
Static Analysis Techniques for Session-Oriented Calculi

Lucia Acciai1, Chiara Bodei2, Michele Boreale1, Roberto Bruni2, and Hugo T. Vieira3

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy
{lacciai,boreale}@dsi.unifi.it

2 Dipartimento di Informatica, Università di Pisa, Italy
{chiara,bruni}@di.unipi.it

3 CITI/Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal
htv@fct.unl.pt

Abstract. In the S project, core calculi have been adopted as a linguistic
means to model and analyze service oriented applications. The present chapter
reports about the static analysis techniques developed for the S session-
oriented core calculiCaSPiS and CC. In particular, it presents a type system
for client progress and control flow analysis inCaSPiS and type systems for
conversation fidelity and progress inCC. The chapter gives an overview of the
type systems, summarizes the main results and presents the analysis of a common
example taken from the S financial case-study: the credit request scenario.

1 Introduction

In Chapter 2-1 the core calculi for service specification and analysis developed within
S have been introduced. These calculi are classified according to the approach
adopted to maintain the link between the caller and the callee. We focus here onsession-
oriented calculi, where a private channel is implicitly instantiated upon service invoca-
tion between the caller and the callee. Specifically, we report on the static analysis
techniques developed within the project forCaSPiS andCC. Recall that inCaSPiS
sessions are binary, whereas inCC sessions, also calledconversations, may dynami-
cally involve multiple parties.

As far asCaSPiS is concerned, we provide contributions towards developing tech-
niques for safe client-service interaction and preventing misuses at the so-called appli-
cation logic level.

We first introduce a type system providing guarantees ofclient progress[1]. This
system ensures that, in a well-typedCaSPiS process and in absence of divergence, any
client invoking a service is guaranteed not to deadlock in a conversation with a service.
The type system builds upon behavioral types techniques [11], as the behavior of a
CaSPiS process is abstracted by means of a simpler-like term. A key point, though,
is that types account only for flows of I/O value-types, ignoring the rest. In particular,
it is not necessary to equip the language of types with constructs to describe sessions.
Indeed, considering the tree describing the nesting of sessions, a service invocation can
produce effects only at the parent level. It is then sufficient to associate to each process
a two-level type taking into account just the current-level interactions and the upper-
level effects. In order to guarantee progress of the invoker, the system relies on a notion

of compliancebetween the client and the service protocols, which is essential to avoid
deadlocks.

The second contribution is a Control Flow Analysis forCaSPiS [3] that can de-
tect and prevent certain misuses at the application logic level. The presence of bugs at
this level may often lead to undesired behavior or to security attacks, calledapplication
logic flaws. This Control Flow Analysis system statically approximates the behavior of
CaSPiS processes, in terms of the possible service and communication synchroniza-
tions. More precisely, what the analysis predicts includes everything that may happen,
while what the analysisdoes notpredict corresponds to something that cannot hap-
pen. The session mechanism is particularly valuable for the kind of analysis we use,
because it guarantees that sibling sessions established between different instances of
the same service and the corresponding clients do not interfere one with the other by
leaking information, with two main consequences: first, the analysis can focus on each
client-server conversation separately and second, it can focus on the application logic.

We also propose analysis techniques for systems specified inCC, addressingcon-
versation fidelityandprogress[8]. Conversation fidelity captures the fact that all partic-
ipants in a multiparty conversation follow the protocols of interaction, while progress
– differently from client progress discussed above – guarantees absence of deadlocks
in the whole system. We introduce two separate but complementary techniques: to dis-
cipline multiparty conversations we introduce conversation types, a novel and flexible
type structure, able to uniformly describe both the internal and the interface behavior
of systems, referred respectively as choreographies and contracts in web-services ter-
minology. To guarantee deadlock freedom we introduce a progress proof system that
relies on a notion of ordering of events and, crucially, propagation of orderings in com-
munications.

Structure of the chapter.The chapter is organized in three main sections. Section 2
introduces a type system guaranteeing client progress inCaSPiS; it discusses the main
results and proves that client progress is guaranteed in the considered scenario. A simple
variation of the scenario is also considered in order to show how the system rules out
processes not guaranteeing the client progress property. Section 3 introduces a Control
Flow Analysis preventing business logic flaws inCaSPiS, proves that the proposed
analysis technique enjoys the subject reduction property and, in order to show how
logic flaws are detected, applies this technique to (a variation of) the running example.
Section 4 introduces the type system for conversation fidelity and the progress proof
system inCC, together with their main properties. Both proposals are then applied to
the running example in order to prove that it enjoys conversation fidelity and progress.
Finally, Section 5 concludes the chapter.

2 A Type System for Client Progress inCaSPiS

In this section we introduce a type system providing guarantees of client progress. There
are three key aspects involved in its design. A first aspect concerns abstraction: types
focus on flows of I/O value-types and ignore the rest (actual values, service calls, . . .).
Specifically, akin to [11], types take the form of-like terms describing I/O flows of

2

processes. In fact, a tiny fragment of, with no synchronization and restriction, is
employed, where the role of atomic actions is played by basic types. A second aspect
concerns compliance of client protocols with service protocols, which is essential to
avoid deadlocks. In the type system, the operational abstractions provided by types are
employed to effectively check client-service compliance. To this purpose, types are re-
quired to account for process I/O behavior quite precisely. Indeed, approximation might
easily result into ignoring potential client-service deadlocks. A final aspect concerns the
nesting of sessions. A session at a lower level can exercise effects on the upper level,
say the level of any enclosing session. To describe this phenomenon, the system keeps
track of the behavior both at the current level and at the level of a (fictitious) enclosing
session, along the lines of those in [7,12,13]. This results in type judgments of the form
P : [S]T, whereS is the current-level type andT is the upper-level effect of P. Note
that the distinction between types and effects we make here is somehow reminiscent of
the type-and-effects systems of [15], with the difference that our effects are very simple
(sequences of outputs) and are exercised on an upper level of activity rather than on a
shared memory.

2.1 Language Fragment

We consider here a sub-calculus of theclose-free fragment ofCaSPiS [6], that we call
CaSPiS−, where return prefixes have always an empty continuation and service pro-
tocols do not return any value. From the technical point of view, both limitations are
necessary in order to guarantee a two-way operational correspondence between pro-
cesses and the corresponding types (see [1] for the details). From the practical point of
view, the latter limitation means that, once a session is started, for the service there will
be no “feedback” of sort as to what is going on inside the session. This is somehow
consistent with the idea that services should be stateless entities. Hence, terms of the
form r . Q, whereQ is a service protocol, cannot produce any visible effect and they
might be executed anywhere in the system, not necessarily on the service side. Indeed,
under these restrictions, it turns out to be technically convenient to slightly modify the
operational semantics so thatQ, the service protocol, andP, the client protocol, are
both executed at the side of the invoking client. The resulting session will be denoted
by [P|||Q]. Note that session names, which in the full language are used to locate the
two session endpoints, become redundant, as the endpoints now share the same loca-
tion. Hence session names are discarded right away. To sum up, the setP of CaSPiS−

processes is generated by the following grammar (whereF andV are respectively the
patterns and values defined in [6] andu can be either a name or a variable)

π ::= (F)
∣∣∣ 〈V〉 P ::=

∑
i∈I πi .Pi

∣∣∣ 〈V〉↑ ∣∣∣ s.P ∣∣∣u.P ∣∣∣ [P|||Q]
∣∣∣P > Q

∣∣∣P|Q ∣∣∣ (νs)P ∣∣∣ !P .
Both the structural congruence and the labeled transition relation defined in [6] can

be modified as expected to accommodate these changes. In particular, some operational
rules must be replaced by the homonymous rules shown in Table 1. Notice that upon a
synchronization of a service call with the corresponding service definition, the service
protocolR is sent to the invoker and executed on its side, (S-S). Returns are enabled
only on the client side of sessions, (S-R).

3

(D)
s.P

s〈P〉
−−→ 0

(C)
s.P

s(Q)
−−→ [P|||Q]

(S-R) P
(νv̂)〈v〉↑

−−−−−→ P′

[P|||Q]
(νv̂)〈v〉
−−−−→ [P′|||Q]

(S-S) P
(νñ)s〈R〉
−−−−−→ P′ Q

s(R)
−−→ Q′

[P|||Q]
τ
−→ (νñ)[P′|||Q′]

Table 1.Labeled Semantics

2.2 Proving the Client Progress Property

The client progress property will be defined in terms of an error predicate. Informally,
an error occurs when the client protocol of an active session tries to send a value to (or
receive from) the service side, but the session as a whole is blocked. This is formalized
by the predicate→ERR defined below. In the definition, we rely on the standard notion
of contexts, C[·],C′[·], We say a context isstatic if its hole is not under the scope of
a dynamic operator (input and output prefixes, replication, service definitions and invo-
cations and the right-hand side of a pipeline). In essence, active subterms in a process
P are those surrounded by a static context.

Definition 1 (error). P→ERR if and only if whenever P≡ C[[Q|||R]] , with C[·] static,

and Q
η
−→, with η ::= (v)

∣∣∣ (νv̂)〈v〉, then[Q|||R] 6
η′

−→, with η′ ::= τ
∣∣∣ s(P′).

Note that “pending” returns are not taken into account in this definition. Indeed, a
return is seen as an output at the upper level, (S-R), and the error, if any, is detected
in the parent session, if it exists.

A process guarantees client progress if it is error-free at run-time.

Definition 2 (client progress).Let P ∈ P. We say Pguarantees client progressif and
only if whenever P→∗ P′ then P′ 6→ERR.

The above definition of error may seem too liberal, as absence of error does not

actually guarantee progress of the session if [Q|||R]
s(P′)
−−−→ and services is not available.

In fact, we are interested in processes where such situations do not arise: we call these
processesavailable.

Definition 3 (available process).We letavailablebe the largest predicate on processes
satisfying the following conditions. If P isavailablethen(i) whenever P≡ (νŝ)C[s.P′],

for some static C[·], and C[0] →∗ Q then Q→∗
(νñ)s〈R〉
−−−−−→ for someñ and R; and(ii)

whenever P→ Q′ then Q′ is available.

Here, clause (i) guarantees that the system (without interacting with service invocation
s.Q) can always reduce into a state where services is ready to be invoked and clause
(ii) guarantees that availability is preserved by reductions.

4

(-O) Γ ` P : [S]T Γ ` u : b
Γ ` 〈u〉.P : [!b.S]T (-C) Γ ` u : V Γ ` P : [S]T S ∝ V

Γ ` u.P : [T]0

(-R) Γ ` u : b
Γ ` 〈u〉↑ : [0]!b

(-P)

Γ ` P : [S]T Γ ` Q : [
∑

i∈I ?bi .Ui]V
out(S) ⊆

⋃
i∈I {bi} NoSum(S)

Γ ` P > Q : [SZ
∑

i∈I ?bi .Ui](T|S @V)

Table 2.Rules of the type system

Types.Types are essentially a fragment of corresponding to processes [9]. We
presuppose a setBt of base types, b, b′, . . . which include namesortsS,S′, More-
over, we presuppose a generic base-typing relation, mapping base values and service
names to base types, writtenv : b, with the obvious proviso that service names are
mapped to sorts and base values are mapped to the remaining base types. The setT of
types is defined by the grammar below.

α ::=!b
∣∣∣?b
∣∣∣ τ T,S,U,V ::=

∑
i∈I αi .Ti

∣∣∣T |T ∣∣∣ !T
Notice that, like in [7,12], we need not nested session types in our system, because in
order to check session safety it is sufficient to check local, in-session communications.
In what follows we abbreviate with0 the empty summation type.

The operational semantics of types can be found in [1]. It is worth to recall that
input and output prefixes, ?b and !b, cannot synchronize with each other – we only
have interleaving in this fragment of.

The basic requirement for ensuring client progress istype compliancebetween
client and service protocols involved in sessions. In the following, we indicate with
λ the coactionof λ: ?b =!b and!b =?b. This notation is extended to sets of actions
as expected. Moreover, we indicate withI (S) the set of initial actionsS can perform:

I (S) = {λ , τ | ∃S′ : S
λ
−→ S′}. Type compliance is defined co-inductively and guar-

antees that, given two compliant typesS (the client’s protocol) andT (the service’s
protocol), at any stage of a computation eitherS is stuck or there is at least one (weak)
action fromS matched by a (weak) coaction fromT.

Definition 4 (type compliance).Let beS,T ∈ T . Type complianceis the largest rela-
tion on types such that wheneverS is compliant withT, writtenS ∝ T, it holds that

– either I(S) = ∅ andS
τ
−→/

– or (a) eitherS
τ
−→, or T

τ
−→, or I(S) ∩ I (T) , ∅; and (b) the following holds true:

1. for eachS′ such thatS
τ
−→ S′ it holds thatS′ ∝ T;

2. for eachT ′ such thatT
τ
−→ T ′ it holds thatS ∝ T ′;

3. for eachS′ andT ′ such thatS
λ
−→ S′ andT

λ
−→ T ′ it holds thatS′ ∝ T ′.

Type system and results.The type system is along the lines of those in [7,12]; the most
interesting rules are reported in Table 2 (the missing ones can be found in [1]). We
presuppose a mappingob from sorts{S,S′, . . .} to typesT , with the intended meaning
that if ob(S) = T then names of sortS represent services whose abstract protocol isT.

5

We takes : T as an abbreviation ofs : S andob(S) = T for someS. A contextΓ is
a finite partial mapping from types to variables. Foru a service name, a base value or
a variable, we takeΓ ` u : b (resp.Γ ` u : T) to mean either thatu = v : b (resp.
u = s : T) or u = x ∈ dom(Γ) andΓ(x) = b (resp.Γ(x) = T). In the process syntax, we
attach type annotations to input variables as expected. Type judgments are of the form
Γ ` P : [S]T, whereΓ is a context,P is a possibly open process with fv(P) ⊆ dom(Γ)
and S and T are types. Informally,S and T represent respectively thein-session, or
internal, and theexternaltypes ofP. The first one describes the actionsP can perform
at the current session level (see (-O)), while the second one represents the outputs
P can perform at the parent level (see (-R)). Notice how, in (-C), the premises
ensure compliance between client and service internal types. Rule (-P) deserves
some explanations. We impose some limitations on the types of the pipeline operands.
First, the right-hand process is a summation of input-prefixed processes. Second, we
make sure that the left-hand type does not contain any summation. Third, we make
sure, through out(S) ⊆

⋃
i∈I bi , that each (type of) output on left-hand side of a pipeline

can be matched by (the type of) an input on the other one. Formally, out(S) corresponds
to the set of allbs that occur in output prefixes (!b) in S. The auxiliary functionsZ and
@ are used to build respectively the internal and the external type ofP > Q starting
from the types ofP andQ. In essence, bothSZU andS @V spawn a new copy of type
U andV, respectively, in correspondence of each output prefix inS. The main difference
is that in@ inputs and silent prefixes inS are discarded, while inZ they are preserved.
Both Z and@ are defined by induction on the structure of types, the case of output
prefixes is described below, definitions for the omitted cases can be found in [1].

!b.SZ
∑

i∈I αi .Ui =
∑

i∈I τ.(Ui |SZ
∑

i∈I αi .Ui) !b.S @U = U|(S @U)

The first step towards proving that well-typed processes guarantee client progress is
establishing the usual subject reduction property (Proposition 1). Then, we prove a type
safety result (Theorem 1), stating that a well typed process cannot immediately generate
an error. These are sufficient to conclude that in well-typed and available processes
sessions never stuck, unless the client has terminated its protocol, Corollary 1. The
proofs follow the lines of those in [1] and are omitted.

Proposition 1 (subject reduction).Suppose∅ ` P : [S]T. Then whenever P
τ
−→ P′

then either∅ ` P′ : [S]T or S
τ
−→ S′ and∅ ` P′ : [S′]T.

Theorem 1 (type safety).Suppose P is well typed. Then P6→ERR.

Corollary 1 (client progress). Suppose P is well typed. Then P guarantees client
progress.

2.3 Client Progress in the Credit Request Scenario

We reconsider theCaSPiS specification of the Credit Request Scenario (see Chapter
0-2) introduced in Chapter 2-1. Here we add typing annotations for input variables and
ignore termination handling, which is not dealt with by the type system. So, termina-
tion handlers are discarded andclose actions are replaced by the empty process. E.g.,
CreditPortalbecomes

6

CreditPortal
a

= !CrReq.(?id : id)select(?logged: bool) from CheckUser(id)
inif loggedthen 〈“Valid” 〉Creation(id)

else〈excpt(“ InvalidLogin”) 〉

We assume that values of the formexcpt(“string”) are of base typeexception.
Moreover, we assume that each name has associated a homonymous sort, e.g.creditD :
creditD. Finally, we assume that each call to an auxiliary service in the system is
well typed and returns either boolean values or strings as expected. Suppose now
CrReq : TCrReq, where:

TCrReq
a

= ?id.
(
τ.!exception
+ τ.!string.?creditD.

(
τ.!exception
+ τ.!string.?bals.!string.?secs.

(τ.!(offer).(?bool+?bool) + τ.Seval+ τ.Seval)
))

Seval

a

= τ.!(offer).(?bool+?bool) + τ.!(decline).(?bool+?bool) .

Then, the whole systemSysis well typed, indeed the client protocol has type

UClPr

a

=!id.
(
?exception+?string+?string.!creditD.(

?exception+?string+?string.!bals.?string.!secs.

(?(offer).!(bool) +

?(decline).(τ.!bool + τ.!bool))
))

and it is easy to check thatUClPr ∝ TCrReq. Therefore, client progress is guaran-
teed. Notice that serviceCrReq is persistent therefore, assuming that all auxiliary ser-
vices are persistent too,Sys(see Chapter 2-1) isavailable and this guarantees that
CreditRequester, the invoker, will never block.

Consider now another client,CreditRequester′ below, that does not expect an ex-
ception after sending its credentials:

CreditRequester′
a

= CrReq〈id〉
(
(“Valid”)CR + (“Valid”)0

)
.

Clearly, if we replace the previous client with this one, the system will not be well
typed. Indeed, the client protocol inCreditRequester′ is well typed under

UClPr′

a

=!id.(?string+?string.!creditD. . . .)

but UClPr′ 6∝ TCrReq.

3 From Discovering Type Errors to Preventing Business Logic
Flaws

The type system we have seen in Section 2 gives important guarantees about the overall
compatibility of interaction protocols between callers and callees, but cannot prevent
application logic flaws.

We have investigated this issue, in [3], by adapting the techniques used in the field
of network security (see e.g., [5,4]) to that of services. In particular, we have provided a

7

Control Flow Analysis ofCaSPiS, that is shown able to detect some possible misuses
and to help prevent them, by taking appropriate counteractions. The analysis statically
approximates the behavior ofCaSPiS processes, in terms of the possible service and
communication synchronizations. More precisely, what the analysis predicts includes
everything that may happen, while what the analysisdoes notpredict corresponds to
something that cannot happen. The model of attacker we are interested in is a bit dif-
ferent from the classical Dolev-Yao one: themalicious customeris an insider or, more
precisely, an accredited user of a service that has no control of the communication chan-
nels, but that does not follow the intended rules of the application protocol. The analysis
implicitly considers the possible behavior of such an attacker.

3.1 Language Fragment

For the sake of brevity, we focus here on a simplified version of theclose-free fragment
of CaSPiS, where the pipeline construct is rendered asP > (?x̃)Q: it spawns a fresh
instanceQ[ṽ/x̃] of Qon any value ˜vproduced byP. Note that the variables ˜x to be bound
after pipeline synchronization are included in a special input (? ˜x), calledpipeline input
preceding the right branch process. Moreover, we employ sessions polarities to mark a
clear distinction between the two sides involved:r− .P andr+ .Q. To distinguish among
different occurrences of the same service, we annotate each of them with a different
index, as ins@k. The synchronization on the services, on the occurrencess@k ands@m,
results then in a session, identified byr p

s@m:k, where p is the polarity. Similarly, we
distinguish each pipeline operator with a different labell, as in>l and we identify the
left branch with a labell0 and the right branch withl1. The variables ˜x affected by the
pipeline input in the right branch of the pipeline, are also identified by the labell1, as in
P >l (?x̃l1)Q. Note that these annotations do not affect the semantics, whatsoever.

3.2 The Control Flow Analysis

The analysis over-approximates all the possible behaviors of aCaSPiS process, in
terms of communication and service synchronizations. The analysis uses the notion
of enclosing scopeσ, recording the current scope due to services, sessions or pipelines.
The result of analyzing a processP is a pair (I,R), calledestimatefor P. The first com-
ponentI gives information on the contents of a scope. The second componentR gives
information about the set of values to which names can be bound.

A proposed estimate (I,R) is correct, if it satisfies the judgements defined by the
axioms and rules in the upper (lower, respectively) part of Table 3.

First, we check that (I,R) describes the initial process. This is done in the upper
part of Table 3, where the clauses amount to a structural traversal of process syntax (we
have omitted rules for parallel composition, restriction and replication, on which the
analysis is just propagated to the arguments).

The clause for service definition checks that whenever a services@k is defined in
s@k.P, then the relative hierarchy position with respect to the enclosing scope must be
reflected inI, i.e.s@k ∈ I(σ). Furthermore, when inspecting the contentP, the fact that
the new enclosing scope iss@k is recorded, as reflected by the judgementI,R |=s@k P.
Similarly for service invocationx@k: the only difference is that whenx is a variable,

8

I,R |=σ s@k.P iff s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ x@k.P iff ∀s@m ∈ R(x) : s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ r p

s@m:k . P iff r p
s@m:k ∈ I(σ) ∧ I,R |=r p

s@m:k P

I,R |=σ Σi∈Iπi Pi iff ∀i ∈ I : I,R |=σ πi Pi

I,R |=σ (?x̃).P iff (?x̃) ∈ I(σ) ∧ I,R |=σ P
I,R |=σ 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉 ∈ I(σ) ∧ I,R |=σ P
I,R |=σ 〈x̃〉↑.P iff ∀ṽ ∈ R(x) 〈ṽ〉↑ ∈ I(σ) ∧ I,R |=σ P
I,R |=σ P >l (?x̃l1)Q iff l0, l1,I(l0),I(l1) ∈ I(σ) ∧ I,R |=l0 P ∧ I,R |=l1 (?x̃l)Q
I,R |=l0 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉l0 ∈ I(l0) ∧ I,R |=l0 P

I,R |=l1 (?x̃l1).P iff (?x̃l) ∈ I(l1) ∧ I,R |=l1 P

(S ervice S ynch) s@m ∈ I(σ) ∧ s@k ∈ I(σ′)
⇒ r+s@m:k ∈ I(σ) ∧ I(s@m) ⊆ I(r+s@m:k) ∧

r−s@m:k ∈ I(σ′) ∧ I(s@k) ⊆ I(r−s@m:k)
(I/O S ynch) 〈ṽ〉 ∈ I(r p

s@m:k) ∧ (?x̃) ∈ I(r p
s@m:k)⇒ ṽ ∈ R(x̃)

(Ret S ynch) 〈ṽ〉↑ ∈ I(r p
s@m:k) ∧ r p

@m:k ∈ I(r p′

s′@n:q) ∧ (?x̃) ∈ I(r p′

s′@n:q)
⇒ ṽ ∈ R(x̃)

(Pipe I/O S ynch) 〈ṽ〉l0 ∈ I(l0) ∧ (?x̃l1) ∈ I(l1)⇒ ṽ ∈ R(x̃)
(Pipe Ret S ynch) 〈ṽ〉↑ ∈ I(r p

s@m:k) ∧ r p
s@m:k ∈ I(l0)

∧ (?x̃l1) ∈ I(l1)⇒ ṽ ∈ R(x̃)

Table 3.Analysis forCaSPiS Processes

the analysis checks for every actual values that can be bound tox that s@k ∈ I(σ)
andI,R |=s@k P. The clauses for input, output and return check that the corresponding
prefixes are included inI(σ) and that the analysis of the continuation processes hold as
well. There is a special rule for pipeline input prefix, that allows us to distinguish it from
the standard input one. Note that the current scope has the same identifier carried by the
variables. Similarly, there is a rule for output prefixes occurring inside the scope of a left
branch of a pipeline. The corresponding possible outputs are annotated with the label
l0. The rule for session, modeled as the one on service definition and invocation, just
checks that the relative hierarchy position of the session identifierr p

s@m:k with respect
to the enclosing scope must be reflected inI, i.e. r p

s@m:k ∈ I(σ). It is used in analyzing
the possible continuations of the initial process.

The clause for pipeline deserves a specific comment. It checks that whenever a
pipeline>l is met, then the analysis of the left and the right branches is kept distinct
by the introduction of two sub-indexesl0 for the left one andl1 for the right one. This
allows us to predict possible communication over the two sides of the same pipeline.
Furthermore, the analysis contents of the two scopes must be included in the enclosing
scope identified byσ. This allows us to predict also the communications due to I/O
synchronizations, involving prefixes occurring inside the scope of a pipeline.

In the second phase, we check that (I,R) also takes into account the dynamics of
the process under consideration, i.e. the synchronizationsτ due to communications,
services and pipelines. This is expressed by the closure conditions in the lower part of

9

Table 3 that mimic the semantics, by statically modeling the semantic preconditions
and the consequences of the possible actions. More precisely, the precondition checks,
in terms ofI, for the possible presence of the redexes necessary for an action to be
performed. The conclusion imposes the additional requirements onI and onR, neces-
sary to give a valid prediction of the analyzed action. In the clause forService Synch,
we have to make sure that the precondition requirements are satisfied, i.e. that: (i) there
exists an occurrence of service definition:s@k ∈ I(σ); (ii) there exists an occurrence
of the corresponding invocations@m ∈ I(σ′). If the precondition requirements are sat-
isfied, then the conclusions of the clause express the consequences of performing the
service synchronization. In this case, we have thatI must reflect that there may exist
a session identified byr+s@m:k insideσ and byr−s@m:k insideσ′ , such that the contents
(scopes, prefixes) ofs@m:k and ofs@m may also be insideI(r+s@m:k) andI(r−s@m:k), re-
spectively. Similarly, in the clause forI/O S ynch, if the following preconditions are
satisfied: (i) there exists an occurrence of output inI(r p

s@m:k); (ii) there exists an occur-

rence of the corresponding input in the sibling sessionI(r p
s@m:k), then the values sent

can be bound to the corresponding input variables. In other words a possible commu-
nication is predicted here. Note that the rule correctly does not consider outputs in the
form 〈ṽ〉l0, because they possibly occur inside a left branch of a pipeline and therefore
they are not available for I/O synchronizations. The other rules are analogous.

Our analysis is correct with respect to the given semantics, i.e. a valid estimate
enjoys the following subject reduction property.

Theorem 2 (Subject Reduction).If P
τ
→ Q andI,R |=σ P then alsoI,R |=σ Q.

In the following, we refer to the version ofCaSPiS that includes pattern matching into
the input construct. Furthermore, we need to consider the possible presence of thema-
licious customer, that is anaccredited customer of a servicethat has no control of the
communication channels, apart from the one established by the sessions in which he/she
is involved. Nevertheless, our attacker does not necessarily follow the intended rules of
the application protocol and can try to use the functions of the service in an unintended
way, e.g., by sending messages in the right format, but with contents different from the
expected ones. More precisely, he/she has a knowledge made of all the public infor-
mation and increased by the messages received from the service: the attacker can use
his/her knowledge to produce messages to be sent to the server. The presented analy-
sis is part of a more complex analysis, that implicitly considers the possible behavior
of such an attacker. The complete analysis takes care of the malicious customer pres-
ence, by statically approximating its possible knowledge, represented as a new analysis
componentK . Intuitively, the clauses acting onK implicitly take the attacker possible
actions into account. The componentK contains all the free names, all the messages
that the customer can receive, and all the messages that can be computed from them,
e.g., ifv andv′ belong toK , then also the tuple (v, v′) belongs toK and, vice versa, if
(v, v′) belongs toK , then alsov andv′ belong toK . Furthermore, all the messages in
K can be sent by the customer.

10

Prtl ≡ CrReq.(?xusr,?xcred,?xbals,?xsecs)
(Upd.〈xusr, xbals, xsecs〉(?xack)〈go〉↑ >l (Dcsn(xusr, xcred) >l′ Offer))

Dcsn(u, c) ≡ (?xgo)Rate.〈u, c〉((AAA,?xoffer)〈true, xoffer〉
↑ + (BBB,?xrisk)Clerk(xusr, xrisk))

Clerk(u, r) ≡ ReqCk.〈u, r〉(?wresponse,?woffer)〈wresponse,woffer〉
↑ >l′′

(?uresponse,?uoffer)〈uresponse,uoffer〉
↑

Offer ≡ (?zresponse,?zoffer)〈zresponse, zoffer〉((true,?zcred) + (false,?zdecline)0)
CR(usr) ≡ CrReq.(νcred, bals, secs)〈usr, cred, bals, secs〉

(true,?yoffer)〈eval(yoffer, cred)〉0

I(∗) 3 CrReq,CrReq, r+CrReq, r
−
CrReq

I(CrReq)3 (?xusr,?xcred,?xbals,?xsecs), l0, l1,I(l0),I(l1)
I(r+CrReq) 3 r−U pd, r

−
Rate, r

−
ReqCk

R(xusr) 3 usr,R(xcred) 3 cred,R(xbals) 3 bals,R(xsecs) 3 secs
I(l0) 3 Upd
I(Upd) 3 〈usr, bals, secs〉, (?xack), 〈go〉↑

I(l1) 3 l′0, l
′
1,I(l′0),I(l′1)

I(l′0) 3 (?xgo),Rate
I(Rate)3 〈usr, cred〉((AAA,?xoffer), 〈true, offer〉↑,I(l′′0) 3 ReqCk
I(l′′1) 3 (?uresponse,?uoffer)〈response, offer〉↑(BBB,?xrisk),ReqCk, l′′0 , l

′′
1 ,I(l′′0),I(l′′1)

I(ReqCk)3 〈usr, risk〉, (?wresponse,?woffer), 〈response, offer〉↑

I(l′1) 3 (?zresponse,?zoffer), 〈response, offer〉, (true,?zcred), (false,?zdecline)
I(CrReq)3 〈usr, cred, bals, secs〉, (true,?yoffer), 〈offer, cred〉, 〈offer, cred′〉, 〈false, decline〉

Table 4.Specification of Our Scenario and Some Entries of its Analysis

3.3 Control Flow Analysis of the Scenario

For brevity, we refer to a quite simplified version of the Credit Request Scenario, leaving
aside authentication through the credit protal and approval by supervisor. We also omit
some service counterparts, whose specification is trivial. In this particular toy example,
the application logic flaw has been introduced on purpose, in order to illustrate our
methodology. Still, we think it is representative of analogous flaws, reported in the
literature, as the price modification one [14], handled in [3].

The introduced application logic flaw is related to the handling of requested amount
of credit, here not considered for the outcome of the clerk approval request. Note that, as
in the original specification, the evaluation of the clerk is not dependent on the requested
amount of credit.

The scenario specification and some of the main entries of the analysis are reported
in Fig.4, where∗ identifies the ideal outermost scope in which the system top-level ser-
vice scopes are. We assumeeval(o, c) either evaluates to (false, decline) (the conditions
offered by the bank are not convenient) or to (true, c) wherec is the amount for which
the credit is requested. The analysis directly considers the resulting values foreval.

Note that the variable ?zcredit in Offer may be bound to any value the costumer sends,
in particular to any credit valuecred′, possibly higher thancred. This is reflected by the
analysis, because ifcred′ ∈ K , we also have that〈offer, cred′〉 belongs toI(CrReq).

11

This application flaw depends on the fact that there is no pattern matching on the values
received; more generally, no control on this part of input is made. To avoid this problem,
we can modify the specification ofOffer, by assuming it expects to receive a specific
valuec on the critical input, in our example the valuecred initially bound toxcred:

Offer′(c) ≡ (?zresponse,?zoffer)〈zresponse, zoffer〉((true, c) + (false, decline)0) .

4 Conversation Types

In the previous sections we have focused our analysis on the interaction between two
parties, typically a client and a server. However, service-oriented applications often
rely on collaborations between several partners, usually established dynamically and
without centralized control. A central concern in the development of service-oriented
systems is thus the design of interaction protocols that allow for the decentralized and
dynamic collaboration between several parties in a reliable way. Within the S

project we have developed a novel type-based approach that copes with such challeng-
ing scenarios involving dynamically established multiparty collaborations [8].

In the remainder of this section we discuss the analysis techniques introduced
in [8] that support the verification of key properties, namely conversation fidelity and
progress, addressing scenarios where multiple parties interact in a conversation, even
when some of them are dynamically called in to participate, and where parties inter-
leave their participation in several of such collaborations, even in the dynamically estab-
lished ones. Such challenging scenarios are of interest as they can be found in realistic
service-oriented applications, and fall out of scope of previous approaches—namely the
works on multiparty session types [10,2]. Our techniques, although independent, may
be viewed as complementary. In fact, it is their combined use that allows us to prove
the progress property.

4.1 Analyzing Multiparty Protocols with Conversation Types

In [8] we introduced a type theory for analyzing concurrent multiparty interactions as
found in service-oriented computing based on the notion of conversation (see Chapter
2-1). A conversation is a structured, not centrally coordinated, possibly concurrent, set
of interactions between several participants. The notion of conversation builds on the
fundamental concept of session, but generalizes it along directions. In particular, con-
versation types discipline interactions in conversations while accounting for dynamical
join and leave of an unanticipated number of participants.

Our type system combines techniques from linear, behavioral, session and spatial
types (see [8] for references): the type structure features prefixM.B, parallel composi-
tion B1 | B2 (to represent concurrent behavior), and also choice and branch types that
capture alternative behavior: the former characterizes processes that can perform one
of the Mi .Bi choices, and the latter characterizes processes that can perform either one
of the Mi .Bi branches. MessagesM describe external (receive ?/ send !) exchanges in
two views (d): with theenclosing(�) andcurrentconversations (�). They also describe

12

B ::= B1 | B2

∣∣∣ 0
∣∣∣ recX.B ∣∣∣ X ∣∣∣ �i∈I {Mi .Bi}

∣∣∣ Ni∈I {Mi .Bi} (Behavioral)

M ::= p ld([B]) (Message) p ::= !
∣∣∣ ? ∣∣∣ τ (Polarity)

L ::= n : [B]
∣∣∣ L1 | L2

∣∣∣ 0 (Located) T ::= L | B (Process)

Fig. 1.Conversation Types Syntax.

∀i∈I (Bi = B−i ./ B+i)

�i∈I {τ l�i (C).Bi} = �i∈I {! l�i (Ci).B+i } ./ Ni∈I {? l�i (Ci).B−i }
(Plain)

M1 # M2.B2 B′1 | B
′
2 = B1 ./ M2.B2

M1.B′1 | B
′
2 = M1.B1 ./ M2.B2

(Shuffle)
B1 # B2

B1 | B2 = B1 ./ B2
(Apart)

Fig. 2.Behavioral Type Merge Relation Selected Rules.

internal message exchanges (τ). The type language is shown in Fig. 1. Notice that con-
versation types mix, at the same level in the type language, internal/global specifications
(τ message exchanges) with interface/local specifications (output! and input? types).

Key technical ingredients in our approach to conversation types are the amalgama-
tion of global types and of local types (in the general sense of [10]) in the same type
language, and the definition of a merge relation ensuring, by construction, that par-
ticipants typed by the projected views of a type will behave well under composition.
Merge subsumes duality, in the sense that for eachτ-free B there are typesB, B′ such
that B ./ B = τ(B′), so dyadic sessions are special cases of conversations. But merge
of types allows for extra flexibility on the manipulation of projections of conversation
types, in an open-ended way. In particular, our approach allows fragments of a con-
versation type (e.g., a choreography) to be dynamically distributed among participants,
while statically ensuring that interactions follow the prescribed discipline.

Building on the capability to mix local and global specifications, we are able to
describe, via the merge relation, arbitrary decompositions of the protocol in the roles
of one or more parties. This allows, in particular, for a single participant to be initially
typed with a fragment of the protocol that will be dynamically delegated away, which is
crucial to support conversation join. We writeB = B1 ./ B2 to say thatB is a particular
(in general not unique) behavioral combination of the typesB1 andB2. The merge of
two independent types (measured up toapartness# which determines if the types have
distinct message alphabets) yields the independent composition of the two types. How-
ever, when the types specify behaviors that may synchronize, then the merge relation
introduces an internal message exchangeτ in the type to represent such synchroniza-
tion potential. Thus, the merge of two behaviors is defined not only in terms of spatial
separation, but also, and crucially, in terms of merging behavioral “traces”. Fig. 2 shows
a selection of the merge relation rules.

We may then characterize the behavior ofCC systems by means of conversation
types. Our type system singles outCC processes that enjoy some safety properties,
namely that are free from a certain kind of runtime errors, and also that their processes,
at runtime, follow the protocols prescribed by the types. The behavioral types capture
the protocols of interaction in a single conversation. Since processes, in general, may

13

P :: T1 Q :: T2

P | Q :: T1 ./ T2
(Par)

P :: L | B

ld!(n).P :: (L ./ n : C) | �{! ld(C).B; B̃}
(Output)

P :: T | a : [B] (closed(B))
(νa)P :: T

(Res)
P :: L | B

n J [P] :: (L ./ n : [�B]) | loc(�B)
(Piece)

Fig. 3.Selected Typing Rules.

interact in several conversations, characterizing aCC system involves describing the
several protocols the process has in each conversation. Then, the typing judgment:P ::
B | n : [Bn] | m : [Bm] | o : [Bo] | . . . specifies that the behavior of processP in
conversationsn, m, . . . is captured by behavioral typesBn, Bm, . . ., respectively. Notice
that, sinceCC processes may interact in the current and enclosing conversations, the
typing judgment considers an unlocated behavioral typeB. Such a typing judgement
P :: T intuitively says that if processP is placed in a context where a process that
behaves likeT is expected then we obtain a safe system.

We show a selection of the rules of our type system in Fig. 3. Rule (Par) says that the
composition is well typed under the merge of the types of the branches. Recall the merge
explains the composition of two processes by synchronizing behavioral traces. Rule
(Res) types the name restriction by checking if the behavioral type of the restricted con-
versation is closed, in such case eliding it in the conclusion of the rule. Closed behav-
ioral types characterize processes that have matching receives for all sends—roughly,
a closed type is defined exclusively on messages of polarityτ. The type associated
to a process only describes the behaviors in the visible conversations, and the closed
condition avoids hiding a conversation where there are unmatched communications.

The premise of rule (Output) specifies that the continuation processP defines some
located behaviorL and some unlocated behaviorB. Then, the output prefix is typed
by the merge of the delegated conversation fragmentn : C with the located behavior
L, along with a choice type that includes the output action specified in the prefix with
respective continuation. Notice that the conversation fragment piece that is delegated
away is actually a separate./ view of conversationn, which means that the type being
sent may actually be some separate part of the type of the conversation. This mechanism
is crucial to allow external partners to join in on ongoing conversations in a disciplined
way. The behavioral interface of the output prefixed process is a choice type, as the
process can choose the specified action from any set of choices that contains it.

We may now state our type safety results. To describe how typings are preserved
under process reduction we introduce a notion of type reduction which is a reflexive
relation obtained by the closure under static contexts of ruleτ ld(C).B → B: hence,
synchronizations in the process are explained byτ message types. We may then pre-
cisely characterize the preservation of typing by means of type reduction.

Theorem 3 (Subject Reduction).Let process P be such that P:: T. If P → Q then
there is T→ T′ such that Q:: T′.

Subject reduction thus guarantees that well-typedness is invariant under process reduc-
tion. Moreover, each reduction in a process is explained by a reduction in the type.
Reflexivity in the type reduction relation is required since it allows us to abstract away
from message synchronizations that occur at the level of restricted conversations.

14

Our type safety result asserts that certain error processes are unreachable from well-
typed processes. Error processes are configurations where there is an active race on a
(linear) message, which means two processes are willing to send or waiting to receive
the same message. Thus, a process is not an error only if for each possible immediate
interaction in a message there is at most a single sender and a single receiver. We prove
well-typed systems are error free, and thus are error free throughout their evolution.

Proposition 2. If P is a well-typed process then P is not an error process.

Corollary 2 (Type Safety).Let P be a well-typed process. If there is Q such that P
∗
→

Q, then Q is not an error process.

Our type safety result ensures that, in any reduction sequence arising from a well-typed
process, for each message ready to communicate there is always at most a unique in-
put/output outstanding synchronization. Subject reduction also entails that any message
exchange in the process must be explained by aτM prefix in the related conversation
type, implying conversation fidelity: all conversations follow the prescribed protocols.

4.2 Proving Progress of Conversations

In this section we present the progress proof system, introduced in [8], which allows us
to verify that systems enjoy a progress property. While the conversation type system al-
lows us to guarantee that conversations follow the prescribed protocols, it is not enough
to guarantee that the systems do not get stuck, due to, e.g., communication dependen-
cies between distinct conversations. As most traditional deadlock detection methods
(see [8] for references), we build on the construction of a well-founded ordering on
events. Roughly, we must check that the events specified in the continuation of a prefix
are of greater rank with respect to the event relative to the prefix itself.

The challenge is how to statically account for the orderings of events on conversa-
tions which will only be dynamically instantiated. To solve this problem we attach to
our events a notion of prescribed ordering: the ordering that captures the event order-
ing expected by the receiving process, that the emitted name will have to comply to. In
such way, we are able to statically determine the orderings followed by the processes
at “runtime”, through propagation of orderings in the analysis of message exchanges
that carry conversation identifiers. Technically, we proceed by developing a notion of
event and of event ordering that allow us to verify thatCC processes can be ordered in
a well-founded way, including when conversation references are passed around.

Definition 5 (Event orderings and Events).We say relationΓ between events is an
event ordering if it is a well-founded partial order of events. We denote by(x)Γ an event
ordering parameterized by x. Events, noted e, are defined as e,e1, . . . ::= n.l.(x)Γ.

Event orderings capture the overall ordering of events. Parameterized event orderings
are used to capture the prescribed ordering of conversation fragments that are passed in
messages. Events describe a message exchange by identifying the name of the conver-
sation, the label of the message, and the parameterized event ordering.

We may then characterize the event ordering inCC systems by means of a proof
system that associatesCC systems to event orderings. The proof system is presented by

15

means of judgments of the formΓ `` P, which state that the communications of process
P follow a well determined order, given by event orderingΓ, where` keeps track of the
identities of the current and enclosing conversations ofP.

We show the rule that orders the output prefix process:

(`(d).l.(x)Γ′ ⊥Γ) `` P Γ′{x←n} ⊆ (`(d).l.(x)Γ′ ⊥Γ)
Γ `` ld!(n).P

(Output)

In rule (Output), we take the event associated to the prefix (`(d).l.(x)Γ′ where`(d) iden-
tifies the conversation,l is the message label and (x)Γ′ specifies the prescribed ordering
for the conversation reference passed in the message) and verify that the continuation is
ordered by events greater than`(d).l.(x)Γ′. Also, and crucially, we check that the name
being passed in the output complies with the ordering prescribed in the event (x)Γ′ by
verifying that such prescribed ordering, where the variablex is replaced by the name to
be sentn, is contained in the ordering of events greater than`(d).l.(x)Γ′. In such way,
we ensure the overall ordering is still respected after the name passing.

We may now present our progress results. First, we prove orderings are preserved
under process reduction. Then, we present our main progress result, where we exclude
processes that are stuck. We distinguish stuck processes from finished processes, which,
intuitively, can be viewed as collections of service definitions, where there are no pend-
ing service calls, neither linear protocols to be fulfilled. We then consider finished pro-
cesses to be in a stable state, despite the fact they have no reductions.

Theorem 4. Let process P be such thatΓ `` P. If P→ Q thenΓ `` Q.

Theorem 5 (Progress).Let P be a process such that P:: T, where closed(T), and

Γ `` P. If P
∗
→ Q then either Q is a finished process or there is Q→ Q′.

Theorem 5 thus ensures that in systems that get past our rules, services are always avail-
able upon request and protocols involving interleaving conversations never get stuck.

4.3 Typing the Credit Request Scenario

In this section we show the typing for the credit request scenarioCC implementation
given in Chapter 2-1. TheCC code for the credit request, theCreditRequestSystem,
presents a challenging scenario for analysis techniques as it involves collaborations
between multiple parties established in a dynamic way and where parties interleave their
participation in several conversations, including ones to which they have dynamically
gained access to. The typing judgment for the entire system is shown in Fig. 4, where we
focus on the typing of the Finance Portal conversation, along with the definitions of the
abbreviations introduced for the service types (e.g.,acsT for AuthCreditServiceType).

The typing of theFinancePortalconversation captures the interactions in services
CreditRequest, ReviewApp andAuthCredit, along with the messagesrequestApp
andrequestEval which are exchanged between the service instances, each identify-
ing in the argument type the conversation fragment delegated in the communications.
For instance, the (first) argument type of messagesrequestEval andrequestApp is
�{! approved�(); ! denied�()}, which captures the client conversation fragment dele-
gated from theCreditRequest instance to theReviewApp service instance, and from

16

CreditRequestSystem::

FinancePortal: [

τ CreditRequest([crsT]) | τ ReviewApp([rasT]) | τ AuthCredit([acsT])

| τ requestApp([�{! approved�(); ! denied�()}], idT,dataT)

| τ requestEval([�{! approved�(); ! denied�()}], idT,dataT)]

| Bank: [τ RateCalc([rcsT]) | . . .]

| Client : [. . .] | Clerk : [. . .] | Manager: [. . .]

crsT , ? login�(idT).? request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{! approved�() ; ! denied�()}

rasT , ? login�(idT).! show�(idT,dataT).N{? pass�() ; ? deny�()}

acsT , ? login�(idT).! show�(idT,dataT).N{? accept�() ; ? reject�()}

rcsT , ? userData�(dataT).! rateValue�(rateT)

Fig. 4.Typing the Credit Request ScenarioCC Implementation.

theReviewApp service instance to theAuthCredit service instance, respectively, al-
lowing for the reply to the client to originate in the other service instances.

The conversation types for each service interaction are obtained by merging service
provider and service user behaviors. For instance, the interaction between the client and
the finance portal is captured by the merge of theCreditRequest service type (crsT)
with the client role in the service conversation:

τ login�(idT).τ request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{τ approved�() ; τ denied�()}

=

? login�(idT).? request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{! approved�() ; ! denied�()}

./

! login�(idT).! request�(dataT).N{? approved�() ; ? denied�()}

Notice that the merge yields a closed type: hence, all communications are matched.
Notice also that theCreditRequest service type (crsT) still refers some internal com-
munications (τ message types in messagesuserData andrateValue). This is crucial
to support the dynamic join of theRateCalc service to theCreditRequest service
conversation, as it allows for theCreditRequestcode to further along delegate a conver-
sation fragment toRateCalc, while ensuring that the overall protocol is followed.

We may also show that the events in theCreditRequestSystemare well ordered, and
thus ensure that theCreditRequestSystemenjoys some fundamental properties.

Corollary 3. The CreditRequestSystem enjoys conversation fidelity and progress.

5 Conclusion

We have reported on the static analysis techniques developed forCaSPiS andCC, two
session oriented calculi developed within the S project [1,3,8]. Each technique

17

aims at guaranteeing a specific property one would expect from service oriented ap-
plications. Our models and techniques may be complementary used and combined in
order to provide provide as many guarantees as possible on the correctness of services’
behavior.

The most relevant related works have been discussed throughout the chapter. More
extensive discussions on related techniques and possible extensions can be found in the
original papers introducing the approaches reported here [1,3,8].

References

1. L. Acciai and M. Boreale. A type system for client progress in a service-oriented calculus. In
P. Degano, R. D. Nicola, and J. Meseguer, editors,Concurrency, Graphs and Models, volume
5065 ofLecture Notes in Computer Science, pages 642–658. Springer-Verlag, 2008.

2. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.
Global Progress in Dynamically Interleaved Multiparty Sessions. In F. van Breugel and
M. Chechik, editors,CONCUR 2008, volume 5201 ofLecture Notes in Computer Science,
pages 418–433. Springer-Verlag, 2008.

3. C. Bodei, L. Brodo, and R. Bruni. Static detection of logic flaws in service-oriented applica-
tions. In P. Degano and L. Viganò, editors,ARSPA-WITS, volume 5511 ofLecture Notes in
Computer Science, pages 70–87. Springer-Verlag, 2009.

4. C. Bodei, L. Brodo, P. Degano, and H. Gao. Detecting and preventing type flaws at static
time. Journal of Computer Security, 2009. To appear.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static validation of
security protocols.Journal of Computer Security, 13(3):347–390, 2005.

6. M. Boreale, R. Bruni, R. D. Nicola, and M. Loreti. Sessions and pipelines for structured
service programming. In G. Barthe and F. S. de Boer, editors,FMOODS, volume 5051 of
Lecture Notes in Computer Science, pages 19–38. Springer-Verlag, 2008.

7. R. Bruni and L. G. Mezzina. Types and deadlock freedom in a calculus of services, sessions
and pipelines. In J. Meseguer and G. Rosu, editors,AMAST, volume 5140 ofLecture Notes
in Computer Science, pages 100–115. Springer-Verlag, 2008.

8. L. Caires and H. Vieira. Conversation Types. In G. Castagna, editor,ESOP 2009, volume
5502 ofLecture Notes in Computer Science, pages 285–300. Springer-Verlag, 2009.

9. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable for basic
parallel processes. In E. Best, editor,CONCUR, volume 715 ofLecture Notes in Computer
Science, pages 143–157. Springer-Verlag, 1993.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In G. Nec-
ula and P. Wadler, editors,POPL 2008, pages 273–284. ACM Press, 2008.

11. A. Igarashi and N. Kobayashi. A Generic Type System for theπ-Calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

12. I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orchestration and con-
versation in service-oriented computing. InSEFM, pages 305–314. IEEE Computer Society,
2007.

13. L. Mezzina.Typing Services. Phd thesis in computer science, IMT Institute for Advanced
Studies, Lucca, 2009.

14. Neohapsis Archives.Price modification possible in CyberOffice Shopping Cart.
http: //archives.neohapsis.com/archives/bugtraq/2000-10/0011.html.

15. J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf. Comput., 111(2):245–296,
1994.

18

