival mean determines the task arrival process, which is
Markovian, as derived by Mishra et al. [24] from the Google Cloud
Backend traces. The inter-arrival time between two consecutive
tasks is modeled as an exponential random variable with mean
value equal to 600 ms for large tasks, and 200 ms for small tasks.
From a queue theoretic point of view, the scenario can be seen as
a queue model where data centers are modeled as M/G/m/∞
queues, while the volunteers are modeled as M/G/1/∞ queues.
I.e., task arrivals are modeled by a Markovian process (M ), service
time follows a generic (G) distribution, data centers have m VMs,
volunteers have 1 VM each, and task queues are unbounded. The
duration of the simulated scenario is 1 hour, with 10 ms granularity.

4.2 Instantiated ACO Algorithm
As described in §3, our ACO-based algorithm is highly paramet-

ric. The actual configuration of the algorithm can be specified in
XML configuration files of the DEUS tool (see Listing 4). Some
of the configuration parameters of the algorithm are functions (i.e.,
releasing, aging and temperature) for which the current implementa-
tion considers several possibilities (constants, linear or exponential
functions, user-specified functions, etc.).

The common parameters of the scout ants used in all experiments

http://bit.ly/18MunO4


are specified in Listing 4. The configuration of the pheromone
deposit function depends on the color. For computational resources
(CPU frequency, CPU cores and memory) the function is defined as
x, while for color “finishing time” the function must be decreasing
(to assign more pheromone when the finishing time is closer to the
actual time), thus it is configured with 1− x/5.

Hunter ants are instead configured with 3 attempts for each task
(hunting efforts before giving up), a pheromone deposit function
equal to 1− x, a weight for each kind of pheromone (used in Eq. 5)
equal to 1, and a constant temperature value of 1.

An example of the pheromone released in the network, corre-
sponding to the memory resource color, is sketched in Figure 5. For
the sake of clarity, the depicted network contains only few of the
thousands of nodes. The graph follows the convention for which
the edge direction is codified by the curved arrow, in a clockwise
way from the source to the target node [21]. It is possible to no-
tice that the pheromone suggests the ants to go towards the data
center node with the largest memory capacity. Such diagrams as a
useful tool to intuitively visualize the evolution of the colored field
and to detect anomalies or interesting phenomena like unexpected
over/under-accumulation of pheromones in some network regions.

4.3 Evaluated performance indicators
Our simulator allows to measure several performance indicators.

Here we focus on those we consider particularly significant for the
evaluation of our algorithm in terms of perceived QoS, commu-
nication overhead and fairness (load balance). In particular, we
report the following indicators: (i) Hit Rate, which is the relative
amount of tasks that meet their deadline or that, being still running,
will likely complete if their host will not go offline; (ii) Useless
Message Rate, which is the relative amount of refused task exe-
cution requests over the total number of sent requests, indicating
the overhead of the requests sent to overloaded nodes; (iii) Mean
Task Waiting Time: the time that a task spends in the queue of a
node, before its execution starts; (iv) Mean Task Sojourn Time:
the time that a task spends in the network, summing up waiting and
execution time.

4.4 Results
Apart from the basic common configuration we described above,

it is worth mentioning that every node uses ants that are configured
with exactly the same behavior. We performed parametric simula-
tions, to study the behavior of the system for different number of
participating volunteer nodes and varying the frequency of scout
ants release (from every 50 second to every 2000 seconds).

The proposed ACO-based algorithm is compared with other ap-
proaches, namely random walk, round robin and greedy oracle.
When a node uses the random walk approach, execution requests are
randomly spread to the neighborhood of the node that has generated
the task, not considering its requirements neither the node resources.
The round robin approach probes the neighbors nodes in a circular
order. To better compare the performance with the ACO algorithm,
which uses a limited amount of ants with a pre-specified TTL, also
these two algorithms have a TTL and maximum number of requests
they can send. It is worth to note that the random walk approach
can be considered as an instance of our framework, with T →∞
and without scout ants. The greedy oracle is an algorithm that is
impossible to realize in practice, as it assumes to have complete
information (knowing all nodes’ resources and the queued tasks) and
assigns the task to the node that can complete the new task for first.
Thus, from local optimal choices, it tries to obtain a global optimum.
We use this algorithm as a sort of upper bound to better evaluate
how close the algorithms are to a near-to-optimal performance.

Listing 4: Colored scout ant configuration
1<aut:param name="initPheromone" value="1" />
2<aut:param name="ttl" value="3" />
3<aut:param name="pheromone_a" value="1" />
4<aut:param name="pheromone_b" value="-0.2" />
5<aut:param name="evaporation" value="0.0001" />
6<aut:param name="pheromoneAging_a" value="1" />
7<aut:param name="pheromoneAging_b" value="-0.2" />
8<aut:param name="agingFunc" value="1-x/5" />
9<aut:param name="temperature_a" value="1" />
10<aut:param name="temperatureFunc" value="1" />

In the following, we refer to the average results obtained after
reaching a 95% confidence interval, with a radius of 0.001, evaluated
with the Student’s t-test. To reach the desired confidence interval,
MultiVeSta automatically decides how many simulation runs are
necessary. In our experiments, about 20 simulation runs (with
different seeds) were necessary. Each simulation took several hours.

The purpose of the experiments was to evaluate the impact of
scout ants, in the proposed algorithm. It is worth to remark that the
algorithm can run without those ants by solely relying on the feed-
back pheromone collected by hunter ants. However, the results show
that scout ants significantly improve the algorithm’s performance in
several dimensions.

Figures 6 (bottom left), 6 (top left) and 6 (top right) report the
Hit Rate values for all, large, and small tasks, respectively. Such
values are plotted considering the number of participating volunteer
nodes on the horizontal axis. Obviously, the higher the number
of nodes, the better the performance of the system is in terms of
Hit Rate. As expected, if the scout ants are spawned with smaller
frequency, hunter ants have less information and thus make worse
decisions. This happens especially when the number of nodes is
higher and thus more scout ant explorations are required to build an
informative computational field. The overall number of performed
tasks is acceptable, considering the limited number of participants,
i.e. even if in some cases the Hit Rate is not close to 1, in most cases
it is close to the Hit Rate of the fictitious greedy oracle algorithm.

In Fig. 6 (right) we report the Useless Message Rate, which,
as expected, is lower when the number of nodes increases. The
Greedy Algorithm is not included as, having global knowledge, it
always sends a request to a node that will accept it . In general,
the round robin and random approaches perform better than our
ACO algorithm, but augmenting the frequency of scout ant release
leads the ACO algorithm close to the performance of the random
approach. Indeed, frequent scout ants allow a faster reduction of re-
fused requests, thanks to the knowledge about resources availability
they introduce in the field.

Due to lack of space, we do not show the results related to the
other performance indices. Nevertheless, we summarize the insights
we obtained. With a low number of nodes, the knowledge added by
the scout ants and the mismatch policy followed in Eq. 4 tends to
favor large tasks to data center nodes, leading to increased waiting
and sojourn times, with lower execution rate, for small tasks. Thus,
large tasks become a bottleneck for small ones. Scout ants provide
an almost linear scaling of executed tasks, by increasing the number
of nodes and increase the number of accepted remote requests. With
them, the load is better spread among the nodes which are able to
execute the tasks. The only drawback is in the increased waiting
and sojourn times, due to the bottleneck created by large tasks.

All in all, our algorithm ACO with frequent scout ant release of-
fers the best performance in terms of perceived QoS at a reasonable
price in terms of communication overhead.
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Figure 6: Hit Rate for large (top left), small (top right) and all (bottom left) tasks, and Useless Message Rate (bottom right).

5. RELATED WORK

ACO-based approaches. The ACO approach was firstly pro-
posed by Di Caro and Dorigo [14], to address the routing problem.
In their AntNet algorithm, each artificial ant builds a path from
source to destination. While building the path, ants collect infor-
mation about the time length of the path components, and implicit
information about the load status of the network. Although our
algorithm is clearly inspired by that work, it does address the more
complex problem of distributed QoS-constrained task execution.

In their comprehensive survey on approaches to network rout-
ing and load-balancing based on ACO, Sim et al. [30] stress the
main weakness of ACO-based approaches, namely stagnation, and
focus on the many strategies that have been developed to deal
with it. In addition to the ones featured also by our algorithm
(namely evaporation and aging), they consider pheromone smooth-
ing (placing a maximum to the amount of pheromone and releasing
less pheromone when that threshold is closer), pheromone limit-
ing (setting upper bounds on the amount of deposited pheromone),
privileged pheromone laying (a privileged set of ants may release
more pheromone than the rest) and pheromone-heuristic control
(the choice of ants is a weighted combination of the amount of
pheromone and the estimate of a heuristic). Such techniques can be
easily implemented and evaluated in our framework.

Some authors have adopted ACO-based approaches to solve load
balancing problems in task distribution systems [5, 23, 25]. Many of
them apply the minmax algorithm of Di Caro and Dorigo [14]. Un-
fortunately, such works do not describe their algorithms in sufficient

detail to allow their implement and evaluation in our framework.
Nevertheless, we discuss some of their main concepts.

Mishra [25] proposed a simple ACO approach to deal with the
load balancing problem intended as the fact that every node does
approximately the same amount of work at any instant of time.
The proposed ACO-based algorithm for dynamic load balancing
relies only on the current state of the system (no prior knowledge is
needed). Each node is configured with its capacity, its probability
of being a destination, and its pheromone (or probabilistic routing)
table, whose role is similar to the one of our Colored Computational
Field. Each row of the pheromone table is a routing preference
for each destination, and each column represents the probability
of choosing a neighbor as the next hop. Ants are launched with
random destination, to feed the information of the table. When
an ant reaches a node whose pheromone table is empty, it does
make a random decision. An extended version of such an algorithm
considers the presence of multiple ant colonies, with the sole purpose
of reducing the likelihood that all mobile agents establish the same
connection. In our opinion, although such an approach is suitable for
load balancing in network routing problems, it is not adequate for
collaborative task execution in volunteer clouds, as ants’ decisions
do not take into account the QoS requirements of the tasks.

LBACO (Load Balancing Colony Optimization) [23] is an ex-
tension of the basic ACO algorithm of [14]. LBACO tries to find
the optimal resource allocation for each task, and to minimize the
makespan of a given task set, adapting to the dynamic cloud com-
puting system and balancing the entire system load. The makespan
is defined as the time difference among the task that completes
first, and the one that complete last. The basic ACO algorithm is



extended by carrying out scheduling decisions that take into account
the results of previous scheduling decisions, and also considering
the load of each VM. The algorithm takes into account VM char-
acteristics like the number of processors available at each VM, its
MIPS (Million Instruction Per Second) capability and communi-
cation bandwidth. The LBACO algorithm is evaluated through
simulation, and compared with basic FIFO and ACO algorithms, in
terms of average makespan and Degree of Imbalance (a measure
of imbalance among VMs). Our work has a different purpose, as it
considers only individual tasks, which have an associated deadline
parameter, and tries to maximize the number of completed tasks,
while respecting their QoS requirements. The LBACO cannot be
directly applied to collaborative task execution in volunteer clouds,
since it assumes that each node knows all the resources available in
the neighbors nodes, which is unrealistic in those scenarios.

The idea of colored ants was previously presented in a completely
different way by Ali and Belal [5]. They considered a multiple
colony approach, where each node sends a colored colony through-
out the network. Using colored ant colonies helps in preventing ants
of the same nest from following the same route, hence enforcing
them to be distributed all over the nodes in the network. One main
difference with respect to our work is that Ali and Belal’s ants tend
to maximize the coverage of the network (exploration), while our
scout ants can be configured with a certain exploration-exploitation
tradeoff, according to the softmax method (see Eq. 2).

A different approach was adopted by Di Nitto et al. [17], who
used bio-inspired algorithms to balance the workload, i.e., to ensure
that all the nodes have almost the same amount of tasks in their
queue. To deal with node heterogeneity, the algorithm proceeds in
two steps: in the first one, the network is rewritten to cluster the
nodes of the same type; in the second step, messages are spread
among nodes of the same type, to redistribute the load. The goal of
such an algorithm is different from our one’s. Moreover, we consider
nodes with heterogeneous resource characteristics, not belonging to
only few classes.

Spatial Computing Approaches. Our hunter ants share many
similarities with the spatial computing paradigm [34]. The use of
decentralized approaches for managing Grid resources in a P2P
fashion through a spatial computing approach was first tackled by
Di Stefano and Santoro [18], where a job resource request is defined
by a capsule, which is characterized by mass and energy, and moves
on a three-dimensional surface. The surface is built on top of the
overlay network (where the nodes define the X-Y plane) and the
available node’s resource characterize their mass (adding the Z
dimension). The capsule moves according to a couple of functions,
which define the difference of potential among neighbors nodes (i.e.,
the capsule’s behavior, according to its remaining energy), and the
friction (which causes a loss of energy of the capsule, thus ensuring
termination). One surface is associated to each type of resource.

In our ACO algorithm, hunter ants follow an approach which can
be considered an extension of the one proposed by Di Stefano and
Santoro [18]. Each scout ant, by releasing its colored pheromone,
contributes to the construction of a surface where the values are not
associated to the node itself, but to the link. Moreover, task requests
do not have their own mass, but specify how they react over different
surfaces. Hunter ants are able to combine these colored surfaces, to
build a new “normalized surface” (Eq. 4) depending on the specific
task request and to the importance of each kind of resource (through
the weights ηk). In our algorithm, the Z dimension is given by
the under/over utilization of resources, since our approach tries
to minimize the amount of resources reserved and not used by
the task. Such a surface normalization process aims to combine

the different surfaces generated by the pheromone colors, and at
same time it is able to take into account one of the ants’ goals
(the minimization of task wasted resources). Hunter ants behave
similarly to task capsules, as their next hop choice is guided by the
surface. The links that are more attractive to the combined colored
pheromone will present higher gradients, guiding the hunter towards
them. Differently to a traditional spatial computing approach, hunter
ants do not have their own energy that must be exhausted to stop the
exploration. Instead, they adopt a more clever approach, stopping
when they find a suitable node, which can fulfill their requests. Such
an approach allows to find a solution in less time, which is more
effective when coping with scenarios where tasks may have stringent
deadlines. Termination is ensured by the ant’s TTL.

Cloud Simulators. Finally, we remark that we use our cloud
simulator instead of CloudSim [12] (a popular simulator for cloud
computing environments), because CloudSim imposes a rigid archi-
tecture, which is not suitable for volunteer clouds. More precisely,
cloud agents in CloudSim must submit a description of their ca-
pabilities to a broker, which receives task execution requests and
dispatches them. Such a centralized solution does not cope with the
de-centralized nature of volunteer clouds.

6. CONCLUSIONS AND FUTURE WORK
We presented two novel contributions in the field of volunteer

cloud computing. First, a flexible framework for the design and
evaluation of agent-based algorithms for collaborative cloud com-
puting problems. The key feature of the framework is a shared
data structure called Computational Colored Field, inspired by Ant
Colony Optimization [19] and Spatial Computing [34]. Overall,
the framework is also inspired by the volunteer computing [15] and
cloud using agents paradigms [32]. The proposed general frame-
work can be easily instantiated in different ways, to better fit the
characteristics of the considered scenario.

Second, inspired by previous ACO and spatial computing based
approaches to distributed computing problems (e.g., [5, 14, 18, 23,
25, 30]), we presented an instance of the framework in the form of a
novel, highly parametric ACO-based algorithm, which we advocate
as a strong candidate for collaborative task execution problems. The
proposed ACO approach is self-adaptive, which makes it suitable
for dynamic scenarios such as volunteer clouds, where nodes can
join and leave the network at any time. The benefits of the algorithm
can be summarized by its decentralized and self-* nature together
with a light network overhead introduced by ants. The proposed
algorithm was evaluated with a set of simulation-based experiments
using workload data from Google [20, 24].

We plan to evaluate further features of our algorithm, with partic-
ular attention to the self-* anti-stagnation mechanisms we propose
here (i.e. angry ants and memory aging). Moreover, we plan to
investigate novel mechanisms based on heterogeneous ants (i.e., ants
having different behaviors), as well as standard spatial computing
approaches based on local information diffusion rules. We shall
also consider existing volunteer computing platforms such as the
SCIENCECLOUD [10]. Finally, time will be devoted to evaluate the
performance of our algorithm with different grid workload traces
and node traffic models available on the web such as: [1–4, 22].
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APPENDIX
This appendix contains additional material for the interested reader. In particular, §A describes additional performance parameters, §B presents
the corresponding measures in the evaluated scenario and §C includes some pictures of colored fields for a small network.

A. PERFORMANCE PARAMETERS
The following is an exhaustive and detailed description of the performance parameters that we take into account in our experiments and that

are actually logged in our statistical analysis simulations:

1. Hit Rate: defined as the relative amount of tasks that have completed (satisfying their deadline) or are still running, over the overall
number of sent requests. A running tasks will certainly be completed if the node that have taken it in charge does not go offline. A higher
value is desirable since it denote the ability of a strategy to accommodate a heavier load.

2. Useless Message Rate (Refused Rate): defined as the relative amount of refused requests over the total number of sent requests. Such a
performance indicator enables us to evaluate the overhead introduced by sending requests to overloaded nodes. A request is repeatedly
sent until a node able to accept it is found, or the nodes list is exhausted. It is preferable to have low values of this parameter corresponding
to a minor overhead introduced in the network, due to useless messages.

3. Total Number of Addressed Execution Requests (Tot req): defined as the total amount of requests spread in the network in order to
find a node able to execute the task. Similarly to the previous parameter, but in absolute values, this one allows to point out the introduced
overhead.

4. Mean Task Waiting Time (W time): defined as the time that a task spends before that its execution starts. Lower values suggest a better
system response to the incoming task requests.

5. Mean Task Sojourn Time (S time): defined as the overall time that a task spends in the network. It is measured as Waiting plus
Execution times, i.e., it combines the previous performance indicator with the required service time, thus also in this case lower values
are better.

6. Mean Number of Tasks per Node (tpn): the mean number of tasks that have been executed by each node taking part in the network.
The more this value is closer to numberOfTasks

numberOfNodes and the more the strategy follows a load balancing approach, i.e., spreads the workload
evenly among the nodes.

7. Task Variance per Node (σ2
tpn): the variance of tasks executed by each node taking part in the network. A reduced variance suggests

that more nodes execute an amount of work close to the mean.

8. Max Number of Tasks per Node (max(tpn)): the number of tasks executed by the node that has worked most. It is an index of the
effort done by the node that have executed more tasks.

9. Min Number of Tasks per Node (min(tpn)): the number of tasks executed by the node that has worked less. A higher value suggests
that all the nodes have an ”active“ participation to the network executing tasks.

B. ADDITIONAL EXPERIMENTAL DATA
Figures 7–12 present additional experimental data of the experiments presented in §4.
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Figure 7: All remote execution requests (left) and Max number of tasks executed per node (right)
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Figure 8: Mean (left) and Min number of tasks executed per node (right)
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Figure 9: Variance of tasks executed per node (left) and accepted remote execution requests (right)
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Figure 10: Mean Waiting time for small (left) and large (right) task
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Figure 11: Mean Sojourn time for small (left) and large (right) task
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Figure 12: Mean Waiting (left) and Sojourn (right) time for all type of task



C. COLORED COMPUTATIONAL FIELDS

Figure 13: Colored fields: CPU core (top left) and Memory (top right) and combined (bottom)
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