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Abstract. Localization of cortical regions of interests (ROISs) in the hu-
man brain via analysis of Diffusion Tensor Imaging (DTI) data plays
a pivotal role in basic and clinical neuroscience. In recent studies, 358
common cortical landmarks in the human brain, termed as Dense Indi-
vidualized and Common Connectivity-based Cortical Landmarks (DIC-
CCOLs), have been identified. Each of these DICCCOL sites has been
observed to possess fiber connection patterns that are consistent across
individuals and populations and can be regarded as predictive of brain
function. However, the regularity and variability of the cortical surface
fold patterns at these DICCCOL sites have, thus far, not been investi-
gated. This paper presents a novel approach, based on intrinsic surface
geometry, for quantitative analysis of the regularity and variability of
the cortical surface folding patterns with respect to the structural neu-
ral connectivity of the human brain. In particular, the Geodesic Field
Estimate (GFE) is used to infer the relationship between the structural
and connectional DTI features and the complex surface geometry of the
human brain. A parallel algorithm, well suited for implementation on
Graphics Processing Units (GPUs), is also proposed for efficient compu-
tation of the shortest geodesic paths between all cortical surface point
pairs. Based on experimental results, a mathematical model for the mor-
phological variability and regularity of the cortical folding patterns in
the vicinity of the DICCCOL sites is proposed. It is envisioned that
this model could be potentially applied in several human brain image
registration and brain mapping applications.

1 Introduction

The increasing availability of Diffusion Tensor Imaging (DTI) data, has sparked
a growing interest in assessing the structural differences in neural connectivity
within cortical networks in diseased brains and healthy controls [4]. However, a
fundamental issue is the localization of network nodes, or geometrically mean-
ingful cortical regions of interest (ROIs), in the DTT datasets for assessment of
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structural connectivity. In particular, the complex surface geometry of the brain,
manifest in the cortical surface folding patterns, provides important cues for the
prediction of cortical cytostructure and function [2] thereby suggesting the reg-
ularity of cortical surface folding patterns. On the other hand, many studies
demonstrate the remarkable variability of the cortical surface folding patterns
and their inherent complex geometry [12].

The difficulty in formalizing a representation of the cortical surface fold-
ing patterns and establishing their correspondence across individual brains has
hampered quantitative assessment of their geometric regularity and variability.
Despite the paucity of quantitative evaluation, such a formal assessment is crit-
ical for several key research problems in human brain mapping such as, brain
image registration, brain image segmentation, and cortical shape analysis. For
instance, the problem of designing effective morphological or connectional fea-
tures for brain image registration and segmentation would be very challenging
without prior knowledge of the geometric regularity and variability of cortical
surface folding patterns. In fact, such prior knowledge has been shown to be very
useful for brain image registration [9] and could potentially benefit functional
brain mapping via fMRI signal extraction and activation detection.

More recently, a dense map of 358 cortical landmarks, termed as Dense Indi-
vidualized Common Connectivity-based Cortical Landmarks (DICCCOLs) [23],
has been identified and validated. Each DICCCOL site possesses group-wise,
consistent white matter fiber connection patterns which are also predictive of
the cortical functions of the corresponding site [23]. Recent studies [23] have
demonstrated the high reproducibility and predictability of DICCCOL sites in
individual brains based on DTI data. However, the regularity and variability
of the 358 DICCCOL sites with respect to the cortical surface geometry is yet
to be fully explored. This paper examines the regularity and variability of the
cortical surface folding patterns at the 358 DICCCOL sites where the cortical
surface is reconstructed as a triangular mesh from the DTI data. A novel feature
vector based on intrinsic surface geometry is employed to quantify the regularity
and variability of the cortical surface geometry in the vicinity of each of the
DICCCOL sites.

The Geodesic Field Estimate (GFE), a probability distribution of geodesic
paths over a surface, has been shown to generate rich intrinsic geometric features
of points on surface meshes [15]. These intrinsic geometric features are used to
construct contextual surface descriptors around each of the 358 DICCCOL sites.
The cumulative Mean Absolute Deviation (MAD) of the contextual surface de-
scriptor is computed for each DICCCOL site across different subjects and is
considered as the measure of variability of the cortical surface folding pattern
at that DICCCOL site. A major issue for performing large-scale experiments
with geodesic path-based surface descriptors is the computational complexity of
geodesic path determination between all pairs of surface points. To address the
computational complexity, a parallel version of the all-pairs geodesic path deter-
mination algorithm using GPUs is proposed and shown to be broadly applicable
to other medical imaging domains as well.



Fig. 1. Visualization of the GFE on cortical surfaces of two different subjects.

DTTI data from 31 healthy young adult brains are used for this study. The
experimental results demonstrate that some DICCCOL sites have significantly
more regular cortical surface folding patterns than others. Overall, this study
demonstrates the importance of geometric and morphological analysis of the
complex cortical surface folding patterns which could be regarded as complemen-
tary to the fiber connection patterns in case of the more consistent DICCCOL
sites. We envision that this study will offer novel insights into MRI-based versus
DTI-based brain mapping methodologies, where multimodal registration, map-
ping and analysis is performed using both shape-based and connectivity-based
features.

The main contributions of this paper are threefold. First, an intrinsic geo-
metric surface signature, i.e., the GFE, is proposed for the characterization of
geometric regularity and variability of DICCCOL cortical surface folding pat-
terns. Second, a parallel version of the all-pairs geodesic path determination
algorithm is designed and implemented using GPUs to ensure that the GFE
computation is indeed scalable for large datasets. Third, the GPU-optimized
GFE is applied successfully to the brain cortical brain surface for the first time.

The remainder of the paper is organized as follows: Section 2 discusses the
related work. Section 3 presents the theoretical framework underlying the GFE-
based surface descriptor. Issues pertaining to the parallelization and GPU im-
plementation of the GFE computation are described in Section 4. Section 5
describes the data preparation procedure whereas Section 6 presents the results
of experimental validation. Finally, Section 7 concludes the paper while outlining
directions for future work.

2 Related Work

The surface folding patterns of the human cerebral cortex can be studied at
varying scales, from a local neighborhood of a cortical landmark to the entire
cortical surface. Analysis of local cortical surface folding patterns is typically



based on computation of the local surface curvature whereas analysis of the
folding pattern of the entire cortical surface or lobe of the human brain is based
on computation of the Gyrification Index (GI) [24] or spherical wavelets [21].
More recently, surface descriptors for cortical surface folding have attracted great
interest. Toro et al. [19] have proposed using the surface ratio thereby extending
the description from a global scale, such as one obtained using the GI, to a local
scale. Zhang et al. [22] have proposed a parametric representation of cortical
surface folding patterns with strong local shape representation capability.

It is important to note that all the works mentioned above either do not ex-
ploit the intrinsic surface geometry or use very simple intrinsic geometric surface
descriptors (such as local surface curvature). Rich and comprehensive descrip-
tors based on intrinsic surface geometry, such as the Wave Kernel Signature [1],
Heat Kernel Signature [17] and Discrete Surface Ricci Flow [25] have been widely
used for shape representation and shape analysis in the computer graphics and
computer vision communities. In this paper, we propose a surface descriptor,
i.e., the GFE, based on intrinsic surface geometry for quantitative analysis of
the regularity and variability of the brain cortical surface folding patterns with
respect to structural neural connectivity.

3 Theoretical Derivation of the GFE

The shortest distance between two points on a complete Riemannian manifold
is the length of the shortest geodesic path between them. The shortest geodesic
path conveys rich information about the underlying manifold and, since it is
based on intrinsic surface geometry, it is invariant to the coordinate space in
which the manifold is embedded. However, determination of the shortest geodesic
path is notoriously sensitive to small surface perturbations, making it difficult to
use for robust shape analysis. To overcome this limitation, a novel GFE surface
descriptor was proposed in [15]. The GFE for any point = on surface S can be
defined as the probability of the shortest geodesic path between any two surface
points p and ¢ passing through z, i.e.,

GFE(z) = prob(x € GP(p,q)) (1)

where, GP(p, q) is the shortest geodesic path between points p and ¢ and points
z,p,q € S. The GFE value at each surface point is computed using the all-
pairs shortest geodesic path determination algorithm. The GFE has been shown
to be a rich and stable surface descriptor that is well suited for robust shape
analysis [15]. Intuitively, the GFE can be visualized as ropes threading the valleys
of the shape as shown in Figure 1. Theoretically, the GFE is a special case of
the more general fuzzy geodesics [18]. As a result, the GFE inherits the property
of robustness to noise and surface perturbation from the fuzzy geodesics while
being more concise and informative than the latter.

Theoretically, it has been shown that the stability of fuzzy geodesics can
be quantified in terms of the Gromov-Hausdorff (GH) distance as the shape
deforms [18]. The GH distance has been used to measure the extent of shape
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Fig. 2. Instant update/propagate strategy for computing the all-pairs shortest path
problem on a GPU: (a) the GPU Kernel (b) execution example on GPU Grid. The
updated distance cost is instantly reused by the subsequent block computations. This
example assumes there are four streaming multiprocessors, each executing one block
at a time.

deformation [14]. It has been shown that two shapes with a small GH distance
have a provably small difference in their respective fuzzy geodesics which ensures
a similar property in the case of the GFE [18]. In particular, a tight bound for
the fuzzy geodesics in terms of noise has been provided which holds true for
the special case of the GFE [18]. Moreover, to make the GFE robust to noise,
we normalized the GFE with the area of the triangle when using a triangulated
mesh-based representation of the underlying brain cortical surface.

4 Implementation

The high computational complexity of the all-pairs shortest geodesic path de-
termination algorithm renders the use of the GFE highly impractical for most
medical image analysis problems. A typical graph generated from the brain cor-
tical surface mesh has a large number of nodes/vertices (40,000 - 50,000) but
a relatively small number of edges (240,000 - 300,000). Also, the corresponding
shortest-path search trees (where the root is the source node) are very deep and
narrow since every node’s connections are limited to its local neighbors with
no shortcuts to reach farther nodes. We propose and implement a novel instant
update/propagate algorithm, described in Figure 2, that is optimized for such
search trees. Our algorithm utilizes GPUs more efficiently by letting the search
propagate to multiple levels in the search tree before global synchronization. A
task parallel scheme [16] is adopted for computing multiple search trees orig-
inating from N different source points simultaneously, thus allowing for more
efficient memory access patterns.

5 Data Preparation

DTT data from 31 young adults from a publicly available database [20] are used.
The DICCCOL sites and connectomes identified and constructed from these



DTI data [23] are regarded as the ground truth. The DTI data preprocessing is
performed using the FSL software suite [5] which includes eddy current correc-
tion, skull removal, computing the Fractional Anisotropy (FA) image, and tissue
segmentation. The cortical surface is reconstructed using the segmented FA im-
age followed by fiber tracking performed using MedINRIA [10]. The DICCCOL
sites and connectomes are obtained from the preprocessed data using publicly
available programs (http://dicccol.cs.uga.edu/).

In the DICCCOL framework, all the cortical landmarks are defined and pre-
dicted using DTT data. Therefore, the mapping of DTI-derived DICCCOL sites
onto the MNI/Talairach atlas image has to rely on MR image registration tech-
niques. Given the 358 DICCCOL sites from ten template brains with the corre-
sponding structural MR, images, the DICCCOL sites in each DT image of the
template brains are registered with the corresponding MR images and warped
onto the MNI template using the FSL FLIRT software tool [6] since it was ob-
served to perform better than the alternatives [8]. Since there is no ground truth
data for evaluating the correspondence of the DICCCOL sites with the MNI
atlas image, the performance of the image registration algorithm is assessed in
terms of consistency resulting in a slightly higher accuracy for FSL FLIRT (6.29
mm) when compared to the alternatives [8].

6 Experimental Results

6.1 Speedup results

The parallel GFE computation on a GPU was observed to achieve a speedup of
14 over its optimized CPU implementation (Johnson’s algorithm in the Boost
C++ library http://www.boost.org/), taking less than a minute for each subject.
The GFE computation was performed on a PC workstation with an NVIDIA
GTX 480 GPU and an Intel Core i5-2400 CPU clocked at 3.4 GHz. Figure 3
demonstrates the speedup resulting from the GPU-optimized GFE computation
on surface mesh graphs from the SHREC 2010 dataset [13].

6.2 Experimental validation on simple surfaces

To the best of our knowledge, this is one of the first attempts to study the
problem of surface regularity and variability at cortical surface ROI sites. The
proposed GFE signature is evaluated on simple surfaces to ensure its uniqueness
at specific surface points as well as its regularity at symmetric surface points.
One specific example is shown in Figure 4 where the proposed GFE signature
is observed to successfully differentiate between the regularity and variability of
the wolf object surface.

6.3 Construction of the GFE-based feature vector

A GFE contextual histogram (GCH) is computed for each DICCCOL site as
follows. A local neighborhood (i.e., ROI) for each DICCCOL site, comprising of
the geodesically closest 50 surface points, is constructed. A 10-bin histogram of
GFE values (i.e, the GCH) is generated for the ROI and represented as a 10-tuple
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Fig. 3. Visualization of the speedup resulting from GPU-based optimization. Typically,
a 25-30 times speedup is achieved by the proposed method (Our) for SHREC 2010 [13]
dataset meshes (eg. horse, dog and human) with approximately 30000 - 50000 vertices.
The typical speedups achieved by methods proposed by Harish et. al. (H&N) [3] and
Okuyama et. al. (T&F) [16] for the same meshes are also compared.

feature vector. The GCH feature vector at DICCCOL site z is formally denoted
by GCH'(x). Figure 5 shows similar GCH feature values across 5 subjects for
a relatively regular DICCCOL site ROI #234 and very dissimilar GCH feature
values across the same 5 subjects for a relatively irregular DICCCOL site ROI

#80.

6.4 Cumulative mean absolute deviation for measuring variability
The similarities of the GCH feature values for 358 DICCCOL site ROIs across 31
subjects are quantified by the cumulative mean absolute deviation (MAD) and
shown as blue curves in Figure 6. It is evident that there is substantial variability
across the ROIs in terms of the regularity/variability of their corresponding
cortical folding patterns across the subject cohort. For instance, some ROIs,
such as ROI #234, #94, show greater similarity in terms of surface geometry
across the 31 subjects, whereas other ROIs, such as ROI #80, #252, exhibit
greater variability across the same subject cohort. Based on the cumulative MAD
values computed across 31 subjects, the top 5 percentile ROIs are considered
as the most variable and irregular across the subject cohort whereas bottom
5 percentile ROIs are considered the most regular. These ROIs are plotted in
Figure 7 which reveal an interesting observation. The more geometrically stable
ROlIs are found towards the outer surface of the cerebral cortex whereas the least
stable ones are found around the center.

7 Conclusions and Future Directions

A novel surface feature based on intrinsic geometry is proposed for analysis of
cortical surface folding patterns at the DICCCOL sites in the human brain. Our
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Fig. 4. Visualization of regularity and uniqueness of GFE signature on the simpler wolf
object surface.

study sheds new light on the relationship between the geometric regularity and
structural regularity at DICCCOL sites within the cerebral cortex. Our study in-
dicates that further research in morphological analysis of cortical surface folding
patterns is needed. Specifically, the relative positions of the geometrically regu-
lar and geometrically variable DICCCOL sites within the cerebral cortex deserve
more extensive and rigorous investigation. We plan to examine the possibility of
using both, the cortical surface folding patterns and DTI-derived connectivity
patterns to predict the locations of DICCCOL sites within individual brains,
which could then be used for brain registration and mapping.
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