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ABSTRACT 

Results of the ESA project RobMPC (Robust Model 
Predictive Control for Space Constraint Systems) could 
successfully demonstrate that model predictive control 
(MPC) is definitively applicable for space systems with 
high dynamics like wheeled vehicles exploring a 
planetary surface. In the context of RobMPC a rover 
control hierarchy for guidance, trajectory control as well 
as traction and steering control was implemented. 
Controller verifications and robustness tests were 
performed using a functional engineering simulator 
(FES) including a multi-body dynamics model of ESA’s 
EGP rover and the vehicle-terrain contact physics. The 
latest validation step is the MPC implementation on a 
real-time computer system controlling the ExoMars 
breadboard rover at DLR’s planetary exploration lab. 
 
1 INTRODUCTION 

Within space applications a typical domain of model 
predictive control (MPC) is satellite attitude and orbit 
control, e.g. focused in ESA’s ORCSAT project [1]. 
Since satellite systems have just moderate dynamics and 
their operational environment is more or less well 
known, predictive control algorithms relying on 
numerical models appear to be promising solutions. 
 
In case of rover control the dynamics conditions are 
much more complicate. The reasons are the multi-body 
kinematics and dynamics of the vehicle chassis, the 
complex contact dynamics between wheels and soil and 
the big uncertainties regarding contact dynamics 
parameters, in particular when driving long distances in 
unknown planetary terrain. Accordingly, the extension 
of MPC solutions to rover applications seems to be by 
no means trivial. Nevertheless, the major advantages of 
MPC like 

• the capability of controlling multi-input and 
over-actuated systems, 

• the integrated, stringent handling of constraints 
and 

• the option of optimizing the control output 
regarding user-defined goals 

make the method still very attractive for application in 
the context of high dynamics systems. 
 

MPC control solutions for planetary rovers were 
recently investigated within the RobMPC project 
(Robust Model Predictive Control for Space Constraint 
Systems) under ESA contract (see Section 
ACKNOWLEDGEMENT). In this project the MPC 
approach was applied to three layers of a rover control 
hierarchy, which are representing medium to high 
dynamics control tasks: 

1. Guidance, 
2. Trajectory control and 
3. Wheel traction and steering control (TSC). 

 
In order to avoid the need of being expert on both, rover 
system dynamics and MPC control theory, a novel 
MATLAB/Simulink based toolbox called MPCSofT 
was developed by IMT within the RobMPC project. It 
provides an environment for design and verification of 
MPC controllers, based on a quite general class of linear 
time-varying models, constraints and quadratic costs, 
possibly equipped with integral action to increase 
robustness. Provided that the user model is formulated 
as a linear state space model, MPCSofT is able to access 
the model for state prediction and control input 
optimization within the MPC control process. 
 
The scope of RobMPC was to assess the performances 
of MPC controllers at different levels of rover 
locomotion control and benchmarking them against 
classic controller solutions. In addition, the objective 
was to validate the robustness of the designed 
controllers by varying the vehicle and environment 
parameters outside their nominal values as applied in 
the MPC’s prediction model. 
 
In the following the paper will give a short introduction 
in implementation and utilization aspects of MPCSofT 
in Section 2. Section 3 will briefly present controller 
hierarchy and test results from the overall planetary 
rover application scenario within RobMPC. The focus 
of the paper will be on wheel traction and steering 
control, introduced in Section 4. This part includes 
details of the prediction model, the implementation of 
the controller and results of performance tests. Here, the 
section refers to both, verification using a functional 
engineering simulator and validation with a real system 
controlled in real-time. 
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2 MPC IMPLEMENTATION 

Model Predictive Control (MPC) is an advanced control 
technique that explicitly uses 

1. a dynamics model of the process to predict its 
evolution over a given time horizon in the 
future and 

2. numerical optimization methods to determine 
the optimal sequence of control inputs that 
minimizes a given performance index under 
constraints on control inputs and state 
variables. 

The prediction and optimization is repeated at each 
sampling step. Thus the applied optimal control input is 
always based on the latest available feedback from 
sensors or observers. 
 
The MATLAB/Simulink toolbox MPCSofT is designed 
for control of linear time-varying (LTV) systems, which 
are to be described in the user’s prediction model by 
three equations for 

1. the linear, time-varying system dynamics (1), 
2. time-varying cost function (2) and 
3. time-varying constraint functions (3). 

( )( ) ( )( ) fuBxAx xx ++=+ kkk tkttkt ,,,,1  (1) 

( )( ) ( )( ) ( )( ) kzkzkzk tkttkttkt uPuHxEz xxx ∆++= ,,,,,,  (2) 

( )( ) ( )( ) ( )( ) kckckck tkttkttkt uPuHxEc xxx ∆++= ,,,,,,  (3) 
The MPC performance index to be minimized at each 
sampling step is 
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subject to three types of constraints, in particular 
1. inequality constraints on states and on control 

inputs (5), 
2. terminal equality constraints on states at end of 

prediction (6) and 
3. equality constraints on the input increment for 

prediction steps beyond the control horizon (7). 
( )( ) ( )( ) ( )tNktkttkt cmaxk <≤+≤ 0;1,,,, εxx Vcc  (5) 

( )( ) ( ) ( )( ) ( )( ) 2, , ,N N NN tt t t t t t ε≤ +x x xC x d V  (6) 

( ) ( )tNktNUk <≤= ,0Δu  (7) 
The variables used in (1) - (7) are listed in Tab. 1. They 
are grouped by input and output arguments of the user’s 
prediction model function and by variables internally 
processed by MPCSofT. 
 
Equations (1) - (7) formulate a finite-time optimal 
control problem that is mapped into a quadratic 
programming (QP) problem, in which the optimization 
variables are 

• the slack variables ε , numerically required for 
handling unrealizable constraints and 

• the sequence of control input increments 
(Δu0, Δu1, … , ΔuN) applied to the dynamics 
model over the prediction horizon. 

The first optimal control input increment Δu0 is finally 
selected to be applied to the actual controlled system. 
 

Variable Name Meaning 
Prediction model input arguments from MPCSofT 
t Current time at start of prediction 
Ts  Controller sampling step size 
k Current number of prediction step 
N, Nu Prediction horizon, control horizon 
x(t) Initial state at beginning of prediction 
Prediction model output arguments to MPCSofT 
A, B, f State space matrices and vectors 
Ez, Hz, Pz Performance description matrices 
Ec, Hc, Pc Constraint description matrices 
CN Terminal constraint description matrix 
r Performance reference vector 
cmax Constraint reference vector 
dN Terminal constraint reference vector 
Vc ≥ 0, VN ≥ 0 Vectors for constraint hardening 
ρ1, ρ2 Weights on constraint slack variables 
Internal controller variables 
x State vector of system 
u Control input vector 
z Performance vector to be optimized 
c Constraint vector 
Δuk = uk - uk-1 Control input increment vector 
ε1, ε2 Slack variables for constraint softening 

Table 1: Variables Used for Prediction Model 

The user can exploit the maximum flexibility offered by 
the Embedded MATLAB (EML) language to define the 
prediction model according to (1) - (3) in an EML 
module. This module is used inside the LTV-MPC 
Simulink block of the MPCSofT toolbox, shown in 
Fig. 1. 

 
Figure 1. LTV-MPC Simulink block 

In fact, the block contains 
1. a QP builder function called once for mapping 

of the optimal control problem at initialization 
and 

2. a QP solver function repeatedly called at each 
sampling step for optimization of the control 
inputs. 

As the block is completely designed based on Simulink 
blocks and EML functions, C code can be immediately 
generated for rapid prototyping. 
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3 MPC FOR ROVER CONTROL HIERARCHY 

The mission proposed in the rover locomotion (ROL) 
scenario of RobMPC is a human type mission, primarily 
fulfilling human-related tasks like transporting soil, 
relocating cargo, inspecting the landing site for human 
arrival or the deployed infrastructure. In this context, the 
Eurobot Ground Prototype (EGP) rover has been 
selected as the targeted platform (see Fig. 2 and [3]). 
The main characteristic parameters of the EGP rover are 
collected in Tab. 2. 
 

Parameter Value 
Bounding box volume (L/W/H) 2246/1580/1505 mm 
Total weight 880 kg 
Track width (front/rear) 1041/1330 mm 
Axle distance 1511 mm 
Steering axle rear wheel steering 
Maximum velocity 0.35 m/s 
Navigation sensor IMU 

Table 2: EGP rover parameters 

 

Figure 2: EGP rover 

Concerning the environment in which the rover has 
been tested, a Martian scenario has been chosen. The 
soil is supposed to have negligible cohesion, which is 
one of the major differences compared with terrestrial 
off-road conditions. A playground of 20 x 20 m with 
possibly inclined topology and a number of obstacles 
has been chosen, together with a nominal path to be 
followed to test the controllers. The path is off-line 
computed by a modified A* algorithm. It is composed 
by at least two turns and a straight part and takes 
already into account the steering capabilities of the 
vehicle that has to avoid. 
 
The selected rover control hierarchy consists of three 
MPC controllers designed within the RobMPC project 
(see Fig. 3): 

1. Guidance function, which acts as an online 
path planner by continuously computing an 
obstacle-free optimal contingency path which, 
when the vehicle gets outside a safety corridor 
around the nominal path, re-injects the rover 
back into it. 

2. Trajectory control, which computes the desired 
rover velocity vector to be followed based on 
the current position and orientation with 
respect to the path to be followed. 

3. The wheel traction and steering controller, 
which commands wheel actuators with the 
desired steering angle and wheel velocity based 
on the desired rover velocity vector under 
consideration of the terrain conditions. 

 
Figure 3: MPC controllers 

The smooth interaction, when all three controllers are 
working together in the loop has been successfully 
proven by extensive integration tests using a functional 
engineering simulator (FES). It includes the following 
major components for adequately realistic simulation of 
the test scenario: 

• Multi-body dynamics model of the EGP-rover 
including wheel and steering actuator 
dynamics, 

• Models of the sensors required for control 
feedback, in particular an IMU and a position 
sensor, 

• 3D terrain topology model, 
• 3D / 6DOF soil contact dynamics model based 

on DLR’s soil contact model tool SCM [4]. 
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Figure 4: Results with all MPC controllers working 

together in the rover control hierarchy 
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The controller performance was tested by letting the 
rover start in a position far away from the nominal path, 
and then let the MPC guidance continuously compute 
contingency paths to bring the rover back to the nominal 
path in an optimal way without colliding with obstacles. 
The realization of the desired path was finally 
performed by the subordinate MPC controller. A sample 
result obtained is shown in Fig. 4. For more details on 
implementation, performance and robustness tests of 
MPC guidance and MPC trajectory control developed in 
the context of RobMPC please refer to [5]. 
 
4 TRACTION AND STEERING CONTROL 

In this section the focus will be on MPC wheel traction 
and steering control (TSC). It is the most vehicle 
specific layer in the control hierarchy (Fig. 3) and is 
introduced by means of two different rover systems: 

1. The EGP rover (see Tab. 2 and Fig. 2) in form 
of a numerical model as implemented in the 
FES used for RobMPC and 

2. The ExoMars breadboard rover (Fig. 5 and 
[6]), physically available in the planetary 
exploration testbed (PEL) at DLR and utilized 
for additional RobMPC verification and 
validation activities. The rover parameters are 
summarized in Tab. 3. 

 
Figure 5: ExoMars breadboard rover at DLR’s PEL 

Parameter Value 
Bounding box volume (L/W/H) 1600/1370/~800 mm 
Total weight 90 kg 
Track width (front/center/rear) 1200/1200/1200 mm 
Axle distance (front-center-rear) 640/720 mm 
Steering axle all wheel steering 
Maximum velocity 0.03 m/s 
Navigation sensor Camera based 3D 

pose tracking 

Table 3: ExoMars rover breadboard parameters 

TSC is the interface between the trajectory controllers 
and the low level, device specific controllers for 
individual control of wheel and steering actuators (see 
Fig. 6). It is a coordinating control instance that has to 
have detailed knowledge of the vehicle kinematics and 
replaces typically conventional Ackermann control. Its 

location inside the control hierarchy is equivalent to 
ABS and ESP known from road vehicles. 

 
Figure 6: TSC location inside rover control hierarchy 

Accordingly, the controller computes desired wheel 
velocities ω and steering reference angles β, which 
define the control input vector u, in order to realize the 
desired trajectory given by the sequence of velocity 
vectors vtraj with two linear components each. However, 
the rover system has three states x, which are the 
longitudinal and lateral translational vehicle velocities 
as well as the angular rate around the vertical vehicle 
axis. Thus, the system is under-determined. In 
particular, the heading angle is freely selectable giving 
TSC the opportunity to let the rover drift and slide, 
which is an important dynamic feature for off-road 
vehicle locomotion performance. Moreover, the system 
is over-actuated providing the opportunity for taking 
additional control goals into account, beyond following 
the desired trajectory. 
 
The MPC prediction horizon N is defined by the 
sampling step size ratio of TSC and its subordinated 
actuator controllers (see reference values in Fig. 6). The 
typical value is 10. 
 
The implementation of MPC-TSC utilizing MPCSofT 
(see Section 2) is introduced in the following 
subsections. The procedures of the controller design are 
identical for both, EGP rover and ExoMars rover. 
 
4.1 System Dynamics 

The system dynamics of the rover is represented in the 
prediction model by a double-track vehicle model. It is 
able to take different dynamics at left and right wheels 
into account, which is crucial for cross-hill locomotion 
control. Vertical system dynamics is neglected within 
the double-track model. Corresponding to the rover the 
model has three degrees of freedom and can perform 
motions on a possibly inclined plane. Thus, one obtains 
the vehicle’s equations of motion, (w.r.t. the vehicle’s 
center of mass, expressed in vehicle reference frame 
coordinates) as function of gravity and wheel forces as 
given in (8). The variables used in (8) are listed in 
Tab. 4. 
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Variable Name Meaning 

zlatlong vv ω,,  
Vehicle states: Longitudinal and 
lateral velocity, angular rate w.r.t. 
vertical axis 

zJm,  
Mass of rover, moment of inertia 
w.r.t. center of mass around vertical 
axis 

latlong gg ,  Longitudinal and lateral components 
of gravitational acceleration 

, Wheeli n  Wheel index, number of wheels 

, , ,, ,long i lat i z iF F T  
Forces / torques due to wheel-soil 
dynamics, applied to wheel center: 
Longitudinal and lateral forces, 
torque w.r.t. vertical vehicle axis 

, ,,long i lat ir r  Longitudinal and lateral wheel center 
locations coordinates 

Table 4: Variables used in rover’s equations of motion 

The two forces and the torque referenced in (8) are 
components of the soil contact forces and torques, 
mapped onto the wheel center. They are integrals over 
the wheel-soil contact zone computed as functions of 
the specific contact force 

00 tnf τσ += , (9) 

with σ and τ denoting normal and shear stress and n0 
and t0 denoting their direction of application. 
 
The key equations for computing normal and shear 
stress are the well-known pressure-sinkage relationship 
for soft soil proposed by Bekker [7], 

nc zk
b
k








 += ϕσ , (10) 

the soil failure approximated by the Mohr-Coulomb 
failure criterion, 

ϕστ tan+= cmax  (11) 
and the formulation for shear stress according to Janosi 
and Hanamoto [8], 

( )jkj
max e−−= 1ττ . (12) 

They are functions of sinkage z, of shear deformation j 
and of the parameters collected in Tab. 5. 
 
While shear deformation j, applied in (12), can be 
explicitly approximated by kinematics relationships of 
current vehicle states x and control inputs u, the solution 

for sinkage z, applied in (10), encounters two problems 
to be solved accordingly: 

1. The wheel load distribution at any vehicle 
inclination: Vehicles with rigid chassis and 
more than three wheels are statically over-
estimated. A solution for the static equilibrium, 
respectively for the load distribution across the 
wheels, can be found by applying virtual 
movements according to the principle of virtual 
work. 

2. The explicit solution of sinkage z as function of 
the wheel load: Since the relationship of 
sinkage and load is only implicitly given by the 
inverse function of (10), a look-up table is 
computed a-priori and approximated by a 
polynomial, which is used for explicit solution 
of sinkage during control. 

 
Variable Name Meaning 

, ,c jk k kϕ  Cohesive modulus , frictional modu-
lus and deformation modulus of soil 

,c ϕ  Cohesion and internal friction angle 
of soil 

n  Sinkage exponent of soil 
b  Soil contact patch width 

Table 5: Parameters of wheel-soil contact dynamics 

Now all major computational steps are introduced for 
solving the equations of motion (8). However, due to 
the complicated solution algorithm for wheel-soil 
contact forces, the equations are highly non-linear. In 
order to finally provide the state space matrices A and 
B, as required in (1), the system is numerically 
linearized around the current vehicle state x(t) and the 
current control inputs u(t) at each sampling step. A and 
B are kept constant during prediction. Thus, the 
prediction model can be characterized as a step-wise 
linear time-invariant (LTI) model. 
 
4.2 Cost Function 

For optimization of the control inputs u with (4) the 
TSC prediction model provides two reference goals r. 
The primary goal rpri is optimal tracking of the desired 
velocity vector vtraj by the vehicle reference point. Since 
under off-road conditions the desired velocity may be 
not achievable the goal is intentionally not formulated 
as a constraint. The secondary goal rsec considers the 
internal configuration of wheel velocities and steering 
angles. In order to obtain energy-optimal solutions, 
control input configurations uroll are preferred, where all 
wheels are purely rolling. This condition is fulfilled 
when the instantaneous centers of rotation of all wheels 
coincide. A global goal like this will also protect the 
control from ending-up in a sub-optimal local minimum 
in the course of the vehicle operation. The complete 
performance reference vector is given in (13): 
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pri pri traj

sec sec roll

   
= =   
   

r W v
r

r W u
. (13) 

The matrices Wpri and Wsec are used for tuning the MPC 
controller in terms of weighting the particular 
optimization goals. 
 
4.3 Constraints 

The constraints used in the prediction model are 
physical-mechanical limits of the wheel and steering 
actuators. They are partly static and partly dynamic: 

1. Steering angle limits: Static due to mechanical 
steering angle end stops. 

maxmin βββ ≤≤ . (14) 
2. Steering angle rate limits: Dynamic function of 

current steering torques Tβ. 

( ) ( )min maxβ β≤ ≤β T β β T   . (15) 

3. Angular velocity limits of wheel actuators: 
Dynamic function of current wheel torques Tω. 

( ) ( )min maxω ω≤ ≤ω T ω ω T . (16) 

4. Angular acceleration limits of wheel actuators: 
Dynamic function of current angular velocities 
ω and current wheel torques Tω. 

( ) ( ), ,min maxω ω≤ ≤ω T ω ω ω T ω   . (17) 

 
With (14) - (17) one can formulate the constraint 
reference vector cmax for inequality constraints 
according to (5) as follows: 

(
)

, , , ,

, , ,
max max min max min

T
max min max min

= + − + −

+ − + −

c β β β β

ω ω ω ω

 

 

. (18) 

Terminal constraints are not considered in TSC. 
 
4.4 Verification and Robustness Tests 

Within RobMPC the MPC controller evaluation work 
was performed using the high fidelity functional 
engineering simulator (FES) introduced in Section 3. 

 
Figure 7: Test Terrain Used for Controller Evaluation 

For evaluation purposes a ramp-like terrain and a U-
shaped test trajectory (Fig. 7) to be tracked by the rover 

at constant velocity was selected. The operation takes 
90 seconds. The scenario includes all major aspects for 
controller performance tests: 

• Uphill / downhill locomotion, 
• Cross-hill locomotion, 
• Sharp turns at inclined terrains. 

The evaluation was split in two parts: Nominal tests and 
robustness tests. 
 

Parameter Nominal Min Max 
Vehicle Parameters 
Total rover mass 880 kg 810 950 
4x wheel mounting 
misalignment 

0° -0.5° 0.5° 

2x steering drive time 
constant 

0.19 s 0.17 0.21 

4x wheel drive time 
constant 

0.3 s 0.1 0.59 

Terrain Parameters 
Terrain inclination 0° 0° 15° 
Environmental gravity 3.71 m/s2 3.24  4.08 
Frictional modulus 1.0e7 1.0e6 1.0e7 
Cohesive modulus 0 0 1.0e4 
Shear def. modulus 0.1 0.1 0.5 
Exponent of sinkage 1 1 1.2 
Cohesion of soil 0 Pa 0 30 
Internal friction angle  30° 20° 35° 

Table 6: Relevant Test Parameters and Variation Range 

4.4.1 Results of Nominal Test 
The nominal tests were performed with identical 
parameter values (see Tab.  6) applied in both, the 
prediction model and in the FES models. Under these 
conditions the MPC performance was compared with 
the performance of the reference controllers. In case of 
TSC the references controllers are 

1. Ackermann feedforward control and 
2. Ackermann control with PID type velocity and 

heading angle feedback control. 
The performance was evaluated based on a number of 
performance indicators considering control accuracy, 
control effort or smoothness of control action. Amongst 
them the integral of the square error (ISE) over time, 

( ) ( ) ( ) ( ) dttt
v

v
tt

v
v

t
traj
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long
T

traj
lat

long∫ 
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vv , (19) 

is supposed to be the most meaningful one. The results 
of (19) for MPC and reference controllers are presented 
in Fig. 8. It is obvious that MPC can significantly 
improve the control performance compared to 
conventional open-loop Ackermann control. But MPC 
seems to be also the better choice compared to advanced 
Ackermann control extended by velocity and heading 
angle feedback control. The reason is the actual number 
of controls, which is always two in case of Ackermann 
control (trajectory radius and velocity) but six in case of 
MPC control of the EGP rover (2 steering angles, 4 
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wheel velocities). MPC successfully exploits the over-
actuation potential of the vehicle by the optimized 
steering angle - wheel velocity coordination, which is 
not rigidly linked by kinematic relationships. 
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Figure 8: Evolution of Control Performance Indicators 
(small values indicate small errors) 

4.4.2 Results of Robustness Tests 
For evaluation of controller robustness regarding 
uncertainties of  

• vehicle parameters and 
• terrain parameters 

a number of Monte Carlo simulations were performed. 
In each Monte Carlo simulation campaign one group of 
parameters was randomly varied and changed in the 
FES models, while keeping controller parameters 
constant at nominal values. The variation ranges are 
documented in Tab.  6. 
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Figure 9: Sensitivity w.r.t. most important parameters 

According to Fig. 9, the controller robustness could be 
successfully proven. The circular markers in the 
diagrams show the performance indicator values at the 
end of each simulation run. The values are sorted 
regarding one parameter of the parameter group in order 
to identify potential sensitivity trend. In Fig. 9, they are 
sorted regarding vehicle mass and terrain inclination. 
According to the diagrams, variations of vehicle 
parameters have just negligible influence on the MPC 
performance. Variations of terrain parameters have 
moderate influence on controller performance even if no 
clear trend regarding one single parameter could be 
identified. Nevertheless, in any test cases the MPC 
performance is still much better than the reference 
performance of conventional Ackermann control (see 
Fig. 8). 

4.5 Validation with Real System 

Within RobMPC the computation of the TSC algorithm 
in real-time was identified as a critical issue. Moreover, 
potential inaccuracies of the FES soil model could also 
reduce the control performance under real terrain 
conditions. Therefore, validation tests with real-time 
vehicle control hardware were performed using the 
ExoMars breadboard rover as target system. The 
onboard computer parameters are listed in Tab. 7. 
 

Parameter Value 
CPU INTEL Core2Duo T9600, 2.8GHz 
RAM 4 GB, 1066 MHz 
OS QNX 6.5 Neutrino  

Table 7: Onboard Computer Parameters 

The planetary exploration testbed at DLR, where the 
rover is operated in, provides a sandbox of 10 x 5 m 
filled with approximately cohesion-less gravel of Eifel 
lava. One part of the terrain can be motorized inclined 
in order to obtain similar conditions as given in the 
virtual terrain of Fig. 7. The soil parameters are 
supposed to be inside the variation range defined in 
Tab. 6. The sensor system used for feedback generation 
is a vision based tracking system. 
 
A sample result is given in Fig. 10. It shows the tracking 
of a U-shaped reference trajectory with the ExoMars 
breadboard rover controlled by MPC. According to 4 
the reference trajectory is given as a sampled sequence 
of desired velocity vectors vtraj over time. The trajectory 
includes flat, up-hill/down-hill and cross-hill sections 
for linear motion but also sections for turning on 
inclined terrain. The result demonstrates that the MPC 
algorithm, working actually in the velocity domain, is 
even precise enough for providing good performance in 
the position domain without position feedback. 
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Figure 10: Tracking of U-Shaped Trajectory by MPC 

Since the MPC algorithm for 12 independent control 
inputs (6 steering angles, 6 wheel velocities) could not 
yet convincingly be solved at the desired sampling rate 
of 100 Hz the algorithm was slightly changed. In the 
presented version the control inputs are linked 
according to Geometry Based Control [9] with mapping 
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of control input constraints (18) by Jacobians. Thus the 
number of controls is reduced to 3 and the control goals 
of (13) are implicitly achieved. This control setup is 
equivalent to interactive vehicle control using e.g. a 
side-stick for longitudinal, lateral and turning motion 
commands. The actual MPC computed control inputs 
are shown in Fig. 11. The dotted lines show the 
reference signals to be applied under ideal tracking 
conditions (no control error, u = x). 
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Figure 11: MPC Control Inputs 

Even if a direct correlation between simulation results 
and experimental test results is not possible due to 
significant differences of the investigated rover systems, 
one can state that the results regarding control 
performance obtained by simulations (see 4.4) could be 
confirmed by applications with real rover hardware in 
realistic environment. 
 
5 CONCLUSION 

In the project RobMPC it could be convincingly 
demonstrated that MPC is a promising control solution 
for all layers of the rover control hierarchy: Guidance, 
trajectory control and wheel traction and steering 
control. The toolbox MPCSofT, developed within 
RobMPC, efficiently supports the implementation of 
LTI and LTV prediction models as well as the user-
friendly definition of optimization goals and constraints. 
Moreover, rapid prototyping can be easily performed 
with MPCSofT due to the convention of model 
implementation using Embedded MATLAB code. 
 
Traction and steering control (TSC) plays a key role at 
the interface of trajectory and actuator controllers and is 
in the focus of the paper. The presented MPC solution 
for TSC is based on a step-wise LTI prediction model. It 
is implemented as a double-track model considering 
wheel-soil contact dynamics according to Bekker’s 
semi-empirical terramechanics theory. The actuator 
performance limitations are described as MPC 
constraints. The MPC control approach could be 
verified with both, an EGP rover locomotion simulator, 
mainly used for extensive controller robustness tests, 
and the ExoMars breadboard rover operated with real-
time control and feedback of real tracking sensors. 
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