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Abstract. We develop a simple theoretical framework for the evolution of
weighted networks that is consistent with a number of stylized features of real-
world data. In our framework, the Barabasi—Albert model of network evolution
is extended by assuming that link weights evolve according to a geometric
Brownian motion. Our model is verified by means of simulations and real-world
trade data. We show that the model correctly predicts the intensity and growth
distribution of links, the size—variance relationship of the growth of link weights,
the relationship between the degree and strength of nodes, and the scale-free
structure of the network.
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1. Introduction

Graph theory has been used to describe a vast array of real-world phenomena, but only recently
has attention shifted from binary to weighted graphs, from both an empirical perspective [1]-[6]
and a theoretical perspective [7]—[9]. The empirical literature has a number of robust stylized
facts that apply to a wide range of phenomena as different as Internet traffic, airport connections
and international trade. In particular, it has been demonstrated that weighted graphs display
(1) a power-law connectivity distribution P(K), with finite size truncation [3, 10]; (i) a
skewed distribution of link weights P(w) and node strengths measured as the sum of
the weights of the links of a given node P(W) [11, 12]; and (iii) a power-law relation
between node strength Wand node degree K: W = K, with 6 ranging between 1.3 and 1.5
[10, 13].

In this paper, we present a simple stochastic model of proportionate growth of both the
number and the weight of links to describe the structure and evolution of weighted networks and
account for the above-mentioned regularities. In our set-up, we extend the Barabdsi and Albert
(BA) model [14] to accommodate weighted network dynamics. This is done by exploiting the
theoretical framework recently put forward by Stanley and co-authors to explain the scaling
distribution of fluctuations in complex systems [15]-[17].

We test our model using data on the network of international trade flows, which
is a prototypical example of a real-world network that is inherently weighted. International
trade flows have traditionally been analyzed in the context of the so-called gravity model [18]
that relates bilateral flows to countries’ sizes and the distance between them. However, one of
the main limits of this approach is its inability to capture the large fraction of zeros existing in
the matrix of bilateral links. Although this has recently been addressed in the context of standard
economic theory [19], graph theory has been applied to accommodate this feature of the data
naturally.

We selected the international trade network (ITN) as a test bed for our model based
on the following considerations. Firstly, the ITN has already been extensively investigated
[5, 6], [20]-[24], and previous works on the ITN provide us with a rich set of empirical
regularities. Thus, we know that the link weight distribution assumes a log-normal form in
the case of the ITN [23, 24], whereas their growth rates display fat tails [24]. Secondly, the
relationship between node strength and degree is crucial in the economic literature about the
I'TN since it is related to the interplay between intensive and extensive margins of trade, which
is a key to explaining trade flows [25]°. Thirdly, despite the structural inertia of the ITN, the huge
volatility of trade flows after the 2008 global financial crisis has recently attracted a great deal of
attention. Our theoretical framework provides an explanation for the relationship between node
centrality and the variance of network flows.

This paper is organized as follows. Section 2 presents the model and its most important
predictions. We then test our model using data on the ITN (section 3) and simulations
(section 4). Finally, in the last section we lay down some conclusions and outline possible
patterns for future research.

® The extensive margin consists of the number of trading partners and the number of products exported K, whereas
the intensive margin represents the amount shipped per product per country w.
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2. The model

Barabdsi and Albert [14] proposed a simple stochastic model of network growth based on
preferential attachment, which accounts for many of the stylized facts observed in real-world
networks. Increasing interest in the study of weighted versions of networks calls for an extension
of the original BA model to account for the large degree of heterogeneity across link weights
[7, 9]. The route we take here exploits the theoretical framework recently put forward by Stanley
and co-authors [16] to deal with the growth dynamics of complex systems. We prove that our
model is capable of accurately matching the structural properties that characterize a number of
real-world weighted networks.

We therefore propose a generalized version of the BA model to describe the dynamics
and growth of weighted networks, by modeling them as a set of links of different weights
occurring among nodes. In particular, we assume that the weight of links grows according
to a geometric Brownian motion (also known as Gibrat’s law of proportionate effects [26]),
so that the expected value of the growth rate of link weights is independent of their current
level.

The key sets of assumptions in the model are the following [14, 16, 27]:

1. The network begins at time t = 0 with N, nodes, each with a self-loop. At each time
step t ={1,..., M}, a new link among two nodes arises; thus the number of links
(excluding self-loops that are used only for initialization) existing at time ¢ is m, =1.
We write K;(¢) for the number of links of node i at time ¢ (node degree). To identify
the nodes connected by the newly formed link at time ¢, we adopt the following
procedure: with probability a the new link is assigned to a new source node, whereas
with probability 1 —a it is allocated to an existing node i. In the latter case, the
probability of choosing node i is given by p;(t) = K;(t — 1)/2¢. Edge endpoints i and
J of the new link are chosen symmetrically with i # j. Thus with probability a the new
link is assigned to a new target node, whereas with probability 1 —a it is allocated to an
existing node with probability p;(t) = K;(t —1)/(2t — K;(t — 1)) if j #i and p;(t) =0
otherwise. Hence, at each time ¢, this rule identifies the pair of (distinct) nodes to be
linked.

2. Attime ¢, each existing link between nodes i and j has weight w;; (¢) > 0, where K;, K; and
w;; are independent random variables. At time 7 + 1, the weight of each link is increased
or decreased by a random factor x;;(t), so that w;;(t+1) = w;;(#)x;;(t). The shocks
and initial link weights are taken from a distribution with finite mean and standard
deviation.

Thus, we assume that each link weight grows in time according to a random process.
Moreover, the two processes governing link formation and weight growth are assumed to be
independent. We therefore combine a preferential attachment mechanism (assumption 1), with
an independent geometric Brownian motion of link weights (assumption 2). In this way, we
obtain a generalization of the BA set-up capable of accounting for the growth of weighted
networks.

Based on the first assumption, we derive the degree distribution P(K) [14, 28]. In the
absence of the entry of new nodes (a = 0), the probability distribution of the number of links at
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large ¢, i.e. the distribution P (K), is exponential:
1 _
P(K) ~ = exp(=K /K), (1)

where K = 2t/ N, is the average number of links per node, which linearly grows with time’.
If a > 0, P(K) becomes a Yule distribution that behaves as a power law for small K,

P(K)~ K™, 2)

where ¢ =2+a/(1 —a) > 2, followed by the exponential decay of equation (1) for large K with
K = (1+2t/Ny)'~* —1[15].

Hence, in the limit of large + when a = 0 (no entry), the distribution of P(K) converges
to an exponential; conversely, when a > 0 and small, the connectivity distribution at large ¢
converges to a power law with an exponential cut-off [15].

Using the second assumption, we can compute the growth rate of the strength of nodes.
The strength of node i is given by W; =) x, Wij.- The growth rate is measured as g =
In(W(t +1)/W(t)). Thus, the resulting distribution of the growth rates of node strength P(g) is
determined by

P(g)=)  P(K)P(gIK), (3)
K=1
where P (K) is the connectivity distribution, computed in the previous stage of the model, and
P(g|K) is the conditional distribution of the growth rates of nodes with a given number of links
determined by the distribution P(w) and P (x).
Fu et al [16] found an analytical solution for the distribution of the growth rates of the
weights of links P(g) for the case when a — 0 and r — oo,

2V,

8
V22V, (Igl+/g2+2V,)?

P(g) has similar behavior to the Laplace distribution for small g, ie. P(g)~
exp(—«/i|g|/\/7g)/ 2V,, whereas for large g, P(g) has power-law tails, P(g)~ g°,
which are eventually truncated for g — oo by the distribution P(x) of the growth rate of a
single link.

A further implication of the model that can be derived from the second assumption
concerns the distribution of link weights P (w). The proportional growth process (assumption 2)
implies that the distribution of weights P(w) converges to a log-normal. Thus node strength
W is given by the sum of K log-normally distributed stochastic values. Since the log-normal
distribution is not stable on aggregation, the distribution of node strength P (W) is multiplied by
a stretching factor that, depending on the distribution of the number of links P (K), could lead
to a Pareto upper tail [29, 30].

Moreover, a negative relationship exists among the weight of links and the variance of
their growth rate. Our model implies an approximate power-law behavior for the variance of
growth rates of the form o (g) = W) where B(W) is an exponent that weakly depends on
the strength W. In particular, 8 = 0O for small values of W, 8 =1/2 for W — oo, and it is well
approximated by 8 & 0.2 for a wide range of intermediate values of W [17].

P(g)~ “4)

7 K does not include initial self-loops.
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Finally, the model also yields a prediction on the relation between degree K and strength
W of each node. In section 4, we show that since the weight of each link is sampled from a log-
normal distribution (w are log-normally distributed), and given the skewness of such a density
function, the law of large numbers does not work effectively. In other words, the probability
to draw a large value for a link weight increases with the number of draws, thus generating a
positive power-law relationship between W, and K, for small K.

3. Empirical evidence

To test our model, we use the NBER—United Nations Trade Data [31] available through the
Center for International Data at UC Davis. This database provides bilateral trade flows between
countries over 1962-2000, disaggregated at the level of commodity groups (four-digit level of
the Standard International Trade Classification, SITC). Data are in thousands of US dollars and,
for product-level flows, there is a lower threshold at 100 000 dollars, below which transactions
are not recorded. One point to note is that disaggregated data are not always consistent with
country trade flows; in a number of cases we do not observe any four-digit transaction recorded
between two countries, but nevertheless find a positive total trade, and vice versa. Since we
take the number of products traded among any pair of countries as the empirical counterpart of
the number of transactions, to avoid inconsistency we compute the total trade by aggregating
commodity-level data.

In this section, we test the predictions of our model, while in the following section we
use the data to calibrate the simulations and check for the ability of the model to replicate
real-world phenomena by comparing simulated and actual trade flows. We already know from
previous work [24] that the main features of the ITN are broadly consistent with our model.
Here, we look in more detail at some specific characteristics of the ITN.

Figure 1 shows that the distribution P(K), which is the number of four-digit SITC
products traded by countries, is power-law distributed with an exponential cut-off. The main
plot displays the probability distribution in log-log scale, where the power law is the straight
line body, and the exponential cut-off is represented by the right tail. The inset presents the
same distribution in semi-log scale; this time it is the exponential part of the distribution that
becomes a straight line, so that we can magnify what happens to the probability distribution as
K grows large. As discussed in section 2, the power-law distribution of K hints at the existence
of moderate entry of new nodes into the network. Indeed, 17 new countries enter into the
ITN during the observed time frame, mostly due to the collapse of the Soviet Union and
Yugoslavia.

Moving to the weighted version of the network, one can look at the distribution of positive
link weights as measured by bilateral trade flows at the commodity level, P(w), as well as
the total value of country trade or node strength P(W). Figure 2 shows the complementary
cumulative probability distribution of trade flows in log—log scale, both for product-level
transactions and for aggregate flows. Figure 2 refers to 1997 data (other years display the same
behavior). We observe that both distributions show the parabolic shape typical of the log-normal
distribution, thus conforming to previous findings [23, 24]. As predicted, on aggregation the
power-law behavior of the upper tail becomes more pronounced [29]. However, this departure
from log-normality concerns a very small number of observations (0.16% in the case of
commodities flows, 2.21% for aggregate flows) since only a few new nodes (countries) enter
the network over time.

New Journal of Physics 12 (2010) 023003 (http://www.njp.org/)
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Figure 1. Distribution of the number of products traded, 1997. Double
logarithmic scale (main plot) and semi-logarithmic scale (inset).
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Figure 2. Distribution of the link weights and node strength in the year
1997. Complementary cumulative distribution of the strength distribution P (W)
(aggregate flows) and link weights P (w) (commodity flows) and their power-law
fits (dashed lines) [34].
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Figure 3. Distribution of the growth rates of aggregate trade flows P(g).

As for the growth of trade flows, figure 3 shows the empirical distribution P(g), together
with the maximum likelihood fit of equation (4) and also the generalized exponential distribution
(GED, with shape parameter 0.7224).

Goodness-of-fit tests, reported in table 1, show that P(g) is neither Gaussian nor Laplace,
whereas the distribution in equation (4) performs much better in terms of KS and AD tests®.
Hence, the growth of node centrality, as measured by strength W, follows the same law of the
fluctuations of the size of complex systems [16, 35]. This is not surprising, since the size of an
airport can be measured by the number of passengers who travel through it, and the size of a firm
in terms of sales is given by the sum of the value of each product it sells. Thus, the theoretical
framework of Stanley and co-workers [16] complements and completes the BA proportional
growth model in the case of weighted networks.

As discussed in section 2, our model implies a negative relationship between node strength
and the variance of its growth rate. Figure 4 reports the standard deviation of the annual growth

8 KS and AD are non-parametric tests used to evaluate whether a sample comes from a population with a specific
distribution. Both KS and AD tests quantify a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution. The AD test gives more weight to the tails
than the KS test. More detailed information is available in [32, 33].
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Table 1. Kolmogorov—Smirnov (KS) and Anderson—Darling (AD) goodness-of-
fit tests for the distribution of growth rates of trade flows P (g).

Distribution Mean Variance KS AD
Gauss 0.0333 0.8417 10.8305 11.7329
Laplace 0.0040 0.5338 2.8414 1.4107
GED (shape parameter 0.72)  0.0444 02899  1.0915 0.0314
Equation (4) 0.0651 0.3658 0.8214 0.0477
1.0 — . . . . . . . . . . . . .
05} \\ B=-02 i
of AN 4
_05 - o~ ~ o -
|
= 1or hRY ]
) N
3 SN \.
8 AN
= 150 s i
20} \\ N .
_25 - < N N -1
_30 - \,
_35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
log(W)

Figure 4. Size—variance relationship between node strength W (trade values) and
the standard deviation of its growth rate o (g), double logarithmic scale.

rates of node strength o (g) and their initial magnitude (W). The standard deviation of the growth
rate of link weights exhibits a power-law relationship o (g) = W= with 8 ~ 0.2, as predicted
by the model [17]. This implies that the fluctuations of the most intense trade relationships are
more volatile than expected based on the central limit theorem.

All in all, our model accurately predicts the growth and weight distribution of trade flows,
the number of commodities traded and the size—variance relationship of trade flows. Thus,
we can conclude that a stochastic model that assumes a proportional growth of the number of
links combined with an independent proportional growth process of link weights can reproduce
most of the observed structural features of the world trade web and should be taken as a valid
stochastic benchmark to test the explanatory power of alternative theories of the evolution of
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international trade and weighted networks in general. In the next section we compare the
structure of random networks generated according to our model with the real-world trade
network.

4. Simulation results

Based on the assumptions in section 2, we generate a set of random networks and fit them
with real-world data in order to test the predictive capability of our theoretical framework.
We proceed in two steps. First, we generate the unweighted network according to the first
set of assumptions. Next, we assign the value of weights based on a random sampling of K
values from a log-normal distribution P (w) whose parameters are obtained through a maximum
likelihood fit of the real-world data.

We model a system where at every time ¢ a new link is added, which represents the
possibility to exchange one product with a trading partner. We slightly modify the original
setting in order to account for the possibility that the new links could be assigned randomly
rather than proportionally to node connectivity. Thus, in our simulations, parameter a governs
the entry of new nodes according to assumption 1, whereas parameter b is the probability that a
new link is assigned randomly. Thus with probability a the new link is assigned to a new source
node, whereas with probability 1 — a it is allocated to an existing node i. In the latter case, the
probability of choosing node i is now given by p;(t) = (1 —b)K;(t —1)/2t +b/N,_,, where
N,_; is the number of nodes at time ¢ — 1. The target of the new link is chosen symmetrically
withi # j.

Tuning the two model parameters a and b, we generate different networks in
terms of the connectivity distribution of trade links P(K). In particular, without entry (a = 0)
and completely random allocation of opportunities (b =1), one obtains a random graph
characterized by a Poisson connectivity distribution [36], whereas allowing entry (a > 0),
P(K) is exponentially distributed. Keeping a positive entry rate, but assigning opportunities
according to a preferential attachment model (b =0), the model leads to a power-law
connectivity distribution with an exponential cut-off, which is more pronounced, the
higher the number of initial nodes N,. In the limit case in which entry of new nodes is
ruled out (a =0), the connectivity distribution tends toward a Bose—Einstein geometric
distribution.

We compare the structure of random scale-free model networks with the real-world trade
network in 1997. Since the structure of the network is highly stable over time, results do not
change substantially if we compare simulations with the structure of the real-world network in
different years. In the first stage, we generate one million networks, with a and b both ranging
from O to 1. We simulate random networks of 166 nodes (countries) and 1 079 398 links (number
of different commodities traded by two countries). The number of commodities traded is taken
as a proxy of the number of transactions. Next, we select the random networks that better fit the
real-world pattern in terms of correlation, as measured by the Mantel r test, and connectivity
distribution”.

9 The Mantel test is a non-parametric statistical test of the correlation between two matrices [37]. The test is based
on the distance or dissimilarity matrices that, in the present case, summarize the number of links between two
nodes in the simulated and real networks. A typical use of the test entails comparing an observed connectivity
matrix with one posed by a model. The significance of a correlation is evaluated via permutations, whereby the
rows and columns of the matrices are randomly rearranged.

New Journal of Physics 12 (2010) 023003 (http://www.njp.org/)


http://www.njp.org/

10 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1.0\.;‘_7_. :

08\ <

0.6\-}":“ :

Mantel r test

024

02 43 oa
“ 05
0.6

0.7
08
10

Number of new countries

b (probability of random assignment)

Figure 5. Mantel test comparing simulated and real networks.

Figure 5 reports the value of the Mantel test for networks with O < b < 1 and an entry rate a,
which implies the entry of O to 66 countries. The Mantel correlation statistics reach a peak of
0.88 (p-value < 0.01) in the case of pure preferential attachment regimes (b = 0). However,
the Mantel test does not discriminate between different entry regimes. We next compare the
connectivity distribution of simulated networks with the real-world distribution of the number
of traded commodities P(K) by means of the KS goodness-of-fit test. Figure 6 confirms that
the best fit is obtained in the case of a purely preferential attachment network (b = 0). However,
the KS tests provide additional information on the most likely value of a (entry rate of new
nodes).

Figure 7 shows that our model can better reproduce the connectivity distribution with
an entry rate a > 0, which implies the entry of 14-18 countries. This closely corresponds
to the empirically observed number of new countries. Thus, we can conclude that a simple
proportional growth model with mild entry can account for the distribution of the number of
commodities traded by each pair of countries.

Introducing the value of transactions, we can show that the model generates the
observed relationship between intensive and extensive margins of trade. Figure 8 depicts the
relationship between total trade flows (W) and the number of trade links maintained by each
country (K). Empirically, we proxy the number of transactions by means of the number of
products traded by each country. Figure 8 displays the relationship that emerges from 1997
trade data, and confirms that there exists a positive correlation between the two variables. The
slope of the interpolating line (1.33) in double logarithmic scale reveals a positive relationship
between the number of commodities and their average value of the kind W = K? with § ~ 1.33.
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Figure 8. Relationship between the number of products traded and trade value.
Double logarithmic scale. Simulated (black) and real-world (red) data, mean and
one standard deviation in each direction. The dashed line represents the reference
line W = K with 6 ~ 1.33.

The curve displays an upward departure in the upper tail. This can be explained by noting
that the product classification used imposes a ceiling on the number of products a country can
trade as there are only around 1300 four-digit categories (vertical dotted line)'°.

Apart from the upper decile of the distribution, the simulated version of the network
shows exactly the same dependence among the magnitude and the number of transactions. This
seems surprising, considering that the model assumes two independent growth processes for
the number of transactions K and their values w. However, it should be noted that the law of
large numbers does not work properly in the case of skew distributions such as the log-normal.
Given a random number of transactions with a finite expected value, if its values are repeatedly
sampled from a log-normal, as the number of links increases the average link weight will tend
to approach and stay close to the expected value (the average for the population). However, this
is true only for large K, while according to the distribution P(K), the vast majority of nodes
have few links (small K). The higher the variance of the growth process of link weights, the
larger K has to be to start observing convergence toward W = wK?, with 6 = 1 predicted by
the law of large numbers. Thus, only the largest countries approach the critical threshold. In

10 Another possible explanation is that for large enough K, some scale effects kick in establishing a correlation
between Kand W. This could be tested in other real networks with larger Kand no cut-off. We are aware that our
modeling strategy to assume away any relationship between the mechanisms governing the binary structure of the
network and the one assigning link weights is as extreme as other strategies that simply assume a single process
governing the two parts. Yet, we consider the positive relationship between Kand W as an interesting emerging
property of the model.
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sum, our simulations demonstrate that our model can account for the relationship between K
and W, which has been observed in many real-world weighted networks [10, 13].

5. Discussion and conclusions

Using a simple model of proportionate growth and preferential attachment, we are able to
replicate some of the main topological properties of real-world weighted networks. In particular,
we provide an explanation for the power-law distribution of connectivity, as well as for the
fat tails displayed by the distribution of the growth rates of link weights and node strength.
Additionally, the model matches the log-normal distribution of positive link weights (trade
flows in the present context) and the negative relationship between node strength and variance
of growth fluctuations o (g) = W—* with g ~ 0.2.

The main contribution of the paper is to offer an extension of the BA model for weighted
networks. We also provide further evidence that such a unifying stochastic framework is able to
capture the dynamics of a vast array of phenomena concerning complex system dynamics [16].

Further refinements of our model entail investigating its ability to match other topological
properties of the networks such as assortativity and clustering.
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