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Abstract. The dating of the cores we drilled from the Gal-
lipoli terrace in the Gulf of Taranto (Ionian Sea), previously
obtained by tephroanalysis, is checked by applying a method
to objectively recognize volcanic events. This automatic sta-
tistical procedure allows identifying pulse-like features in a
series and evaluating quantitatively the confidence level at
which the significant peaks are detected. We applied it to
the 2000-years-long pyroxenes series of the GT89-3 core, on
which the dating is based. The method confirms the dat-
ing previously performed by detecting at a high confidence
level the peaks originally used and indicates a few possible
undocumented eruptions. Moreover, a spectral analysis, fo-
cussed on the long-term variability of the pyroxenes series
and performed by several advanced methods, reveals that the
volcanic pulses are superimposed to a millennial trend and a
400 years oscillation.

1 Introduction

The study of climatic time series measured in marine sedi-
ment cores allows reconstructing past natural variability. In
order to reliably reveal both high and low frequency oscil-
lations, long high-resolution time series are required (e.g.,
Martinson et al., 1995). Moreover, in these researches, an
accurate dating guarantees the reliability of the measured cli-
mate proxy records.

Over the last 20 years, the Torino cosmo-geophysics group
has carried on researches based on the study of climatic time
series measured in shallow-water sediment cores drilled from
the Gallipoli terrace in the Gulf of Taranto (Ionian Sea). This
is a particularly favorable site for high resolution climatic
studies, due to a high sedimentation rate and to the possibil-
ity of accurate dating, offered by presence along the cores of

Correspondence to:C. Taricco
(taricco@ph.unito.it)

volcanic markers, related to eruptive events occurred in Cam-
panian area, a region for which an accurate documentation
of the major eruptions is available, starting from the Pom-
pei plinian event (79 AD). Historical documents are quite de-
tailed for the last 350 years (a complete catalogue of eruptive
events, starting from 1638, is given byArnò et al.(1987)),
while they are rather sparse before that date.

The absolute dating of several cores retrieved from the
Gallipoli Terrace, at a water depth of about 200 m (Cini
Castagnoli et al., 1990, 1992; Bonino et al., 1993; Cini
Castagnoli et al., 1999, 2002), was obtained using radiomet-
ric methods and tephroanalysis. The210Pb method (Krish-
naswamy et al., 1971), applied to the upper 20 cm of the
cores, revealed that 1 cm of mud is deposited in about 15.5
years. In order to check the sedimentation rate determined by
this method and its constancy with depth, the number density
of pyroxene grains was measured along the cores. In the sed-
iment layers expected on the basis of the210Pb dating, 22
sharp peaks were identified, that correspond to known vol-
canic eruptions occurred in the Campanian area during the
last two millennia. The linear time-depth relation turned out
to beh=(0.0645±0.0002)yBT, whereh is depth in cm and
yBT means year-before-top (top=1979 AD), with a correla-
tion coefficientr=0.99. The slope of this line is the sedimen-
tation rate, which remained constant over the last two millen-
nia and across the whole Gallipoli Terrace (Cini Castagnoli
et al., 1990, 1992; Bonino et al., 1993; Cini Castagnoli et al.,
2002).

In this paper we employ an automatic statistical methodol-
ogy, allowing the objective identification of pulse like-events
in a series, to extract the volcanic peaks from the long py-
roxenes series measured in the shallow-water core GT89-3.
Timing and intensity of events and the associated posterior
probability are determined by fitting to the series a statistical
model including a slowly changing component or baseline,
an abruptly changing component representing the volcanic
signal and a white noise background. We describe the results
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Fig. 1. Pyroxenes series measured in the GT-89-3 shallow-water
Ionian core.

obtained by applying this method, useful to test our original
dating approach.

2 The series

The pyroxene series measured in the GT89-3 core is shown
in Fig. 1. This core was sampled every 2.5 mm, correspond-
ing to a sampling intervalTc=3.87 years; 506 samples were
measured, covering the interval from 20 to 1975 AD. In this
series, two huge peaks, corresponding to the eruptions of
Pompei (79 AD) and Ischia (1301 AD) are present; another
smaller but still very pronounced peak marks the Pollena
eruption (472 AD).

3 The method

The method for the automatic extraction of pulse-like sig-
nals, applied here, was proposed byNaveau et al.(2003)
(see alsoNaveau and Amman, 2005). The model originated
from the need of solving modeling drawbacks, that emerged
when analyzing time series resulting from the superposition
of an irregular, abruptly changing pulsatile component and
a slowly changing one. The approach has a general validity
and can be applied to every series with these characteristics,
such as a volcanic record.

From a statistical point of view, this procedure allows to
accurately and objectively identify the timing of pulse-like
events and to extract their intensities from the noisy and low-
frequency components of the signal. The model also esti-
mates the signal subsequent evolution and provides, by asso-
ciating a posterior probability to each extracted spike, a con-
fidence measure that allows focusing on those events which
have been detected with high probability, while considering

the other ones as background noise. Unlike the classical
threshold techniques, this method takes into account the time
variability of the noisy component of the series and uses the
local characteristics of the signal to associate to each pulse
a probability which is not necessarily linked to the absolute
intensity of the spike.

The time series is split into three main components, as-
sumed to be mutually independent:y(t)=x(t)+f (t)+ε(t),
wherey(t) is the observed time series,x(t) is the abruptly
changing component (in our case the pulsatile volcanic sig-
nal),f (t) is the baseline (i.e. the slowly changing component
representing the long-term trend and possible low-frequency
components) andε(t) indicates Gaussian white noise with
zero mean and standard deviationσε .

The volcanic signalx(t) is modeled by a multi-process dy-
namic linear model. The parameters estimation for this kind
of models becomes more and more complicated at the grow-
ing of the number of compartments which are dealt with.
The one-compartmental model, represented by an exponen-
tial decay (Kushler and Brown, 1991), thus turns out to be
the easiest one for deriving the system transfer function: the
signalx(t) is represented by an exponential-decay-towards-
baseline model, which decomposes it into a pulsatile vol-
canic inputv(t) convoluted with an exponential decay, that
expresses the damping with time of the eruption effect.

For series sampled at constant rate, the exponential decay
reduces to a first-order autoregressive process AR(1), so that
x(t) is represented byx(t)=ax(t−1)+v(t), wherea (with
|a|<1) is a constant representing the exponential decay and
v(t) is a random variable modeling the strength of the erup-
tion: v(t)=N(µx, σ

2
x ) if o(t)=1 andv(t)=0 if o(t)=0. Here

o(t) is a binary Bernoulli random variable, whose parameter
π=P [o(t)=1] denotes the a priori probability of observing
an eruption at time t. So ifo(t)=1 (eruption), the volcanic
input is equal to a random normal variable with meanµx and
varianceσ 2

x ; if o(t)=0 (no eruption),v(t) is zero.
As it is well known, the general definition of multi-process

dynamic linear models is based on the idea that it exists a
finite number of underlying processes and that an observa-
tional mechanism allows us to observe only one of them at
each time; in our case, the pyroxenes time series pulsatile
component is simply represented by two latent processes, re-
spectively having and not having an eruption (a pulse) at a
given timet .

The slowly changing componentf (t) is modeled by a
smoothing spline, which, thanks to its flexibility, is the most
natural choice for the time-dependent trend. By modify-
ing the stochastic model proposed byWahba(1978) for a
smoothing spline of degree 2m-1,Kushler and Brown(1991)
showed that a polynomial smoothing spline can be expressed
in a state-space form. Following their approach, the system
equation for the long-term trend is written in terms off (t)

and its first m-1 derivatives and is interpreted as the combina-
tion of a straight line plus a perturbation represented by an m-
dimensional Gaussian vector with zero mean and covariance
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elements depending on the smoothness parameterλ, which
controls the smoothness of the curve. Thus, the perturbation
is modeled as a random effect representing the smoothing de-
viation of the overall fitted curve from the straight line. The
most commonly used form for the polynomial spline, i.e. the
cubic spline (corresponding to m=2), is then adopted in the
model.

The slowly and the abruptly changing components present
in the series require a simultaneous estimation. Assuming
an additive structure in the state-space frame, all the pre-
vious models are then embedded into a unified state-space
model (SSM) belonging to the large class of Multi-Process
State-Space Models, which is employed for the coinciden-
tal estimation of both the series components (the volcanic
pulses and the background trend) and the associated noise,
thus overcoming the previously mentioned modeling draw-
backs. The state-space representation (also known astime
domain approach) provides a convenient and compact way
to model and analyze systems with multiple inputs and out-
puts. Unlike thefrequency domain approach, this kind of
representation is not limited to systems with linear compo-
nents and zero initial conditions.

Let us recall that the basic idea of a state-space model is
that a dynamic system is not directly observable without er-
rors, so that the observations of a system state consist of a
latent state (state vector) and a multiplicative or an additive
random error. The structure of the system is fully described
by the state vector, which in general contains the unknown
parameters that are to be determined (structural parameters)
and other parameters controlling the structure of the system.
In particular, the observed time seriesy(t) is generated by
two structural equations:

– the observation-level equation, a matrix representation
for y(t), which is now defined as a linear combination
of the state vector representing the various unobserved
(or latent) components of the system and an additive,
normally distributed random error. This first equation
gives an idea of how the different forcings can influence
the observations;

– the system-level equation, a simultaneous matrix rep-
resentation of both the latent processesx(t) andf (t),
modeling the forcings temporal dynamics. More gener-
ally, this is a Markov transition equation, which speci-
fies the latent processes structure by describing the state
vector time-evolution, and gives a clear interpretation of
the structural parameters.

The Multi-Process State Space Model is preferable to
other approaches from a statistical point of view, since it re-
duces errors propagation and, thanks to its hidden Marko-
vian structure, it allows to adopt existing efficient estimation
procedures, such as the Multi-process Kalman Filter (MKF)
(Harrison and Stevens, 1971, 1976). This recursive forward
algorithm, characterized by one-step-ahead prediction and

filtering steps, allows the evaluation of the state vector poste-
rior probability and of an approximate likelihood function,
which is maximized to produce maximum likelihood esti-
mates for the unknown parameters (Guo and Brown, 2000).
MKF is an extension of the most common Kalman filter (ap-
plied to Gaussian state-space models) used when the assump-
tion of normality breaks down, i.e. when the state vector fol-
lows a mixture of distributions, as in the case of the pulsatile
component of our pyroxenes series. Notice that the essen-
tial difference between Kalman filtering and a conventional
linear model is that the state vector is not assumed to be con-
stant, but it may change in time according to a system of
differential equations.

Following the work byGuo et al.(1999), who put for-
ward the use of this method in the biological and medical
field, Naveau et al.(2003) apply an extended MKS approach
to obtain the volcanic inputv(t) posterior probability from
the state-vector estimate, by augmentingv(t) into the sys-
tem state vector. At each time step, four model outputs are
calculated:

– f (t) = baseline (long-term trend)

– v(t) = volcanic input

– x(t) = volcanic signal

– p(t) = a posterioriprobability of an eruption

In the present work, we have applied the original Gaus-
sian peak-amplitude-distribution model (Naveau et al., 2003;
Guo et al., 1999). The outputs have been computed using
the software freely made available athttp://www.cceb.upenn.
edu/pages/wguo/.

An underlying assumption of the model is that the mag-
nitudes of the extracted volcanic pulses follow a Gaussian
distribution, while only the largest events usually leave a
clear and distinct signature in the sediments, so that the vol-
canic spike amplitudes follow a heavy skewed distribution
rather than a Gaussian one, taking values outside the Gaus-
sian tail. Since the model assumption of pulses homogene-
ity thus breaks-down for the two dominant peaks in the py-
roxenes time series (Pompei and Ischia), we have performed
the analysis excluding these two amplitude extremes, by di-
viding the series into two parts: 150–1250 AD and 1350–
1975 AD.

In order to be able to model also the largest volcanic erup-
tions, the statistical distribution followed by the volcanic
pulses magnitudes should be asymptotically approximated
by a Generalized Pareto Distribution (GPD), which is able
to fit extremes from any continuous distribution and not only
from a Gaussian sample (Naveau and Amman, 2005).

After applying the statistical model, we have checked
if the computed baseline agrees with the spectral low-
frequency components, identified by applying several ad-
vanced spectral methods: Singular Spectrum Analysis
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(SSA), Multi-Taper Method (MTM) and Wavelet Transform
(WT).

The SSA technique was designed to extract information
from short and relatively noisy time series, such as climatic
ones. It provides data-adaptive filters that separate the time
series into components that are statistically independent and
can be classified as trends, oscillatory patterns and noise. The
trends need not be linear and the oscillations can be ampli-
tude and phase modulated. SSA has been applied to many
instrumental and proxy climate records (e.g.,Ghil and Vau-
tard, 1991; Plaut et al., 1995; Cini Castagnoli et al., 2002);
two review papers (Ghil and Taricco, 1997; Ghil et al., 2002)
and references therein cover both methodology and other ap-
plications. Significant variability components may be recon-
structed by this method (Ghil and Vautard, 1991; Ghil and
Taricco, 1997; Ghil et al., 2002). For the calculations we
have used the freeware SSA-MTM Toolkit (Vautard et al.,
1992) athttp://www.atmos.ucla.edu/tcd/ssa/.

The MTM (e.g.,Ghil and Yiou, 1996; Ghil and Taricco,
1997; Ghil et al., 2002) is a high-resolution spectral method
by which significant oscillatory components in a series can
be singled out, both assuming a red noise background and a
background of locally white noise (i.e. a colored noise pro-
cess that varies slowly but arbitrarily with frequency: a hy-
pothesis allowing for noise background with a complicated
structure (Mann and Lees, 1996)), and then reconstructed.

The WT allows an evolutionary spectral analysis of a se-
ries in the time-scale plane (e.g.,Foufoula-Georgiou and Ku-
mar, 1994; Percival and Walden, 2000). The concept of scale
is typical of this method: the scale is a time duration that can
be properly translated into a Fourier period, and hence a fre-
quency. The Continuous Wavelet Transform (CWT) in spec-
tral applications is discretized by computing it at all available
time steps and on a dense set of scales (Torrence and Compo,
1998). The square modulus of the transform expresses spec-
tral density as a function of time and frequency. A filtered
version of the signal can then be reconstructed selecting only
the contributions from a given set of frequencies. By time
averaging the CWT at each value of frequency (scale), the
Global Wavelet Spectrum (GWS) and the corresponding sig-
nificance levels can be computed, using a background spec-
trum of red noise, thus obtaining a time-averaged spectral es-
timate comparable with those obtained by classical methods.
However, CWT is a multiresolution analysis: frequency res-
olution is high at low frequency and poor at high frequency
(Torrence and Compo, 1998). It is therefore particularly
suited for determining the frequency of oscillations in the
low-frequency range of the spectrum and to reconstruct them
accurately. The calculations have been performed according
to the guidelines given inTorrence and Compo(1998).

The arbitrarily discretized CWT described above is redun-
dant: the number of samples derived from CWT is much
greater than the minimum that would be sufficient to ensure
that all the information present in the original signal is re-
tained, so that the signal can be reconstructed from the trans-

form values. In other words, CWT may be seen as an ex-
pansion of the series in a non-orthogonal basis. The idea of
critical sampling (retaining the minimum information nec-
essary for signal reconstruction) and of an orthogonal basis
leads to the Discrete Wavelet Tranform (DWT), that can be
quickly computed through an efficient algorithm (pyramidal
algorithm) developed byMallat (1989). For computational
reasons, the DWT is performed on series of lengthN equal to
an integer powerJ of 2: N=2J . The DWT allows an additive
decomposition of a series into a low-frequency ”smooth” and
a number of high-frequency “details” (Percival and Walden,
2000). More specifically, the series is expressed by the sum
of J+1 details, where eachj -th detail (j=1, J+1) expresses
the variations of the signal at larger and larger scales asj in-
creases and the(J+1)-th one is equal to the sample mean
of the observations. Let us now consider a particular level
of decompositionj0. The sum of all the details of level
greater thanj0 (i.e., from j0+1 to J+1) is defined as the
j0-th level smooth, and represents the cumulative sum of the
variations that are not expressed by thej0 remaining details;
of course, it will be smoother and smoother asj0 increases.
In other words, the fine scale features (high frequency oscil-
lations) are captured mainly by the low-level detail compo-
nents, while the coarse scale components (smooth and high-
level details) correspond to lower frequency oscillations of
the signal. This decomposition is known as MultiResolution
Analysis (MRA).

Giving up orthogonality and thus returning to a certain
degree of redundancy, the DWT scheme can be modified
in order to gain interesting features that DWT does not
posses. This approach is known under several names, as
Non-Decimated Discrete Wavelet Transform or NWT (Na-
son and Silverman, 1995) and Maximal Overlap Discrete
Wavelet Transform or MODWT (Gencay et al., 2002). The
MODWT can handle any sample size N; at each decomposi-
tion level, the details and smooth coefficients of a MODWT
MRA are N equally spaced samples as in the original se-
ries, so that the temporal resolution at coarser scales is much
better than with ordinary DWT; these coefficients are asso-
ciated with zero-phase filters, so that events that feature in
the original time series turn out to be properly aligned with
features in the MRA; MODWT is invariant to circulary shift-
ing the original time series (translation invariance) and thus
avoids possible Gibbs-type phenomena and other artifacts in
the reconstruction of a series that, on the contrary, can affect
DWT. In the present work, we compared the low-frequency
reconstructions obtained by CWT, SSA and MTM with the
smooth obtained by MODWT, using Daubechies compactly
supported wavelets (Gencay et al., 2002).

4 Results and discussion

Using the model of pulse extraction described in the previ-
ous section, we obtained a good fit to the pyroxenes series,
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Fig. 2. Fit of statistical model (Naveau et al., 2003) to pyroxenes
series. Thin black line: measured series; thin red line: model output
x(t)+f (t) (computed volcanic signal plus baseline, or long term
trend); thick blue line: computed baselinef (t).

as it can be seen in Fig.2, in which the thin black line rep-
resents the measured series, the thin red line is the model
outputx(t)+f (t) (computed volcanic signal plus baseline,
or long term trend) and the thick blue line is the computed
baselinef (t). The fit is particularly good in the more recent,
post-1350 series section.

The computed baseline was then compared with the low-
frequency components, determined applying the spectral
methods mentioned before to the whole pyroxenes series.

Starting from SSA, we have adopted a window width
of M=120, in order to be able to detect oscillations up to
'500 y, while maintaining sufficient statistical significance.
We have obtained, however, very similar results within a
wide range of M values, ranging from 100 to 200 points. In
the long-wave range the analysis has revealed a trend, rep-
resented by the Empirical Orthogonal Function (EOF) 1 and
accounting for∼9% of the total variance, and a∼400 y wave
explaining∼14% of the total variance (EOFs 2,3). A Monte-
Carlo model evaluation (Allen and Smith, 1996) performed
with an ensemble size of 10000 reveals that these are sig-
nificants components at 90% confidence level. They have
therefore been reconstructed and their sum compared with
the baseline, as shown in Fig.3 (see the red and the blue
lines, respectively).

The MTM reveals a trend and a component with period of
∼360 y, significant at 99% confidence level both assuming
a background of red noise and of locally white noise (Mann
and Lees, 1996). The corresponding reconstructed signal is
also shown in Fig.3, as a magenta-colored line.

The CWT analysis has been performed by a complex Mor-
let wavelet with parameterω0=6. The GWS (not shown) re-
veals the presence of highly significant low-frequency contri-
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Fig. 3. Comparison among baseline computed from the statis-
tical model ofNaveau et al.(2003) (thick blue line) and recon-
structed low-frequency components of the pyroxenes series. Re-
constructions according to Singular Spectrum Analysis (thick red
line), Multi Taper Method (thick magenta line), Continuous Wavelet
Transform (thick green line) and Non-Decimated Wavelet Trans-
form (thick black line). See text for details. Also shown is the
original series (thin grey line).

butions to the series variance, particularly at Fourier periods
greater than∼1260 y (long-term trend) and around 400 y, in
agreement with the results obtained by SSA and MTM. The
corresponding reconstruction, performed by Inverse Contin-
uous Wavelet Transform, appears in Fig.3 as a green line.

At last, a MODWT decomposition of the pyroxenes sig-
nal has also been performed, adopting a least asymmet-
ric Daubechies wavelet LA(8). The level of decomposition
J0=5 was chosen, since its smooth part contains, as in the
other cases, the low-frequency variability of the series up to
∼(400 y)−1. This smooth component is shown in Fig.3, as a
black line.

The baseline and the low-frequency spectral components
reconstructed by four different methods are in phase agree-
ment over the last two millennia, with the only exception of
the most recent two hundred years. The differences among
the amplitudes of the oscillations revealed by SSA, MTM
CWT and MODWT, that may be noticed especially in the
last centuries, may be due to the difficulty of these methods
to handle a series that presents three sudden and strong peaks.
Moreover, these low-frequency spectral components show
greater amplitudes than the baseline, because these methods
were applied to the complete pyroxenes series, including the
two peaks of Pompei and Ischia, while the baseline was cal-
culated excluding these two peaks.

Therefore, the long-term variability of this series can be
described by a millennial and a∼400 y oscillations. Super-
posed on this long-term behavior, a sequence of pulse-like
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Fig. 4. Results of automatic pulse-like peaks extraction from the
pyroxenes series, for thepost-1638 time interval documented in
the catalogue byArnò et al. (1987). Upper panel: model output
(thin green line) with segments, highlighted in red, corresponding
to detected events. Black open circles and plus signs: historical
dates of eruptions, ending Vesuvio activity cycles, used for the orig-
inal tephroanalysis-based dating and corresponding dates calculated
from the linear time-depth relation, respectively. Blue arrow: extra-
eruption detected, documented in the catalogue but internal to an
activity cycle. Lower panel:a posterioriprobability of an eruption.
Thick red bars mark the dates at which probability attains 99%.

features is clearly revealed. In the next paragraphs, we ex-
amine these events using theira posterioriprobability calcu-
lated by the automatic extraction method described in Sect.3.

4.1 Vesuvio activitypost-1638 AD

The catalogue byArnò et al.(1987) divides the recent Vesu-
vio activity in cycles of widely variable length, separated by
intervals of repose which also have variable duration. Each
cycle ends with an eruption of moderate to violent explo-
sive activity and may also include some intermediate erup-
tive events. The last reported activity cycle ends with the
1944 AD eruption.

Figure 4 illustrates the results of the pulse-like features
extraction for the time intervalpost-1638. The upper panel
shows, as a thin green line, the model outputx(t)+f (t) (the
same quantity plotted in Fig.2), while the lower panel shows
p(t), thea posterioriprobability of a particular peak being
recognized as an eruption, i.e., having the required pulse-like
characteristics (thin green line). The thick red bars in the
lower panel mark the dates at whichp(t) attains 99%; in
the upper panel, the corresponding parts of the model out-
put are highlighted in red. We prefer to use a high probabil-
ity threshold (99%) because we analyzed the series without
the 2 huge peaks of Pompei and Ischia; in this way we try
to avoid an overestimation of the significance of the other
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Fig. 5. Results of automatic pulse-like peaks extraction from the
pyroxenes series for theante-1638 interval. Upper panel: model
output (thin green line) with segments, highlighted in red, corre-
sponding to detected events. Open circles and plus signs: historical
dates of eruptions used for the original tephroanalysis-based dat-
ing and corresponding dates calculated from the linear time-depth
relation, respectively. Black signs for events detected at 99% prob-
ability, blue signs for lower probability values. Cyan diamonds:
possible undocumented detected events. Lower panel:a posteriori
probability of an eruption. Thick red bars mark the dates at which
probability attains 99%.

peaks. The black open circles that appear near the peaks
in the upper panel indicate the historical date of an eruption
used for the original tephroanalysis-based dating. They are
evidently in good agreement with the corresponding dates
calculated from the linear time-depth relation given in the In-
troduction (black plus signs in the figure). As it can be seen
in Fig. 4, the model, with a probability threshold of 99%,
recognizes all the 7 catalogue-documented events that we
used for the tephroanalysis-based dating. All these events are
eruptions ending a cycle of the Vesuvio activity. One extra-
eruption, documented in the catalogue but internal to a cycle
(1810 AD), is also detected (see blue arrow in the figure).

4.2 Vesuvio activityante-1638

The results for this time interval, in which only sparse his-
torical documents exist, are shown in Fig.5. As in the pre-
vious figure, the upper panel shows the model output and
the lower panel shows thea posteriori probability of an
eruption. Besides the Pompei and Ischia events, excluded
from the present analysis, 13 eruptions were used for the
tephroanalysis-based dating: they appear as open circles (his-
torical date) and plus signs (calculated date) in the upper
panel. As it can be seen, at 99% probability threshold the
method confirms 10 eruptions used for dating (black circles),
while (see blue circles) another eruption is revealed at nearly
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90% probability and the remaining 2 historical events are de-
tected at a lower significance level (<0.5). Moreover, the
automatic extraction procedure reveals four possible events
(cyan diamonds) that, to our knowledge, are not documented
(346 AD, 914 AD, 1388 AD, 1472 AD).

This method has therefore led us to identifying in a more
rigorous way the sequence of volcanic events useful for the
dating of the sediment cores from the Gallipoli terrace. From
a different point of view, the pyroxenes series is a good test
for the method, since the detected peaks are supported by the
historical documentation.

5 Conclusions

We have applied to the pyroxenes series measured in the
shallow-water sediment core GT89-3 an automatic proce-
dure that has allowed recognizing objectively as pulse-like
volcanic events, at a high confidence level, thepost-1638
peaks corresponding to the catalogue-documented eruptions
we originally used to determine the sedimentation rate. The
majority of the historical events in theante-1638 interval has
also been recognized at high confidence level, thus confirm-
ing the validity of the dating previously performed for the
Gallipoli terrace. Moreover, a few possibleante-1638 un-
documented eruptions have been identified.
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