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Abstract

In this report we investigate the stability of hybrid systems in closed-loop with Model Predictive
Controllers (MPC) and we deriva priori sufficient conditions for Lyapunov asymptotic stability and
exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for
both terminal cost and constraint seind terminal equality constraintiybrid MPC, even though the
considered Lyapunov function and the system dynamics may be discontinuous. For particular choices
of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop
novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC
cost, the stabilization conditions translate into a linear matrix inequality while, fosoamorm based
MPC cost, they are obtained as-norm inequalities. It is shown that by usirg-norms, the terminal
constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a
sublevel set of the calculated terminal cost function. New algorithms are developed for calculating
polyhedralor piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line
optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer
linear programming problem, which can be solved by standard optimization tools. Several examples

illustrate the effectiveness of the developed methodology.
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. INTRODUCTION

Hybrid systems provide a unified framework for modeling complex processes that include
both continuous and discrete dynamics. The large variety of practical situations where hybrid
systems are encountered (e.g., physical processes interacting with discrete actuators) led to an
increasing interest in modeling and control of hybrid systems. Several modeling formalisms have
been developed for describing hybrid systems, such as Mixed Logical Dynamical (MLD) systems
[1] or Piecewise Affine (PWA) systems [2], and several control strategies have been proposed
for relevant classes of hybrid systems. In particular, PWA systems have become popular due to
their accessible mathematical description on one hand, and their ability to model a broad class of
hybrid systems [3], [4] on the other. Many of the control schemes for hybrid systems are based
on Model Predictive Control (MPC), e.g., as the ones in [1], [5-7]. MPC, also knowstasding
horizon contro] is a control strategy that offers attractive solutions for industry, e.g., see [8] for
a recent survey of industrial MPC controllers. Initial MPC algorithms were exclusively designed
for linear systems and many ideas were soon suitably generalized to nonlinear systems [9]. As a
future objective, it has been pointed out in the survey [9] that many system theoretic concepts,
as well as control strategies like model predictive control, require re-examination for the class
of hybrid systems. More precisely, hybrid MPC faces two difficult problems, which cannot be
handled using the tools developed for linear or nonlinear models. Firstly, the computational
complexity of the constrained optimization problem that has to be solved on-line and, secondly,
guaranteing closed-loop stability. In this paper we focus on the latter problem and we aim
at deriving sufficient conditions that guarantee Lyapunov stability, attractivity and exponential
stability for a general class of hybrid models and MPC optimization criteria. Note that many
of the hybrid MPC schemes e.g., [1], [6], [7], have only been proven to guarantee attractivity,
while Lyapunov stability [10—12] is a desirable property from a practical point of view as well.
This is due to the fact that if attractivity alone is ensured, then in principle, an arbitrarily small
perturbation from the equilibrium may cause the state of the closed-loop system to drift far away
by a fixed distance before converging back to the origin.

In the literature, a hybrid MPC scheme is based on the optimization of a cost function that is
defined using mainly quadratic forms, e.g. [1], [7]1opo-norms, e.g. [5], [6]. If a quadratic cost

function is used, the MPC optimization problem leads to a Mixed Integer Quadratic Programming
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(MIQP) problem. An option to guarantee attractivity in this case is to impdsenainal equality
constraint[1]. However, this method has the disadvantage that the predicted state must be brought
to the origin in finite time. This requires that the PWA system is controllable, while stabilizability
should be sufficient in general. Moreover, a longer prediction horizon may be needed for ensuring
feasibility of the MPC optimization problem, which increases the computational complexity.
Controllers with reduced complexity are proposed for this case in [13], but convergence can only
be established by aa posteriorianalysis. Although the terminal equality constraint method has
been proven to guarantee attractivity [1], a proof of Lyapunov stability is missing for hybrid
systems. Also, some quadratic cost hybrid MPC schemes, such as the one in [13], rely on the
result of [9] (which uses continuity of the MPC value function) to claim stability. Since continuity
of the value function is not guaranteed in the hybrid case, such results only guarantee attractivity
in general. Sorting this aspect out precisely is one of the main topics in this paper. In the case
when thel-norm or theoo-norm is used to define the cost function, the MPC optimization
problem leads to a Mixed Integer Linear Programming (MILP) problem.aApriori heuristic
test for guaranteeing attractivity ob-norm based MPC of PWA systems has been developed in
[5] and ana posterioristability check has been proposed in [14]. The a posteriori check is based
on computing explicitly the PWA closed-loop dynamics and checking stability afterwards using
the theory of [15], [16]. No indication is available how to adapt the original MPC set-up in case
that the closed-loop system is unstable. The use of an a posteriori stability check emphasizes
the need for conditions that guarantee stability in hybrid MPC. The inclusion of such conditions
in the MPC design (i.e. a priori) would yield a major advantage. This is one of the motivations
for this work.

In this technical report we derive priori sufficient conditions for asymptotic stability (includ-
ing Lyapunov stability) of both terminal cost and constraint set and terminal equality constraint
hybrid MPC. We present a general theory for a wide class of hybrid models and MPC cost
functions and we show that Lyapunov stability can be achieved even though the value function
and the system dynamics are discontinuous. New methods for calculating the terminal cost and
the terminal constraint set are developed for the particular case of constrained PWA systems. In
the case of a quadratic cost, the conditions are obtained in the Linear Matrix Inequalities (LMI)
form and thus, the terminal weight(s) can be calculated using semi-definite programming. For

an oco-norm based cost, the conditions are specified usinrgorm inequalities, which lead to a
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constrained optimization problem that has to be solved off-line. One of the advantages of using
oo-norms is that the terminal constraint set can be automatically obtained as a polyhedron or a
finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. We
also develop new algorithms for calculating positively invariant sets for feedback controlled PWA
systems. These algorithms provide the means to come upwoighedralpositively invariant sets

in the case of quadratic forms based hybrid MPC and thereby obtaining an MIQP optimization
problem.

The report is organized as follows. Section Il deals with preliminary definitions and Section Il
provides a precise problem formulation. Section IV deals with discrete-time Lyapunov stability,
and the results regarding stability of hybrid MPC are given in Section V. For the case of
constrained PWA systems, methods for calculating the terminal cost, the terminal constraint set
and the value of the prediction horizon are developed in Section VI and Section VII for hybrid
MPC based on quadratic costs and for hybrid MPC basesbamrms, respectively. The special
case of terminal equality constraint hybrid MPC is addressed in Section VIII and the conclusions

are summarized in Section IX.

Il. PRELIMINARIES

Let R, R,, Z andN denote the field of real numbers, the set of non-negative reals, the set
of integer numbers and the set of non-negative integers, respectively. CeR™ be a set. We
denote bydS the boundary ofS, by int(S) its interior and bycl(S) its closure. For any real
A >0, the set\S is defined agz € R" : x = \y, y € S}.

Consider the time-invariant discrete-time autonomous nonlinear system described by

Ty1 = G(zp), (2)

whereG : R" — R™ is an arbitrarypossibly discontinuoysionlinear function. A point* € R”
is an equilibrium point of system (1), iff(z*) = «*. For convenience we recall the following

definitions related to stability.

Definition 1.1 Let z* € R™ be an equilibrium point of system (1) and &t C R" be a set that
contains an open neighborhood :of.
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1) The equilibriumz* is Lyapunov stablef for any £ > 0 there exists & = d(¢) > 0 such
that

|lxg—2*|| <6 = |z —2a"|| <e foral k>0,

wherez, is the state of system (1) at timie> 0 with initial statex, at timek = 0.

2) The equilibriumz* is attractive in X if
khi& |z —2*|| =0, forall zpeX.
3) The equilibriumz* is locally attractiveif there exists & > 0 such that
leo—a* <6 = lim o —a*] = 0.

4) The equilibriumz* is globally attractiveif it is attractive inR".

5) The equilibriumz* is asymptotically stable in* in the Lyapunov sensé# it is both
Lyapunov stable and attractive ii.

6) The equilibriumz* is locally (globally) asymptotically stable in the Lyapunov seiisé
is both Lyapunov stable and locally (globally) attractive.

7) The equilibriumz* is exponentially stable int’ if there existd > 0 and A € [0,1) such
that

|z, — 2*|| < 0||zo — 2*||\¥, forall z,€ X andforall k>0.

8) The equilibriumz* is locally exponentially stablef there exists a9 > 0, § > 0 and
A € ]0,1) such that

lzo — 2% <6 = |log — 2| < O||lwo — 2*||NF, forall k> 0.

9) The equilibriumz* is globally exponentially stablé it is exponentially stable irfR™.

Definition 1.2 A real-valued scalar functiop : R, — R belongs to class\ (p € M) ifitis

continuous, non-decreasing and4f0) = 0 and p(z) > 0 for x > 0.

Definition 11.3 Let 0 < A <1 be given. A setP C R" is called a\-contractive sefor system
(1) if for all =z € P it holds thatG(z) € AP. For A = 1 a A-contractive set is called positively

invariant set
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Definition 11.4 A set’? C R” is calledthe maximal positively invariant sebntained in a set
X C R for system (1) if the following conditions are satisfied:

1) PCAX.

2) P is a positively invariant set for system (1).

3) If P is a positively invariant set for system (1) a®lC X, then? C P.

A polyhedron is a convex set obtained as the intersection of a finite number of open and/or
closed half-spaces. Moreover, a convex and compact sit'ithat contains the origin in its
interior is called a C-set [17]. A piecewise polyhedral set is a finite union of polyhedral sets.

The p-norm of a vectorr € R” is defined as:

1
(|lz1]P + ...+ |zu]P)?, 1<p< o

2, £ :
maXxi=i..n ’xl‘7 p=
wherez;, i = 1,...,n is thei-th component ofc. For a matrixZ € R™*" we define
2z
12l 2 sup 1225,
=20 ||zl

as the induced matrix norm. It is well known [18] thf||.. = maxi<i<m Y7, [Z17}], where
717} is theij-th entry of Z. For a matrixZ € R™" with full-column rank,Zz =% := (27 2)~"'ZT
denotes the Moore-Penrose inverse [18], which satisfie’§Z = I,,. For a positive definite
matrix Z, Zz denotes the Cholesky factor [18], which satisfigs )™ Z2 = Zz(Z2)T = Z and,
Amin(Z) and A\nax(Z) denote the smallest and the largest eigenvalug,afespectively.

[1l. PROBLEM STATEMENT

Consider the time-invariant discrete-time nonlinear system

Tk+1 = g(l‘k, Uk), (2)

wherez, € X C R” is the stateu, € U C R™ is the control input at the discrete-time instant
k> 0andg: R" x R™ — R" is an arbitrary,possibly discontinuoysionlinear function. The
setsX andU specify state and input constraints and it is assumed that they are polyhedral C-sets.
We assume for simplicity that the origin is an equilibrium state for (2) with 0, meaning that
g(0,0) = 0. Note that the class of nonlinear dynamical systems (2) contains certain classes of

hybrid systems, such as PWA systems, due to the facttinady be discontinuous. For a fixed
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N eN, N > 1, letxy(zy, ug) := (411, - - -, 71 v ) dENOte a state sequence generated by system
(2) from initial statex; and by applying the input sequeneg := (ug,...,urn_1) € UV,
Furthermore, letY,; C X denote a desired target set that contains the origin.

Definition 11l.1 The class ofadmissible input sequencegfined with respect t&’r and state

z € X is Uy (zg) := {ug € UV | xp(zp,up) € XV, 230 v € X1}

Now consider the following constrained optimization problem.

Problem 111.2 Let the target seft; C X and N > 1 be given and lett' : R* — R, with
F0)=0andL:R" x R™ — R, with L(0,0) = 0 be mappings. At tim& > 0 let z;, € X be

given and minimize the cost function
N-1

T (kW) & Ftpen) + Y L@, i) 3)

=0
over all input sequences, € Uy (xy).
In the following, we callF’, L and N the terminal cost, the stage cost and the prediction horizon,
respectively. We call an initial state € X feasibleif Uy (z) # (. Similarly, Problem 111.2 is
said to be feasible (osolvablg for » € X if Uy (x) # (. Let X¢(N) denote the set dieasible

initial stateswith respect to Problem 111.2 and let

VMPC . Xf(N) — R+, VMpc(Ik) = inf J(l’k, llk) (4)

ukEZ/lN(xk)

denote the value function corresponding to (3). Throughout the paper we assume that there exists

an optimal sequence of controls

*

uy, = (Whs Wt - W 1) )
calculated for state;, € X;(/N) and Problem IIl.2. Hence, the infimum in (4) is a minimum
and Vuec(zr) = J(zx, u}). The following stability analysis is not affected by the possible non-
unigueness of the optimal control sequence (5), i.e. all results apply irrespective of which optimal
sequence is selected. Lef(x;, u;) = (z},,,...,75, y) denote the state sequence generated
by system (2) from initial state;, € X;(N) and by applying the optimal sequence of controls
u;. Let u; (1) denote the first element of the sequence (5). According to the receding horizon

strategy, theMPC control lawis defined as
up"C = uj(1); keN. (6)
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A precise problem formulation can now be stated as follows.

Problem 111.3 Let a desired set of initial states, C X, system (2) and the stage cadstbe
given. Determine a terminal co$t, a terminal constraint set’ and a prediction horizomV

such that system (2) in closed-loop with the MPC control (6) is asymptotically stable in the
Lyapunov sense s (N) andX, C Xf(N).

Note that many of the hybrid MPC schemes only guarantee attractivity, e.g., see [1], [5-7],
and not Lyapunov stability, which is an important property in practice. This is due to the fact
that if attractivity alone is ensured, then in principle, an arbitrarily small perturbation from the
equilibrium may cause the state of the closed-loop system to drift far away by a fixed distance

before converging back to the origin.

IV. DISCRETETIME LYAPUNOV STABILITY

In this section we formulate discrete-time stability results for diseontinuousautonomous
nonlinear system (1). We assume that= 0 is an equilibrium point for system (1), i.&(0) = 0,
and we derive sufficient conditions for asymptotic stability and exponential stability. Consider a
non-negative scalar functidn : R* — R with 1 (0) = 0 and letAV (zy) := V(zp41)—V (zg) =
V(G(zk)) — V(zx) denote the forward difference of. Let w, ¢» andr be classM functions

and consider the following assumptions.
Assumption V.1 For everye > 0 there exists a(c) € (0,¢) such that) () < w(e).
Assumption V.2 w(||z||) := al|z||7, ¥(||z]) := bl|z||7, »(||z||) := ¢||x||” for somea, b, c,o > 0.

Theorem IV.3 Let X C R" be a positively invariant set for system (1) that contains a neighbor-
hood N of the equilibrium x* = 0 and let w, v and r be class M functions. Suppose there exists

a non-negative scalar function V : X — R with V' (0) = 0 such that:

V(z) > w(||z]]), VYxeX, (7a)
V(z) < ¢(llzll), VzeN, (7b)
AV (z) < —r(||z]]), VzeX. (7c)

Then the following results hold:
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1) Under Assumption IV.1 the origin of the nonlinear system (1) is asymptotically stable in the
Lyapunov sense in X .

2) Under Assumption IV.2 the origin of the nonlinear system (1) is locally exponentially stable.
Moreover, if the inequality (7b) holds for N' = X, then the origin of the nonlinear system
(1) is exponentially stable in X

Proof: Stability Let x; represent the solution of (1) at timie obtained from the initial
condition z, at time £ = 0. Choose am > 0 such that the balB, := {z € R" | ||z| < n}
satisfies3, C N. Due to Assumption IV.1 we can choose for afiy< ¢ < n ad € (0,¢)
such thaty(0) < w(e). For anyz, € B; C X, due to positive invariance ot from (7) and

Assumption V.1 it follows that
- SV (@) < Vi) << V(o) S @([lzol]) < 9(0) < w(e).

Since from (7a) we have that(z) > w(e) for all x € X'\ B. it follows that z;, € B. for all
k > 0. Hence, the origin of the nonlinear system (1)Lisapunov stable

Attractivity. SinceV is lower bounded by zero amlV' (z) < 0, it follows thatlimy .., V(x)) =
Vi > 0 exists. Thenlimy ... AV (z) = V, — V, = 0. Since0 < r(|lax|]) < —AV(zy), it
follows thatlimy_... 7(||zx|]) = 0. Assume by contradiction thaf,| - 0 for k& — oo. Then

there exists a subsequenge,, } such thatl|x,

> p > 0 for all n > 0, which by monotonicity
and positivity of r implies thatr(||z,|) > r(x) > 0 for all n > 0. Hence, we reached a
contradiction of convergence of||z,||) to zero. Thenim_., ||zx|| = 0 for all z, € X, which
implies that the origin of the nonlinear system (1) is attractivg&’iand thus, we havasymptotic
stability in X' in the Lyapunov sense

Exponential stability Supposer, € Bs. Thenz, € B. C N for all k € N. Therefore it holds
that V' (zy) < o(||zx]|) and AV (zx) < —r(||zx||) for all k£ € N. Then, by Assumption IV.2, we
have that for allk € N

V(Gar) = Vien) < —cllanl” = =2u(lanl) < =5V ().

This implies that:
Vi) < (1— g)kV(aco) for all & > 0.

In order to show that <1 — 7 < 1, we use the inequalities (7b) and (7c), which yield:
0 <V(G(xx)) < Vi) = cllael|” < (llzell) — cllarl|” = (b — )|l
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Hence, it follows that > ¢ > 0. Then, we have that := 1 — ¢ € [0,1). From (7a), (7b) and
by Assumption IV.2 it follows that

al|z||” < Vizg) < p"V(xzg) < pFb||zol|”, forall k> 0.

Hence,||zx|| < 0]|zo||\* for all zy € B; and allk > 0, with § := (L—’;)i > 0and\ :=p= €[0,1).

This means that the origin of the nonlinear system (lpcally exponentially stablei.e. in a

ball B; C N. Moreover, sinceX is a positively invariant set for system (1), if inequality (7b)
holds for ' = X then, by applying the same reasoning as above, it follows that the origin of

the nonlinear system (1) sxponentially stable it [ |

Remark IV.4 1t is crucial to point out the following aspects regarding Theorem IV.3:
1) The hypothesis of Theorem IV.3 allows bdthand G to be discontinuous for # 0.
2) The requirement thab, ¢» andr are classM functions replaces the more common and
more restrictive requirement that, » andr are classC functions [11] {C C M).
3) Forz € Bs C N we have that|z| < 4, which implies that forz € X'\ B;, ||z| > ¢.
Then, from inequality (7a) it follows that there exists a lower bound/ooutside the ball
Bs, i.e. forz € X\ Bs. This replaces the more common and somewhat more restrictive

assumption that” is radially unbounded (i.e/(z) — oo as||z|| — o0).

The classical proof of the first result of Theorem IV.3, e.g. the one given in [10-12], is based
on the fact that7 is continuous. However, if one can choassuch that Assumption IV.1 holds,
then the continuity ol and G is no longer a necessary condition. In [16] this was pointed out
for the particular case of PWA systems and Piecewise Quadratic (PWQ) Lyapunov functions,
which is a special case of the general Theorem IV.3. Also, in [19] it was observed tHaes
not need to be continuous in order to achieve Lyapunov stability. Due to the fact that [19] dealt
with stability of perturbed Lipschitz continuous nonlinear systems, this issue was not further
pursued. Since Theorem IV.3 applies to discontinubuand G, this is a result of considerable
importance for general discontinuous dynamical systems and hybrid systems, as will be made

clear in the sequel.

V. STABILITY OF HYBRID MODEL PREDICTIVE CONTROL

In this section we investigate the MPC stabilization of digcontinuousionlinear system (2),

which also includes certain relevant classes of hybrid systems. We will ertggloynal cost and
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constraint setandterminal equality constraintmethods as the ones used fmoothnonlinear
systems in [9] in order to guarantee stability for the closed-loop system (2)-(6). Typically, these
methods rely on the fact thafypc and the system dynamics are continuous (e.g., see Section
3.2 of [9] or Theorem 4.4.2 of [20]). This requirement is induced by the classical Lyapunov
proof of Theorem IV.3 [10], as mentioned before. Of course, this condition is easily satisfied
for (unconstrained) linear systems asioothnonlinear systems by using a common MPC cost
criterion. However, it no longer holds in the case of discontinuous dynamical systems and hybrid
systems. Actually, in the survey [9] it was pointed out that all the concepts and ideas used in

MPC should be reconsidered in the hybrid context.

A. Terminal cost and constraint set

Consider an auxiliary static state-feedback control law
g = h(ay), (8)

with ~ being an arbitrary, possibly discontinuous, nonlinear function which is zero at zero
(h(0) = 0). Let Xy := {z € X | h(z) € U} denote the safe set with respectstate and input

constraints for this control law.

Assumption V.1 There existw, ¢ € M such thatL(z,u) > w(]|z||) for all z € X¢(N) and all
uwe U, andF(x) < ¢(||z]) for all z € Xr.

Theorem V.2 Suppose Xr is a closed positively invariant set for the closed-loop system (2)-(8)
that contains the origin in its interior and that X is contained in the safe set Xy. Fix N > 1.

Furthermore, suppose that the following inequality is satisfied:
F(g(zy, h(zy))) — F(xg) + Lz, h(xg)) <0,  forall zy € Xr, 9)

where h(zy,) defines the control law (8). Then it holds that
1) If Problem IIIL.2 is feasible at time k € N for state x;, € X, then Problem III.2 is feasible at
time k + 1 for state x4 = g(zx, ul,;/’P C). Moreover, Problem I11.2 is feasible for all v € Xp.
2) Under Assumption 1V.1 and Assumption V.1 the origin of system (2) in closed-loop with
the MPC control (6) is asymptotically stable in X;(NN), while satisfying the state and input

constraints.
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3) Under Assumption 1V.2 and Assumption V.1 the origin of system (2) in closed-loop with
the MPC control (6) is locally exponentially stable, while satistfying the state and input

constraints.

Proof: Consider the optimal sequence of controls (5) and the shifted sequence of controls

W1 = (Wht1s 2o - -+ s Uy 1 Wit ), (10)

where the auxiliary controdi, .y denotes the control law (8) at timie+ .
1) If Problem 111.2 is feasible at timé € N for statex; € 2, then there exists} € Uy ()
that solves Problem IIl.2. Then it follows that , vy € Xr. SinceXr C Xy is positively invariant

for system (22) it follows thaty,,; € Uy(zxs1). Hence, Problem 111.2 is feasible for state

Try1 = g(zr, ulPC). Moreover, all states in the set; C Xy are feasible with respect to

Problem 111.2, as the feedback (8) can be applied for &y 0. This implies that¥; C Xy (V).
2) From (3), (4) and by Assumption V.1 we have that

VMpc(ZL'k) > L({L‘k,u]'\g/lpc) > w(||xk||), Vx € Xf(N) (11)

Let xx(zx) := (Tx41,---,Txen) denote the state sequence generated by the “local” dynamics
Tre1 = g(z, h(zy)) from initial statex;, € Xr. Sincexy(x;) € XY, (9) holds for all elements

of the sequenc&,(xy), yielding:
F(Z1) — Fxg) + Lk, M(zg)) <0, F(Zhy2) — F(Zpt1) + L@k, M(Th41)) <0,
oy F(Tpen) = F(Thyn-1) + L(Tpn—1, M(Trin-1)) < 0.
From the above inequalities, by optimality and by Assumption V.1 it follows that
Vipe(r) < J(zk, W) < Fxp) < Y(|lal)),  Var € &, (12)
whereuy, := (h(z), ..., h(Tr+n-1)). By optimality, we observe that for all, € X;(N)
AWVpc(r) = J(@rt1, Wpyy) = J (@, up) < J (T, Wern) — J (2, 0g) =
= —L(ag, uy ) + F(Trpns1) = F(@hn) + Ly, (@) (13)
By the hypothesis (9), from;,, , € A7 and using Assumption V.1 it follows that

AVMpc(.I'k) < _L<xk,u’l\€/IPC) < —w(kaH), YV € Xf(N) (14)
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We observe that under Assumption V.1 and Assumption I&c satisfies the hypothesis of
Theorem V.3 for the clasgV functionsw, ¢, r = w and forX = Xy(N), N = Xr. Hence,
the second statement of Theorem V.2 follows from Theorem IV.3.

3) From the proof of 2) it also follows thatypc satisfies the hypothesis of Theorem V.3 for
the classM functionsw, ¢, r = w and forx = X;(N), N = Xr. Hence, the last statement of
Theorem V.2 follows from Theorem IV.3. [ ]

Next, consider the closed-loop nonlinear system (2)-(8), i.e.

Tpe1 = g(xg, h(zy)). (15)

In the sequel we will make use of the following result obtained as a by-product of Theorem V.2.

Corollary V.3 Consider the closed-loop system (15). Suppose there exists a class M function w
such that F'(x) > w(||x||) for all x € Xr. Furthermore, suppose that the hypothesis of Theorem V.2
and Assumption V.1 hold. Then we have that:
1) Under Assumption IV.1 the origin of system (15) is asymptotically stable in X, while
satistying the state and input constraints.
2) Under Assumption IV.2 and if X = R", U = R™ and both (9) and Assumption V.1 hold for
Xr = R™, the origin of system (15) is globally exponentially stable.

The proof readily follows from the fact that (9) implies
F(g(xg, h(zr))) — F(xr) < —w(||zg]]) <0, forall =z, € Xr\ {0} (16)

and by using the reasoning used in the proof of Theorem V.2. It is worth pointing out that

Corollary V.3 states that’ is a local Lyapunov function for the closed-loop system (15).

Remark V.4 In order to solve Problem I1lI.3, one still has to compute the terminal constraint
set. It follows from Theorem V.2 that it is sufficient to také- as a positively invariant set

for system (15) that contains the origin in its interior, in order to achieve stability. Depending
of the class of systems, there are several methods that can be used toBhtais will be
illustrated in the next sections. Also, it follows from Corollary V.3 that the sublevel sets of the
Lyapunov functionF’ are positively invariant sets. Hence, depending of the type of terminal cost,

one could takeY; as a suitable sublevel set #f. Once the terminal set has been calculated,
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one can perform a reachability analysis for system (2) in order to determine the minimum value

of the prediction horizon needed to ensure tHatC X/ (V).

B. Terminal equality constraint

In this subsection we consider the special case whgr) = 0 for all z € X and X, = {0},

which corresponds to thierminal equality constrainimethod for guaranteeing stability in MPC

[9].

Assumption V.5 There existw, ¢ € M such thatL(z,u) > w(||z||) for all z € X¢(N) and all
u € U. There exists a neighborhood of the orignC X;(N) such thatl(z},;, ui,,;) < o(||zx]|)
forall z, € N andi =0,..., N —1, where(uj, ..., u;, y_,) iS an optimal sequence of controls

obtained as in (5) for state; := x;, and(z}, ..., 25, 5_,) IS the corresponding state trajectory.

Remark V.6 Assumption V.5 requires that’s(/N') contains the origin in its interior. This is

not strictly necessary as the second condition of Assumption V.5 only needs to be satisfied for
N N X;(N). However, the case whetfi;(/V) does not contain the origin in its interior requires

a modification to the stability notions as the closed-loop system (2)-(6) is not defined on a

neighborhood around the origin. However, the modifications are straightforward.

Theorem V.7 Consider the closed-loop system (2)-(6), the MPC Problem III1.2 with X7 = {0},
F(z) =0 forall x € X and fix N > 1. Then it holds that

1) If Problem II1.2 is feasible at time k € N for state x;, € X, then Problem III.2 is feasible at
time k + 1 for state xj.1 = g(xy, ulC).

2) Under Assumption IV.1 and Assumption V.5 the origin of a system (2) in closed-loop with
the MPC control (6) is asymptotically stable in X;(NN), while satisfying the state and input
constraints.

3) Under Assumption IV.2 and Assumption V.5 the origin of a system (2) in closed-loop with
the MPC control (6) is locally exponentially stable, while satistying the state and input

constraints.

Proof: The proof of the first statement of Theorem V.2 also applies to Proposition V.7
for h(z) = 0 for all x € X and Xy = {0}, which is positively invariant. By Assumption V.5,
inequality (11) holds. Sincély = {0}, F(z) = 0 andh(x) = 0 for all x € X the inequality
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(14) holds. However, note that contrary to the proof of Theorem V.2, the terminal cost no longer
provides a suitable upper bound for the value function (4). Letting= x;, by Assumption V.5

we have that
N-1
Vipc(x) = J (i, wp) = > Lwhipuie) < Nolllzel)), Vo, € N (17)
=0

We observe that under Assumption V.5 and Assumption IV.1 or Assumptionifyt satisfies
the hypothesis of Theorem V.3 for the clagdd functionsw, v = Ny, r = w and for X =

X¢(N). Hence, the last two statements follow from Theorem IV.3. n

Remark V.8 If there exists a classV function ¢ such thatViypc(zy) < ¥(zy) for all =, €

X¢(N), then system (2) in closed-loop with the MPC control (6) is exponentially staldte(ify),

for both terminal equality constraint and terminal cost and constraint set methods. However, the
existence of a clasa1 upper bound on/ypc for the whole set of feasible states cannot be
guaranteed in general. For example, in the terminal cost and constraint set case the terminal
cost function provides a suitable upper bound only #gre X, due to the input constraints.
Exponential stability inX;(/N) can be achieved if Assumption V.5 holds for alle AX';(N)

and F'(z;, ) < on(||zi|]) for somepy(||zi]|) € M, which ultimately yields a suitable upper
bound forViypc on Xp(N).

In the following sections we consider the specific cases when the cost functiamsl L are
defined using either quadratic forms es-norms. We also provide solutions to the following

problems for the class of constrained PWA systems [2].

Problem V.9
1) P1: Let the system (2) and stage césbe given. For the terminal cost and constraint
set method determine the terminal cdstand the auxiliary control law (8) such that
Assumption V.1 holds and inequality (9) is satisfied for the closed-loop system (15). For
the terminal equality constraint method prove tlhasatisfies Assumption V.5.
2) P2: Calculate a positively invariant s&} for system (15) (with the feedback control law
u = h(x) obtained by solving problem P1) that contains the origin in its interior and that

is contained in the safe séf;.
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3) P3: Given a desired set of initial conditiois C X, take the terminal constraint set
equal to the set obtained by solving problem P2 and calculate the minimum value of the
prediction horizonV such thatX, C X;(N).

Solving the above problems yields a complete solution to Problem I1.3.

VI. TERMINAL COST AND CONSTRAINT SET QUADRATIC FORMS

Throughout the rest of the paper we consider the class of time-invariant discrete-time Piecewise

Affine (PWA) systems [2] described by equations of the form
Thyl = Aj[Bk + Bjuk + fj when z; € Qj, (18)

which is a sub-class of the discontinuous nonlinear system (2). Also, we take the auxiliary

controller (8) as a PWL state-feedback control law, i.e.
Uy, = h((L’k) = Kj[L‘k when z;, € Qj, jeS. (19)

Here,z, € X C R" is the state and,, € U C R™ is the control input at the discrete-time
instantk > 0. A; € R, B; e R™™, f; e R", K; e R™™, j € S with S :={1,2,...,s} a
finite setof indices ands denoting the number of discrete modes. Hefies R™ denotes a fixed
offset vector for allj € S. The collection{(2; | j € S} defines a partition oK, meaning that
Ujes); = XandQ; N, = 0 for i # j. Each(; is assumed to be a polyhedron (not necessarily
closed). LetS; := {j € S| 0 € cl(2;)} and letS; := {j € S | 0 & cl(£2;)}, so thatS = Sy U S;.

We assume that the origin is an equilibrium state for (18) with 0 and we require that

fi=0forall j €& (20)

The class of hybrid systems described by (18)-(20) contains PWA systems wiaghbe
discontinuous over the boundariemd which are Piecewise Linear (PWL), instead of PWA,
in the state space regiamjcs, ;.

In this section we consider the case when quadratic forms are used to define the cost function,
ie. F(z) = |P?z[2 = 2P whenz € XN Q; and Liz,u) = Qx| + ||Riul? =
2"Qz +u" Ru, and we assume thatr C U;cs,$; in order to obtain a solution to problem P1.

This yields the following cost:
N-1
J(l‘k, uk) £ Z'kT+NPj$k+N + Z 35;“@%“’ + ug_H-Rukﬂ- when TpeN € Qj, VES So. (21)
1=0

September 1, 2005 DRAFT



17

In this caseP;, € R™*" and R € R™*™ are assumed to be positive definite matrices. From
(21) it follows that
L(z,u) > 2" Qz > Anin(Q) | zI3

and that
F(l’) < maX)\max(Pj)Hng'
j€So

Then we have that the quadratic forms based terminal cost and stage cost satisfy Assumption V.1

for w(llz])) = Amin(Q)[|[13, ¥(|lz]) = maxjes, Amax(F;)[lz
and Assumption V.2 (e.g. Assumption IV.1 is satisfied #0¢) = n(%)%g, where

max;es, Amax(Pj

2, which satisfy Assumption V.1

n € (0,1) ensures thaf(e) < €).

Hence, we have shown that Assumption V.1 applies for quadratic forms based hybrid MPC.
In the sequel we provide a method for calculating the terminal £oahd the auxiliary control
(19) such that inequality (9) is satisfied for the PWA system (18).

A. Computation of the terminal weight(s) - Problem P1

Let sz‘ = {ZE S Qj ’ JueU: A]IL‘+B]U+f] S Qz}’ (j,l) € Sy xSy and |et8t0 = {(],Z) S
So x Sy | Qi # 0}. The set of pairs of indiceS,, can be easily determined off-line by solving
s? linear programs. Consider now the PWL sub-system of the PWA system (18), i.e.

Tht1 = Ajl’k + Bjuk, when rr € Xr N Qj, JE S(). (22)

The setS;, contains all discrete mode transitions that can occur in system (22), i.e. a transition
from Q; to ©; can occur if and only if(j,7) € Sy. Letting u;, be the control law (19) in (22)
and substituting the resulting closed-loop system &Anidh (9) yields that it is sufficient to find
(P;, K;) with P; positive definite for allj € S, that satisfy the matrix inequality
P; — (A; + B;K;)  Pi(A; + BjK;) —Q — K] RK; > 0, V(j,i) € S, (23)

for (9) to be satisfied with strict inequality. Next, we present three methods that can be used to

solve the nonlinear matrix inequality (23) efficiently using semi-definite programming.

Lemma VI.1 Let {(P;, K;,Z;,Y;,G;) | j € So} with Z;,P; positive definite and G; invertible

for all j € Sy denote unknown variables that are related according to Z; = Pj’l, Y, =K ij’l and
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K; = YjGj_l, j € Sp. Then the following matrix inequalities are equivalent:

P, 0

>0, V(i) € Sw;  (24)
0 Py~ (A + B;K;)"P(A; + BjK;) = Q — K] RK;

Z; Zi YD (AjZ;+ BYy)T
7 -1 0 0
¢ S0, V() ESw  (25)
Y, 0 R 0
(A;Z;+B;Y;) 0 0 Z,
Zj (4,7, + B;Y;)T (R2Y)T (Q22)"
A:Z:+ B,Y; Z; 0 0
(A2 + B;3) S0, V(.)€ Se  (26)
RYY, 0 I 0
1
QQZ]' 0 0 1

Gi+G] —2z; G Y," (A4G;+BY;)T

G, Q' 0 0 -
>0, V(j,i) € Sw. (27)
Y 0 R 0
(A;G;+B;Y;) 0 0 Z;

The proof of Lemma VI.1 is given in the Appendix. After solving any of the above LMIs, the
terminal weightsP; and the feedbacka; are simply recovered a8 := Z; ' and K := Yij‘l,
j €8 for (25) and (26) and a®; := Z; ' and K; := ;G ', j € S, for (27).

If any of the above LMIs is feasible faP; = P for all j € Sy implies thatF(z) = 2" Pz is a
local common quadratic Lyapunov functiofithe closed-loop system (22)-(19). Lettihty # P
for i # j, (i,7) € Sy implies a relaxation in the sense that solving any of the above LMIs now

amounts to searching for Riecewise Quadratic (PWQ) Lyapunov functid’], [16].

Remark V1.2 In [21] and [13] some preliminary results for the terminal cost and constraint set
method for hybrid MPC based on quadratic cost have been presented. The result of [21] uses
(25) in order to guarantee stability for unconstrained PWL systems in closed-loop with MPC
controllers. The result of [13] uses (26) and relies on [9] (where continuifyi@f is used) in

order to guarantee stability of PWA systems in closed-loop with MPC controllers.
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Next, we employ arb-procedure technique with respect to the matrix inequality (23), as done

in [15], to further reduce conservativeness, i.e. we consider the inequality
P; — (Aj + B;K;) ' Pi(A; + B;K;) — Q — K] RK; — EJ;UiE;; >0, V(j,i) € S (28)

in the unknowng P;, K;, U;;), where the matrice®; are the terminal weights employed in cost
(21), the matriced/;; have all entries non-negative and the matriégs define the cones;,
which are such thaf;; := {x € R" | E;;x > 0} and Q,;; C C;; for all (j,7) € Si. Note that if
(P;, K;,Uy;;) with P; > 0 and U; with all entries non-negative for allj, i) € Sy, satisfy (28),

then it follows that
" (P; — (Aj + BK;) Pi(A; + B;K;) — Q — KJ—-FRKj)x > g;T(E;.UﬁEﬁ)x >0 (29)

wheneverz € Q;; C Cj;, (j,1) € Sw. Hence, (9) is satisfied and conservativeness is reduced
when comparing to the matrix inequality (23). However, the techniques used in the proof of
Lemma VI.1 can not be used to transform (28) into an LMI, as this would require the matrices
U,; to be positive definite, which increases conservativeness.

We therefore develop an alternative method for finding a solution to the matrix inequality
(28). This method is based on solving a sequence of LMIs that is obtained by fixing a suitable
basis of the state space and successively selecting tuning parameters. Consider an eigenvalue
decomposition of the terminal weight matrices from cost (21),F;e= V}EjVjT, j € Sy where
¥; = diag(oyj,...,0n), 01; > ... > 0y,; and V]T = Vj‘l. In the sequel we assume that the
orthonormal matrice§V; | j € Sy} are known and let’; := diag(y1;,...,7;),J € So denote
an arbitrary diagonal matrix. Consider now the following LMI:

VitV = Q — EjiUsE; (Aj+ BjK))'Vi KJ
A & V."(A; + B;K;) I, 0 | >0, V(i) €S0 (30)
K; 0 R!
in the unknowns{(o;,...,04;), (V1is-- -, i), K3, Uji | (4,7) € Sipo}. In addition to (30) we
require that the linear scalar inequalities

0'1]‘2...20'”]'>0, 7nj2---271j>07 (313)
1
;_Uljzoa elj_/}/ljzoa l:]-a"'7n7 (3lb)
J
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with ¢; fixed constants (scaling factors) {f, 1], are satisfied for alj € Sy and that
U,; has all entries non-negative&/(j, i) € Sy. (32)

Note that the scaling factors; € (0,1] are assumed to be known in (31) and that condition
(32) can be easily written as an LMI. Hence, the conditions (30)-(31)-(32) are in the LMI form.

Theorem V1.3 Choose the orthonormal matrices V; and the scaling factors ¢; € (0,1], | =
1,...,n,j € S such that the LMI (30)-(31)-(32) is feasible. Let (o1j, ..., 0ni)s (Viis-- s Vni)s
Kj, Uj; be a solution. Then (P;, K;,U;;) with P; = V; diag(oyj, ..., 005)V;" > 0 is a solution of
the matrix inequality (28).

The proof of Theorem VI.3 is given in the Appendix. Note that solving the LMI (30)-(31)-
(32) hinges on the fact that the orthonormal matri¢ésand the scaling factors,; € (0, 1],
l=1,...,n, 5 €Sy, must be chosen a priori. This is not a problem with respect to the scaling
factors, which can be chosen arbitrarily small. However, when it comes to fixing the matrices
V;, it is interesting to find out how they should be chosen such that by vawjing..,o,; a
sufficiently wide range of?; matrices is covered. An answer to this question can be obtained
for the two dimensional case, where all orthonormal matrices can be parameterized according

to
—sinf; cosb;
Vi = , (33)
cost; sinb;
where0 < ¢, < 7. In this way, multiple solutions of the LMI (30)-(31)-(32) can be obtained by
varyingf;, as will be illustrated in Example 2. A similar explicit form &f can be specified also
in the three dimensional case, by using two angles,d,e.andé,;. However, these expressions

get more complicated in higher dimensional spaces.

B. Computation of the terminal constraint set - Problem P2

A solution to problem P2 has been presented recently in [22], where the standard algorithm
for the calculation of the maximal positively invariant set for a linear system [17], [23] has been
extended to PWA systems. However, the worst-case number of one-step controllable sets that
have to be calculated in theth iteration of the algorithm of [22] equals,, where s, is the

number of elements of the s&§. Hence, this approach may lead to a combinatorial explosion of
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possibilities and consequently, to numerical difficulties on one hand and a complex representation
of the terminal set on the other. This means that additional Boolean variables and inequalities
must be added to the Problem Il1.2.

In this subsection we develop two methods for solving problem P2, which do not suffer from
a combinatorial drawback and yield a simpler representation of the terminal set. Consider the

closed-loop system (22) with the feedback gains calculated as in Section VI-A, i.e.
Tht1 = (AJ + BjKj)[Ek =: A;lftk when T € Qj, j S S(). (34)

The first method deals with the computation opalyhedral positively invariant set for the
PWL system (34). To do so, we consider the autonomous switched linear system corresponding
to (34), i.e.
Th = Alzy, € S, (35)

where we removed the switching rule from (34), turning the PWL system (34) into a switched

linear system (35) with arbitrary switching.

Definition V1.4 Let0 < A < 1 be given. A sefP C R" is called a\-contractive sefor system
(35) with arbitrary switching if for allz € P and allj € S, it holds thatA;lx e P. For\ =1,

P is called apositively invariant sefor system (35) with arbitrary switching.

We make use of the following result.

Lemma VI.5 A set which is positively invariant (\-contractive) for the switched linear system
(35) under arbitrary switching is also a positively invariant (A-contractive) set for the PWL system

(34).

Proof. This follows directly from the fact that, for the PWL system (34),.; = A‘;’xk

for at least ong/ € S, at any discrete-time instanit < N. [ |
Since we require that, C Ayn{U;es,(2;} andAy is not convex in general, we consider in the

following a new safe set)y, taken as a reasonably large polyhedral set (that contains the origin
in its interior) insideXy N {U;es,$2;}. For instance, ifXy C Ujes, 2, is a polyhedron, we set
Xy = Xy or, if Ujes, 2, is a polyhedron we could séfy = {z € Ujes, 2 | Kjz € U, V5 € Sp}.
For an arbitrary target set’ we denoteQ}(X) := {z € R" | A%z € X'}. Note that if X is a
polyhedron that contains the origin, th@j(é\,’) has the same properties [17].
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Consider now the following sequence of sets:

X=Xy, Xi= A, i=12.., (36)

J€So

where X! == QY (X )N Xi_y, i=1,2,....

Theorem V1.6 The following properties hold with respect to the sequence of sets (36):
1) The maximal positively invariant set contained in the safe set Xy for system (35) with

arbitrary switching is a convex set that contains the origin and is given by

P =% = lim X, (37)

i—00
i=0
2) If an algorithm based on the recurrent sequence of sets (36) terminates in a finite number of
iterations then the set P defined as in (37) is a polyhedral set.
3) If there exists a A-contractive set with 0 < \ < 1 for system (35) under arbitrary switching
and if this set contains the origin in its interior, then an algorithm based on the recurrent
sequence of sets (36) terminates in a finite number of iterations.

4) The set P defined as in (37) is a positively invariant set for the PWL system (34).

The proof of Theorem VI.6 is given in the Appendix. If an algorithm based on (36) is used
to calculate a positively invariant for system (34), then a numbeg,abne-step controllable
sets Q}(Xi_l) must be computed at each iteration, while the algorithm of [22] requires the
computation ofs{ one-step controllable sets at th¢h iteration. Hence, we have overcome the
combinatorial drawback. Moreovep, is directly given by a finite number of linear inequalities.
Thus, no additional Boolean variables need to be added for representing the terminal constraint
set in Problem 111.2. However, in this cage will not be the maximal positively invariant set
for the PWL system (34). Then a larger prediction horizon may be required for feasibility.
Under conditions (23) or the relaxed conditions (28)\-aontractive set can be obtained by
taking a sublevel set of the PWQ Lyapunov functibix) = =" P;z whenz € Q;. Next, we
present a method for obtaininecewise polyhedrgbositively invariant sets for asymptotically

stable PWA systems for which there exists a PWQ Lyapunov function.

Theorem VI.7 Consider system (34) and a (piecewise ellipsoidal) sublevel set of a corresponding

PWQ Lyapunov function F', i.e.
€ =Ujes,&; with & :={rxeXynNQ; | F(z)<c}, ¢>0, je&,
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which is contained in the safe set Xy. Let a € (0,1) be such that £ is a-contractive. Now assume
that there exist polyhedral sets P; that satisfy o&; C P; C &; for all j € Sy. Then the piecewise
polyhedral set P := U,cs,P; is a positively invariant set for system (34) and P C Ay.

Proof: Froma&; C P; C &, for all j € Sy we have that& C P C £. Thus,P C Ay. Let
x € P. Hence, there existg € Sy such thatr € P; C ;. Take~; > 1 such thaty;z € 9¢;.
Then, it follows thatA? (v;x) € a&. Then, because of positive homogeneity of PWL dynamics,
it follows that Af;lx € %5 C o&. Sincea& C P, P is a positively invariant set for system (34).
u
The approach of Theorem VI.7 amounts to solving the problem of fitting a polyhedron in
between two closed ellipsoidal sets where one is contained in the interior of the other. A possible
way to solve this problem has been recently developed in [24] in the context of DC programming
(difference of convex functions). Here, a polyhedral set is constructed by treating the ellipsoidal
sets as sublevel sets of convex functions, and by exploiting upper and lower piecewise affine
bounds on such functions. Giving additional structure to the algorithm of [24] such that it
generates a polyhedron with a finite number of facets for each régjioa piecewise polyhedral
positively invariant set is obtained for the PWL system (34). Note that this method yields a
union of at mosts, polyhedral sets, while the maximal positively invariant set computed with
the algorithm of [22] may be a union of a larger number of polyhedral sets.
Another method to obtain polyhedral or piecewise polyhedral positively invariant sets for
PWA systems, which is based on using-norms as Lyapunov functions, will be presented in
Section VII-B.

C. How to choose the prediction horizon - Problem P3

In the case of hybrid MPC based on quadratic costs, Problem IlI.2 with the terminal constraint
set calculated as in the previous subsection leads to an MIQP problem. The minimum value of the
prediction horizonV needed to ensure thal, C X¢(N) can be calculated using the procedure
presented in [6]. Another way to find the minimum value of tieneeded for feasibility is to
use the Hybrid Toolbox [25] or the MPT Toolbox [26] in order to obtain an explicit solution
to Problem 111.2. The explicit solution can be calculated for both quadratic formsx@ambrms

based costs (using multiparametric programming) with the Matlab funetipnon(mpt.control)
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of the Hybrid Toolbox (MPT Toolbox), which also returns the feasible state-space region for the
MPC controller, i.e. the set’;(/V). Thus, one can check K, C X;(N) for a fixed N. Note
that the set of feasible states for the MPC optimization problem does not depend on the type of
MPC cost function (i.e. the feasible set is the same for both quadratic costs and costs based on
00-NOrms).

In MPC [9], it is well known that a smaller terminal constraint g&t implies that a larger
N is needed for ensuring feasibility of Problem 111.2. Hence, one has to make a trade-off in
choosing one of the two availablé, sets: the maximal positively invariant set, e.g. calculated as
in [22], which is represented by a possibly very large union of polyhedra, or a smaller positively
invariant set, as in Theorem VI.6 (or as in Theorem VI.7), which is polyhedral (or piecewise
polyhedral). Although the use of a larger terminal set obtained as in [22] may require a smaller
prediction horizon for feasibility, the complexity of the resulting MPC problem still increases
considerably with the number of additional Boolean variables needed to specify the terminal
constraint set. The two approaches are comparable and depending on the problem at hand and

the MIQP (MILP) solver one of the choices might turn out more computationally efficient.

D. Examples

The methodology developed in this section is illustrated by two examples.
Example 1 Consider the system used in [1]:

Lh4+1 = (38)

subject to the constraints, € X = [—5,5] x [—5,5] andu;, € U = [—1, 1], where
0.35 —0.602 0.35  0.6062 0
pu— 5 A2 = 5 B =
0.6062  0.35 —0.6062 0.35 1

The LMI (25) has been solved far;, = Z, = Z, Y3, Y, and for the weights) = I,, R = 0.4.

We have obtained the terminal weight matfix= diag([1.4876 2.2434]) and the feedback gains
K, =[-0.611 —0.3572], K, = [0.611 — 0.3572]. We take the safe set with respect to state and
input constraints agy = {z € X | |K;2| < 1, j = 1,2}. The polyhedral positively invariant set
obtained with an algorithm based on the recurrent sequence of sets (36) is

o [ )
XT:{*fEXIU’ {01212% _0.373}33§ [ﬂ} (39)

—0.2121 —-0.373
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Fig. 1. Example 1: The set of feasible states obtainedVor 4.

Fig. 2. Example 1: State trajectory - red;r - blue polyhedron; Input history - blue.

For system (38) and the terminal set (39), a prediction horizofV 6f 4 is required to ensure
that X C X;(N). The set of feasible states fo¥ = 4 (obtained using the MPT Toolbox as
indicated in subsection VI-C) is plotted in Figure 1. The simulation results are plotted in Figure 2
for system (38) with initial state, = [5 5] in closed-loop with the MPC control (6) calculated

for N = 4 using the Hybrid Toolbox [25], together with a plot of the terminal constraint set. For
comparison purposes, we calculated the maximal positively invariant set contained in the safe set
Xy = U1 2{x € XNQ, | |K;z| < 1} using the MPT Toolbox (which implements the approach

of [22]). In this case the terminal set consists in the non-convex union of two polyhedra and a

prediction horizon ofV = 4 is required to ensure that C X (NV).
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Example 2 Consider the following open-loop unstable system:

.
Ayxy, + Buy, if Eix, >0

Th+1 = (40)
Asxy, + Buy, if Esxp, >0

kA4$k + Buy, if Eux, >0
subject to the constraints, € X = [-10, 10] x [-10, 10], ux € U = [-1, 1], where

0.5 0.61 —0.92 0.644 1
Al = 7A2 - ) B = )
0.9 1.345 0.758 —0.71 0

Az = Ay and Ay = A,. The partitioning of the system is given by

-1 1 -1 1
by = —E3 = By = —Ey =
-1 -1 11

The weights of the MPC cost a@ = 10~*[, and R = 1073, For system (40) the LMIs of
Lemma VI.1 turn out to be infeasible. With th&-procedure approach of Section VI-A we
have obtained the following solution by solving the LMI (30)-(31)-(32) for the tuning factors
€11 = 0.04, 691 = 0.3, €12 = 0.08, €99 = 1 and for the orthonormal matricég, 1, defined as in
(33) for 6, = 2.4 andf, = 0.9:

12.9707 10.9974 7.9915 —5.5898
P = , Py = , Ps=P, P, =5,
10.9974 14.9026 —5.5898  5.3833

Ky = [—0.7757 —1.0299] , Koy = [0.6788 —0.4302] , Ky=Ky, Ky= Ky,

0.4596 1.9626 0.4545 2.0034 0.0542 0.0841
12 = ; Ua1 =
1.9626 0.0198 2.0034 0.0250 0.0841 0.0506

0.0599 0.0914
U22 = , 011 — 249765, 091 = 28969, 012 = 124273,
0.0914 0.0565

099 = 09475, Y11 = 00395, Y21 = 02954, Y12 = 00791, Y22 = 0.9675. (41)

A piecewise polyhedrgbositively invariant set has been computed for system (40) in closed-
loop with (19) (with the feedbacks given in (41)) using the approach of Theorem VI.7 and the
algorithm of [24] for the sublevel sef with ¢ = 14, which satisfies€ C Ay. In this casef
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Fig. 4. Example 2: State trajectory - red;y - blue polyhedra.

is « contractive fora = 0.93. The set of feasible states with respect to Problem 111.2 obtained
for system (40) with the terminal set given in Figure 4 and a prediction horizaN ef 4 is
plotted in Figure 3. The state trajectory of system (40) with initial state- [-5 — 3.8]" and
in closed-loop with the MPC control (6) calculated #dr= 4 using the Hybrid Toolbox [25] is
plotted in Figure 4. The MPC controller successfully stabilizes the open-loop unstable system
(40) while satisfying the constraints.

The maximal positively invariant set calculated with the MPT Toolbox [26] (which implements
the approach of [22]) for Example 2 is a non-convex unior8 gdolyhedra. The resulting set
of feasible states obtained fo¥ = 4 in this case is comparable in size with the set plotted in

Figure 3.
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VIlI. TERMINAL COST AND CONSTRAINT SET INFINITY NORMS

In this section we will consider the case whentnorms are used to define the cost function,
i.e. F(z) = ||Pjxllec Whenz € Xp N Q; and L(z,u) = ||Q7|« + ||Rul|«. Here P; € RP*",
Q € R and R € R™" are assumed to be matrices that have full-column rank. The MPC cost

(3) now becomes:
N—-1
J(@rwe) 2 |Pizgsnlloo + Y 1Q0ksilloo + | Rtksioo When zpn €9y, j€S. (42)

=0
In this setting, contrary to a quadratic forms based MPC cost, we no longer requir&;tliat
Ujes,$2; In order to obtain a solution to problem P1. Also, we consider the PWA system (18),
ie.

Tpy1 = AjiL’k + Bjuk + fj when xz, € XrnN Qj, j €S, (43)

instead of the PWL sub-system (22).
SinceQ has full-column rank there always exists a positive numb&ich that| Qx| > v||=||

for all z € R™. Then it follows that
L(z,u) > ||Qx|lec > Y]|Z]|oo, Vz €R™ VueR™.
For the terminal cost we have that
Fz) < max||Pilloc|elloc, V2 € 7.

Then it follows that theco-norms based terminal cost and stage cost satisfy Assumption V.1
for w(||z]) = Y|zl ¥(||z]]) = maxjes || Pjlloollz]|s, Which satisfy Assumption IV.1 and

Assumption V.2 (e.g. Assumption IV.1 is satisfied &) = 7 e, wheren € (0, 1)

0
max;es || Pjllo
ensures thaf(c) < ¢).

Hence, we have shown that Assumption V.1 appliesstenorms based hybrid MPC. In the
sequel we provide a method for calculating the terminal ¢ostnd the auxiliary control (19)

such that inequality (9) is satisfied for the PWA system (18).

A. Computation of the terminal weight(s) - Problem P1

Let sz' = {,f c Qj | dJu € U : Aj.T + BJU—F fj c QZ}, (],Z) e S xS and |et8t =
{(5,7) € S x S| Qj; # 0}. Note that the sef, defined here differs from the sé}, defined in
Section VI-A, since it also incorporates the indiges S, i.e. S;p = S;N{Sy x Sp}. The set of
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pairs of indicesS, can be easily determined off-line by solvigg linear programs. The s&,
contains all discrete mode transitions that can occur in the PWA system (43), (ijei)iE S;
then a transition frons2; to 2, can occur.

Substituting (43) and” in (9) yields that it is sufficient to find(P;, K;) | j € S} that satisfy:

1Pi((Aj+ B Kj)xr+ fi)lloo = |1 Pjnlloo + | Qnlloo + | RE k]| oo <0, Vap € Xr, (5,0) € S,
(44)
for (9) to be satisfied. Now consider the following-norm inequalities:

I1Pi(Aj + BiK;)P; "o + |QP; “llos + |RK; P oo <1 =156, (Jii) €S, (45)
and
1Pifilloo < vjill Pizlloe, VYo € XpN &y,  (4,4) €S, (46)

where;; € [0,1), (j,7) € S;. Note that, because of (20), (46) trivially holdsSf= S,.

Theorem VII.1 Suppose (45)-(46) is solvable in (P;, K;,~;;) where P; has full-column rank and
v;i € [0,1) for (j,i) € S;. Then (P}, K;) with j € S is a solution of the co-norm inequality (44).

The proof of Theorem VII.1 is given in the Appendix.

Remark VIL.2 If (P}, K;), j € S satisfy (44) it follows that
1Pi(Aj + Bil)xk + Pifilloo = [P7klloe < =7llzplloe <0, Va, € Xr\ {0}, V(j,i) €S

Hence, as indicated in Corollary V.3, tliéscontinuoudunction F'(z) = || P;z||- Whenz € Q;
is a local (piecewise linear) Lyapunov function for the dynamigs; = (A; + B; K;)zk + fj,

jES.

Finding the matrices”; and the feedback matricefs; that satisfy theco-norm inequality
(45) amounts to solving off-line an optimization problem subject to the consirail{ P;) = n
for all j € S. Note that this constraint can be replaced by the convex constR,Tilﬁ’; > 0.
Once the matriced’; satisfying (45) have been found, one still has to check that they also
satisfy inequality (46), provided that # Sy. For example, this can be verified by checking the
inequality
IPifillee <7 min Pl (i) € Si(Xr),

XTﬂQj
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where S;(Xr) := {(j,7) | Xr N, # 0} NS;. In order to overcome the difficulty of solving
(45)-(46) simultaneously, one can require that C U,cs,(2; is a positively invariant set only
for the PWL sub-system (22), as done in Section VI for hybrid MPC based on quadratic forms.
Note that the auxiliary control action (19) defines now a local state feedback, instead of a global

state feedback, as in Theorem VII.1. In this case Theorem VII.1 can be reformulated as follows.

Corollary VII.3 Suppose that the inequality
1P:(Aj + B KG) P [l + |QP; F[loo + | REP; || < 1 (47)

is solvable in (P;, K;) for P; with full-column rank for (j, i) € Sy and that X C U,cs,€2;. Then

(P;, K;) with j € S is a solution of the co-norm inequality (44).

Proof: Since Xy C U,cs,(2; it follows that the inequality (44) only needs to be satisfied
for (j,1) € Sy, whereS,, is the set of indices defined in Section VI-A. From (20) we have that
f; =0forall j € Sy, and thus, inequality (46) is directly satisfied with equality fr= 0 and

for all (j,7) € S. Then the result follows from Theorem VII.1. [ |

B. Computation of the terminal constraint set - Problem P2

From Remark VII.2 it follows that the terminal constraint et can be simply obtained in

the case obo-norms based hybrid MPC as
XT é UjES{I S Qj | H-P]xHOO S SO*}; (48)

wherey* = sup, {{z € Q; | [[Pjz]l« < ¢} C &Xy}. Since this set is a finite union of polyhedra

(at most a union ok polyhedra), Problem 111.2 leads to an MILP problem.

Remark VII.4 The level sets of the Lyapunov functidrii(z) = ||P;z|~ Whenz € Q; are
A-contractive sets [17] and they are finite unions of polyhedra (i.e. they are represented by a
polyhedron in each region of the PWA system). Hence, this yields a new method to obtain (in
finite time) piecewise polyhedrak-contractive setgor the class of PWA systems, which takes

into account also the affine ternfs for j € S;. If we setP; = P for all j € S, this yields a

new way to obtaimpolyhedral A\-contractive set$or PWA systems and switched linear systems.
Note that these sets can also be used as terminal constraint sets for hybrid MPC based on a

guadratic cost.
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C. How to choose the prediction horizon - Problem P3

In the case of amco-norms based MPC cost Problem 111.2 with the terminal constraint set
chosen as in Section VII-B leads to an MILP problem [5]. Two procedures for obtaining the
minimum prediction horizon needed to achieve feasibility of Problem 111.2 have been indicated
in Section VI-C.

D. Reduction of the computational complexity

This section gives some techniques to approach the computationally challenging problem
associated with inequality (45). If the matricé are known in (45), then the optimization
problem associated with the inequality (44) can be recast as a Linear Programming (LP) problem.
In the sequel we will indicate two ways to find “educated guessed”;pf € S. These methods
are based on the observation that a necessary condition for the existencePpntlagrices that
satisfy (45)-(46) is that'(z) = ||P;x||« Whenxz € ;, j € S is a piecewise linear Lyapunov
function of the closed-loop PWA system (43)-(19), as shown in Corollary V.3. Educated guesses
of P; are now based on functionS(x) that satisfy this necessary condition and hence, induce
what one might call “feedback controlled positively invariant sets”.

A quadratic approachOne possibility to fix the terminal weight in (45) is to use the approach
of Section VI-B to calculate a common polyhedral positively invariant/3dor the PWL sub-
system (22). IfP is symmetric, then a good choice for the terminal weight is the matrix
that induces the polyhedroR, i.e. P := {z € Ay | ||Pz|l < ¢}, ¢ > 0. Note that this
approach towards fixing the terminal weights is using some feedback mafices; € Sy}
calculated via semi-definite programming, i.e. as done in Section VI-A or in [16] in order to
obtain acommon quadratic Lyapunov functioHowever, these feedbacks, although they render
the resulting polyhedral set positively invariant, do not necessarily satisfy the inequality (45).
Fixing P; = P for all j € S in (45) and solving the remaining LP problem {i&; | j € So}
amounts to searching for a different state feedback control law, which not only renders the
employed set positively invariant, but also ensures that inequality (45) is satisfied.

“Squaring the circle”. Another way to obtain polyhedral (or piecewise polyhedral) controlled
positively invariant sets for PWA systems that admit a common (or a piecewise) quadratic
Lyapunov function is based on the result of Theorem VI.7. Giving additional structure to the

algorithm of [24] such that it generates a symmetric polyhedron with a finite number of facets,
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a polyhedral or a piecewise polyhedral positively invariant set can be obtained for system (22)
and thenP; can be chosen as the matrices that induce the corresponding polyhedra.
Example 3 Consider the following PWA chain of integrators:
Az + Byug if 011z, <0, [100]z, <2, [-100]x, <2
Tpt1 = § Agxy + Bouy if [01 1oy >0, [100Jap <2, [~10 0]z <2 (49)

Asxy + Bau, + f  otherwise

subject to the constraints, € X = [-10, 10]* andu; € U = [—2, 2], where
1 04 0.08 1 0.7 0.245 1 0.8 0.32
Ai=10 1 04|, A=0 1 07],4=|0 1 08/,
0 0 1 0 0 1 0 0 1
0.0107 0.0572 0.0853 0.3
Bi=1008 |, Bo={0245|, Bs=| 032 |, f=]0.1
0.4 0.7 0.8 0.1

The weights of the MPC cost atg = I3 and R = 0.1. The following solution to the inequality
(45) has been found using a min-max formulation and the Mdttahcon solver (CPU time

was5.65 seconds for a Pentium IV at 1.7GHz):

24.1304 20.3234  4.9959
P = 1203764 35.9684 10.5832| , K3 = [—0.8434 —2.063 —1.9809]7720'1747
6.3709 921  9.9118

K, = [—2.3843 —4.5862 —3.1858],K2= [—0.8386 —2.1077 —2.1084]. (50)

The terminal set has been obtained as in (48)dbr= 2.64 and is plotted in Figure 5. Due

to the input constraints we have th& C U;cs,€2; for system (49). However, it can be easily
checked that inequality (46) holds for system (49) andza#t X. The simulation results are
plotted in Figure 6 for system (49) with initial staig = [1.9 — 1 1]" and in closed-loop with

the MPC control (6) calculated for the matricés (Q and R given above,N = 5 (obtained
using the Hybrid Toolbox as in subsection VII-C) and with a polyhedral terminal set (i.e. the set
plotted in Figure 5). As guaranteed by Theorem V.2, the MPC control law (6) stabilizes system
(49) while satisfying the state and input constraints.
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Fig. 5. Example 3Xr - blue polyhedron.

o 5 10 15 20 25 30 35
Samples

Fig. 6. Example 3: State trajectory (up) and input history (down).

The maximal positively invariant set obtained with the MPT Toolbox [26] for Example 3 is
a non-convex union of 13 polyhedra. In this case, a prediction horizaw ef2 is required to
ensure thaty € Xy(N).

VIII. T ERMINAL EQUALITY CONSTRAINT

In this section we consider the case when a terminal equality constraint is employed to
guarantee stability, e.g. see [9] for details on this method. In this setting the termin&l (@93t
set equal to zero for alt and the terminal constraint set is taken’gs= {0} in Problem IIl.2.
This implies that the terminal constraint from Definition 11l.1 now becomgsy = 0. On one
hand, this method has the advantage that the problems P1 and P2 are solved directly. On the
other hand, the terminal equality constraint method usually requires a larger prediction horizon
for feasibility of the Problem III.2, which increases the computational complexity of the MPC

algorithm (e.g., for Example 3 a prediction horizon &f= 35 is required for feasibility with
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respect to the considered initial state).

Note that the terminal equality constraint method, although it has been used since the early
stages of hybrid MPC [1] has only been proven to guarantee attractivity for the closed-loop
system (e.g. see Theorem 1 of [1]). We show that under suitable assumptions Lyapunov stability
can also be achieved in this setting using the theory developed in Subsection V-B.

Consider an optimal sequence of controls obtained by solving Problem 111.2 aktime, i.e.
up = (up, Upyq,- -, up ) and letx;(xg, uy) == (2}, ,, ..., 25, y) denote the state sequence
generated by system (2) from initial statg and by applying the input sequenag. Note that

x;,n = 0. Let || - ||, denote an arbitrary-norm and consider the following assumption.
Assumption VIIl.1 There exist positive number$ such that||ju;_;|l, < Gi||zx|, for all z;, €
X¢(N),and alli =0,...,N — 1.

We will use the following result.

Lemma VIII.2 Under Assumption VIII. 1 there exist positive numbers «; such that
|25iilly < aillzkllp, forall x, € Xy(N) andforall i=0,...,N —1. (51)

The proof of Lemma VIII.2 is given in the Appendix. In the sequel we will show that the stage

cost L satisfies Assumption V.5 for both the quadratic forms case ang-tit@ms case.

Theorem VIII.3  Suppose that Assumption VIIL1 holds and L(z,u) = v " Qz+u' Ruor L(z,u) =
|1Qz||, + || Rull,. Then the stage cost L(x, u) satisfies Assumption V.5.

Proof: We have already proven in Section VI and Section VII thedatisfies the first part
of Assumption V.5 forw(||z||) = Amin(Q)]|z||% in the quadratic forms case and||z||) = 7||z ||
in the co-norms case. Note that the proof given in tkenorms case applies for amynorm.
Now we prove that the second part of Assumption V.5 is satisfied. Consider the quadratic forms
stage cost, i.eL(z,u) = ' Qx + u' Ru. From Lemma VIII.2 and by Assumption VIII.1 it

follows that:

L<I;;+i7 UZH) < )‘maX<Q)H$Z+¢H§ + )\maX(R)HUZH% <

< (0 Amax(Q) + B Amax(R)) [l I3 = cillzill3, Y € Xp(N), i =0,...,N -1,
(52)
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wherec; > 0 forall: =0,..., N — 1. By applying the same reasoning fopanorms stage cost,

i.e. L(xz,u) = ||Qx||, + ||Rul|,, it follows that:

Ly s ki) < NQlpllwkslly + 1 Rlplluglly <
< (il @llp + Bill Rllp) s llp = aillzell,  Var € Xp(N), 0 =0,..., N =1,
(53)
wherea; >0 foralli=0,..., N — 1.

Hence, the stage cost(z,u) satisfies Assumption V.5 forw(||z]]) = Amin(Q)|lz]|5 and
o(||z]]) = max;—o,_. y-1 c||z||3, for the quadratic forms case, and||z||) = v||x||, ande(]|z||) =
77777 ~N-1a;||z||, for the p-norms case. [ |

We have shown that Assumption V.5 holds for both quadratic formgpamarms based hybrid
MPC. Hence, it follows from Theorem VIII.3 and Theorem V.7 that Lyapunov stability can be
achieved forterminal equality constrainhybrid MPC. It is worth pointing out that in [19]
it has been shown that Lyapunov stability is achieved for terminal equality constraint MPC
of Lipschitz continuous nonlinear systems, based on the assumption that the captroése

Lipschitz continuous functions of the state (see Corollary 1 of [19] for details).

IX. CONCLUSIONS

In this paper we have derived sufficieatpriori conditions for Lyapunov asymptotic stability
and exponential stability of hybrid Model Predictive Control. We developed a general theory
which shows that Lyapunov stability can be achieved even if the considered Lyapunov function
and the system dynamics are discontinuous. This has been proven fotebwihal cost and
constraint seeandterminal equality constrainhybrid MPC. In the particular case of constrained
PWA systems and quadratic forms es-norms based cost functions, new procedures for cal-
culating the terminal cost and the terminal constraint set have been developed. If the MPC
cost is defined using quadratic forms, then the terminal cost is calculated via semi-definite
programming. For amo-norm based cost, the terminal cost is obtained by solving off-line
an optimization problem. Novel algorithms for calculating polyhedral or piecewise polyhedral
positively invariant sets for PWA systems have also been developed. The off-line computation of
these positively invariant sets is numerically more friendly in comparison with the computation

of the maximal positively invariant set. The theory has been illustrated by several examples.
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In summary, next to a general theory on stability of hybrid MPC, we provide a complete
framework for both quadratic forms ang-norms MPC schemes for PWA systems with @an
priori stability guarantee.

APPENDIX

A. Proof of Lemma VI.1

First we prove that the matrix inequality (24) and the LMI (25) are equivalent. We start by
applying the Schur complement to (25), which yields:

Q 0 0 Z;
Zj - (Zj }/jT (Aij + B]}/J)T> 0 R }/J >0
0 0 Zz7) \(A4Z+ BY))
Qt 0 0
and| 0 R! > 0 for all (j,i) € Sy. Since@ > 0 and R > 0 it follows that
0 0 Z

Z; 0
> 0.
( 0 Zj - Z,QZ; = Y;'RY; — (A;Z; + B;Y)) ' Z7 (A 25 + Bij))
SubstitutingZ; := P!, Z; := P ' andY; := K;P;"! in the above matrix inequality and pre-

i

P, 0
multiplying and post-multiplying with( > ( yields the equivalent matrix inequality
0

(24).

The proof that (24) and the LMI (26) are equivalent can be obtained by applying the method
used in the proof of Theorem 1 from [27] (in [27] the proof is only given for a common terminal
weight P and a linear feedback” due to constraints imposed by robustness). Finally, it can be
proven that (24) and the LMI (27) are equivalent by combining the technique used in the proof
of Theorem 2 from [28] (which deals with the stability of feedback controlled switched linear

systems) with the technique used above to prove the equivalency between (24) and (25).

B. Proof of Theorem VI.3

Since{(o1;,...,0n;), (Vs mi), K, Uji | (J,0) € S} satisfy the LMI (30)-(31)-(32) we
can apply the Schur complement to (30), which yields

Vis; V.l — (Aj + B;K;) Vil 'V, (A; + B;K;) — Q — K RK; — E;U;;Ej; > 0.
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By adding and subtractingd; + B, K;)"V;,V," (A; + B; K;) in the above inequality we obtain

the equivalent
ViSiVi' = (A + BiK;) ' ViEV, (A + B;K;) — Q — K] RK; — Ej;UsiEj; >
> (Aj + B K;) ViV (A + BiK;) — (A + BjK;) TV.EV, ' (A; + BjK;). (54)

From (31b) we have that—o;;v; > 0 foralll =1,...,n and allj € S,. Then, the inequality
1—vi01; o 0
Yii

l-% = : : >0

7 . . -

0 1—Ynioni
Y Tni

holds for alli € Sy and from (54) it follows that the inequality
Vis Vil = (A + B;K;)"VisiV;' (A; + BjK;) — Q — K] RK; — EJ,U;;Ej; > 0

is satisfied for al(j, i) € Sy. The matrix inequality (28) is obtained by lettifgy = V;X,V," > 0

for all j € Sy in the above inequality.

C. Proof of Theorem VI.6

1) If x € P thenx € X, for all . Hence, we have thaﬁ;la: e X;,_, forall j € Sy and all:.
Then Ajlq: € P for all j € §y. So,P is a positively invariant set for system (35) with arbitrary
switching. In order to prove that the sBtis maximal letP C Xy = X, be a positively invariant
set for system (35) with arbitrary switching. In order to use induction, we assuméthak’;
for somei. Due to the positive invariance a1, for anyx € P we have thatél;la: e P C X, for
all j € . Hence,x € &, ;. Thus,P C X;.1 and by induction” c X; for all i, which yields
PCNZ,X =P,

Now we prove thatP is a convex set. Assume th@& is the maximal positively invariant
set for system (35) with arbitrary switching. Then we have fRat a positively invariant set
for any linear system in (35) and then it follows from [29] that the convex hulPak also a
positively invariant set for any linear system in (35). Hence, the convex hil sfa positively
invariant set for system (35) under arbitrary switching. SiAgeis a convex set, it follows that
the convex hull ofP is included inXy. By maximality, the convex hull oP is also included in
P and thus,P is convex. As the origin is an equilibrium fan, ., = A;?lx,Vj e Sy, P contains

the origin.
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2) Assume that the algorithm (36) terminates’irsteps. Then, it follows directly fronk; C
X,_, forall i« > 0 that X; = X;. for all i > i* andP = X,.. Since Xy is a polyhedral set
and from the fact that the intersection of polyhedra produces polyhedra, it follows that the sets
X3 = Q}(Xy) N Xy are polyhedra for alj € S,. Then it follows that the set is a polyhedral
set and, for the same reasoki,, i = 2,3,..., are polyhedral sets. Then, it follows th&t is
also a polyhedral set.

3) The proof is essentially due to [23]. LEtdenote a\-contractive set with) < A\ < 1 for
system (35) under arbitrary switching that contains the origin in its interior. Then there exist
¢y > ¢ > 0 such thate,€ C Xy C €. Sincecy& is A-contractive, we have that any state
trajectory starting on the boundary of€ reaches in discrete-time steps the skic,£. Hence,
there exists ar* such that all the states trajectories starting instieC ¢.& lie in ¢, within
1* discrete-time steps. Sinegf is A-contractive and thus, positively invariant, it follows that if
a state trajectory stayi$ discrete-time steps insid&y, then it stays in forever. Hencéj;- C P
and thus X;- = P.

4) This follows directly from 1) and from Lemma VI.5.

D. Proof of Theorem VII.1
Since{(P;, K;,v;:) | (j,1) € S} satisfy (45) it follows that
1Pi(Aj + B KG) Py oo + 1QP; " lloc + |REGP; o +75i =1 <0, (j,i) €S, (55)
Right multiplying the inequality (55) with| P;z.||~ and using the inequality (46) yields:
0> [|Pi(A; + B KG) Py lool| Piilloo + QP llool| Pyl
+ il Pawlloo + |1 REG P Nlool Pialloo — 1 Pjalloo >
> || Pi(Aj 4 BiK;) Py Pkl oo + |QP; " Pie]| oo
+ 1P filloo + |1 REG P Pizglloo = | Palloo >
> |Bi(A; + BiKj)wk + Pifjlloc + | REjkll oo + [|Q2k]l00 — || PjTkloo- (56)

Hence, inequality (44) holds.
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E. Proof of Lemma VIII.2

We will use induction to prove Lemma VIII.2. Far= 0, the inequality||z; ||, < ozl

holds for anyo > 1. Suppose|z; ||, < o;l|zk||, holds for some) < i < N —2. Now we will
prove that it holds for + 1. We have that

HxZ-;-z'-s-al = ||ij;;+i + Bj“lt:-s—i + fj”p when xZ-H‘ € XfUV) nQ;, Jes.

Since there exists a positive numhieisuch that||z|[, > p for all z € U;cs,€2; and f; = 0 for
J € So, it follows that there exists a positive numb#esuch that|| f;||, < ||z, for all z € R™

and allj € S. Then, by Assumption VIII.1 it follows that

[@ksisille < NA 1ol ekrille + 11Bjllp ekl + 115l <
< max([[4lly + Gill Billp + Okl (57)

Hence, by the induction hypothesis it follows that

||$lt:+i+1||p < ai-&-lHIkaa

for a; 1 = maxjes(||A;ll, + Bil| Bjllp + )i > 0.
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