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Abstract. We evaluate the contribution of natural variability
to the modern decrease in foraminiferalδ18O by relying on a
2200-yr-long, high-resolution record of oxygen isotopic ratio
from a Central Mediterranean sediment core. Pre-industrial
values are used to train and test two sets of algorithms that
are able to forecast the natural variability inδ18O over the
last 150 yr. These algorithms are based on autoregressive
models and neural networks, respectively; they are applied
separately to each of theδ18O series’ significant variability
components, rather than to the complete series. The sepa-
rate components are extracted by singular-spectrum analy-
sis and have narrow-band spectral content, which reduces
the forecast error. By comparing the sum of the predicted
low-frequency components to its actual values during the In-
dustrial Era, we deduce that the natural contribution to these
components of the modernδ18O variation decreased grad-
ually, until it reached roughly 40 %, as early as the end of
the 1970s.

1 Introduction

Many different archives have been analyzed in the Mediter-
ranean area for the reconstruction of the main physical and
chemical parameters characterizing climate over the last mil-
lennia. In response to the need for describing natural climate
variations and for placing the anthropogenic influence in the
right perspective, time series of various lengths and time res-
olution have been obtained. Just to quote a few examples, we

may mention the studies based on vermetid reefs (Silenzi et
al., 2004; Sisma–Ventura et al., 2009), on corals (e.g.Mon-
tagna et al., 2008), and on marine cores (e.g.Incarbona et
al., 2008, 2010; Piva et al., 2008). However, long series with
high resolution (<10 yr) in this region are still rare.

In a previous paper (Taricco et al., 2009), we presented
a high-resolution record of foraminiferalδ18O isotopic ratio
that covers the last two millennia. This record was obtained
from a shallow-water sediment core drilled in the Central
Mediterranean (Gallipoli Terrace in the Gulf of Taranto, Io-
nian Sea) and was dated with high accuracy by tephroanaly-
sis and radiometric measurements. Theδ18O series spans the
last 2200 yr and was analyzed by singular-spectrum analysis
(SSA; seeVautard and Ghil, 1989; Ghil and Vautard, 1991;
Plaut et al., 1995; Ghil and Taricco, 1997; Ghil et al., 2002
and references therein). This analysis revealed highly sig-
nificant decadal, centennial and multicentennial oscillatory
components, along with a millennial trend.

Theδ18O profile shows a steep decrease during the Indus-
trial Era (see gray light curve in Fig.1). In this paper, we
address the problem of evaluating the contribution of natural
climate oscillations to this modern variation; pre-industrial
δ18O variations are used to design and tune algorithms able
to forecast the natural variability in theδ18O series over the
last 150 yr. The comparison between the forecast and the
actualδ18O signal during the Industrial Era allows one to
quantify what percentage of the modernδ18O decrease can
be attributed to natural vs. anthropogenic causes.
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Fig. 1. Time series ofδ18O from the GT90/3 core and its com-
ponents. Gray light curve: raw data; black heavy curve: sum of
centennial-to-millennial components +δ18O mean value; red heavy
curve: trend +δ18O mean value. Theδ18O-axis is reversed, here
and in subsequent figures, to agree in tendency with temperature.
The SSA results plotted here correspond to a window width of
M ≈ 600 yr; they have been shown to be significant at the 99 %
level and robust for a wide range of window widths by Taricco et al.
(2009).

Fig. 1. Time series ofδ18O from the GT90/3 core. Gray light
curve: raw data; black heavy curve: sum of centennial-to-millennial
components +δ18O mean value; red heavy curve: trend +δ18O
mean value. Theδ18O-axis is reversed, here and in subsequent fig-
ures, to agree in tendency with temperature. The SSA results plotted
here correspond to a window width ofM ≈ 600 yr; they have been
shown to be significant at the 99 % level and robust for a wide range
of window widths byTaricco et al.(2009).

Two independent methods of time series prediction are
considered here: (i) autoregressive (AR) models (Box and
Jenkins, 1970; Childers, 1978; Montgomery et al., 1990);
and (ii) feed-forward neural networks (Hagan et al., 1996;
Haykin et al., 1999). Since all prediction methods work bet-
ter on clean, noise-free signals, the predictions here are not
performed directly on theδ18O series, but rather on each
significant variability component extracted by SSA, as sug-
gested byPenland et al.(1991), Keppenne and Ghil(1992,
1993) and Ghil et al. (2002). The δ18O forecast is then
obtained by summing the contributions of all components.

The paper is organized as follows. In the next section we
present briefly the record and its statistically significant os-
cillatory components. The prediction methodology is intro-
duced in Sect.3, while the results and their discussion follow
in Sect.4. Section5 presents the conclusions.

2 The δ18O record and its spectral analysis

The marine sediment core GT90/3 we use here was ex-
tracted from the Gulf of Taranto, Ionian Sea (39◦45′53′′ N,
17◦53′33′′ E), at a depth of about 200 m, and is 3.57 m-
long. Several papers (Bonino et al., 1993; Cini Castagnoli
et al., 1990, 1992a,b, 1997, 1998, 1999, 2002a,b, 2005; Tar-
icco et al., 2008; Vivaldo et al., 2009) described the dating
of the core and previous measurements in the shells of the
foraminiferal speciesGlobigerinoides ruberperformed on
samples from it; these measurements covered the last mil-
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Fig. 2. Significant oscillatory components in theδ18O series of
core GT90/3, obtained by SSA with a window width ofM ≈ 600
yr; only the oscillations within the centennial range are plotted here.
They correspond to RCs 2–3, 4–5, 6–7–8 and 9–10, respectively.

Fig. 2. Significant oscillatory components in theδ18O series of core
GT90/3, obtained by SSA with a window width ofM ≈ 600 yr; only
the oscillations within the centennial range are plotted here. They
correspond to RCs 2–3, 4–5, 6–7–8 and 9–10, respectively.

lennium.Taricco et al.(2009) extended the measurements of
theδ18O isotopic ratio down-core to cover the last 2200 yr.

The δ18O time series spans 188 BC–1979 AD and it con-
sists of 560 samples with a sampling interval of1t =

3.87 yr; the raw data set is shown in Fig.1 (gray light curve).
The SSA of this series revealed highly significant oscilla-
tory components of roughly 600 yr, 350 yr, 200 yr, 125 yr
and 11 yr (Taricco et al., 2009). These oscillations were cap-
tured, respectively, by reconstructed components (RCs) 2–3,
4–5, 6–7–8, 9–10 and 11–12; a millennial trend, captured by
RC 1, is present as well.

In this paper, we are interested in the low-frequency,
centennial-to-millennial variability and therefore we neglect
the decadal component (RCs 11–12), as well as the inter-
annual, sample-to-sample variability. The total SSA recon-
struction of the low-frequency variability (LFV) of interest
here,yLF, is given by

yLF = RCs1−10 + y, (1)

wherey indicates the mean value of the rawδ18O data, and
yLF is shown as the heavy black curve in Fig.1. The trend
alone is plotted in Fig.1 as the heavy red curve, while the
individual oscillatory components are shown in Fig.2. The
LFV, as defined in Eq. (1) and plotted as the heavy black line
in Fig. 1, captures roughly 40 % of the total variance of the
raw data (light gray curve in the figure).

3 Prediction methodology

Our approach in the present work is based on two reasonable
assumptions:

– before 1840 AD the influence of human activities on cli-
mate, and therefore onδ18O values, was negligible;
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Fig. 3. Schematic diagram of the learning (green), testing (red) and forecasting (blue) sections. The numbers in black indicate the boundaries
of the three sections, in number of samples, while the numbers in purple indicate lengths. The length of the forecasting section isLmax= 36
samples. (a1) Here, the learning section has lengthNlearn= 180 samples and the test section has a total length ofNtest= 344 samples; the
tests are carried out over a sliding window whose lengthK is fixed,K = 308 samples, and whose position shifts ahead as the lead increases
(red segments). The sliding window providesK pairs of predicted−true values for computing the root-mean-square (rms) forecast errors
R(L) at every lead time{L: 1≤ L ≤ Lmax= 36}; see text for details.(a2) Example of iterative one-step-into-the-future forecast producing
the first three samples of the sliding window in the position that corresponds to leadL = 10 samples. Input true samples are represented by
brown segments. (b) An alternative approach with a longer learning section ofNlearn= 460 samples, a shorter test section ofNtest= 64
samples, and no sliding window. In this case, the rms error is evaluated globally over all leads.

– δ18O values from the early-to-mid 19th century on con-
tain both natural and anthropogenic signals.

Thus, the long pre-1840 section of the series, representing
naturalδ18O variability, withN = 524 samples, is employed
to first fit and then test the performance of our two pre-
diction methods, based respectively on (i) AR models, and
(ii) neural networks. The prediction is next performed on
the 1840–1979 AD interval, comprisingLmax= 36 samples.
As illustrated in Fig.3, the series is thus divided into three
sections: learning, testing, and forecasting. Recall that the
sampling interval is1t = 3.87 yr≈ 4 yr and so, for instance,
Lmax1t ≈ 140 yr = 1979–1840 yr.

(i) SSA-AR prediction

To be precise, the first method is a combined SSA-AR
method, as introduced byKeppenne and Ghil(1992, 1993)
and further described inGhil et al.(2002); it is implemented
in the toolkit available athttp://www.spectraworks.com/web/
products.html.

The basic idea is that the RCs in SSA are data-adaptively
filtered signals, each of which is dominated by a narrow spec-

tral peak (Penland et al., 1991). Such narrow-band signals
allow much more accurate predictions than broad-band ones.

We chose to predict separately each of the five narrow-
band signals contained in our time series, namely the four
oscillatory ones shown in Fig.2 and the trend shown as the
red heavy curve in Fig.1. The five predictions of RCs 1, 2–
3, 4–5, 6–7–8 and 9–10 are then summed to yield the total
prediction,ypred.

The SSA-AR method turns out to be most reliable and ro-
bust when the orderMAR of the autoregressive model fitted
to the data is similar to the SSA embedding dimensionMSSA,
MAR ≈ MSSA. This result follows from the way the SSA lag-
covariance matrix and Burg’s algorithm AR coefficients are
computed in the combined SSA-AR algorithm.

Moreover, it is good practice to use an orderMAR that, like
the SSA embedding dimensionMSSA, is not too large with
respect to the lengthN of the time series, since the variance
of the AR-coefficient estimates increases with the order. As
recommended byVautard et al.(1992), we use a section of
lengthNlearn= 3MSSA for the learning, withMSSA= 60.

Since the actual prediction is performed with a maxi-
mum lead ofLmax= 36, we first evaluate the prediction
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skill by cross-validating over the test section with the same
maximum lead.

Our testing approach is aimed at assessing the forecast
skill as a function of lead time, in terms of the root-mean-
square (rms) error between predicted and true values, which
should be as small as possible, as well as the correlation be-
tween forecast and true values, which should be as large as
possible. We thus need to verify in the test section several
predictions withL steps ahead, up to and includingLmax.
This is achieved by carrying out the iterative scheme shown
in Fig. 3a1.

In this approach, the length of the test section isNtest=N−

3MSSA= 344 samples. A sliding window of fixed length
K =N −3MSSA−Lmax= 308 samples shifts ahead, depend-
ing on the lead time considered for testing, as illustrated by
the red segments in Fig.3a1. For a valueL of the lead,
we thus set the initial and final points of the sliding window
at xi = 3MSSA+L andxf = 3MSSA+L +K, respectively. For
instance, whenL = 1, the sliding window that provides the
K pairs of predicted-true values for skill assessment starts
at the samplexi = 3MSSA+ 1 = 181 and ends at the sample
xf = 3MSSA+K + 1 = 489 while, whenL =Lmax, the sliding
window starts at the samplexi = 3MSSA+Lmax= 216 and
ends atxf =N = 524, which is the last sample (1840 AD).

For any position of the sliding window, corresponding to
a lead timeL, each one of theK samples that form the
window is predicted usingM true values as inputs: samples
from x(n + 1− M) to x(n) are used to forecastx(n + L),
by applying an iterative, one-step-into-the-future procedure,
according to the equations

x(n + 1) = a1 x(n) + a2 x(n − 1) + ...

... + aM x(n + 1 − M),

x(n + 2) = a1 x(n + 1) + a2 x(n) + ...

... + aM x(n + 2 − M), (2)

...............

x(n + L) = a1 x(n + L − 1) +

+ a2 x(n + L − 2) + ...

... + aM x(n + L − M).

In system Eq. (2), we have dropped the subscript AR from
MAR for simplicity, and will do so below. When predicting
the first sample of the sliding window in itsL-th position,
only samples out of the learning section are used as inputs,
but moving toward theK-th and last window sample, more
and more true values from the test section are employed.
The rms errorR =R(L) thus evaluated quantifies the predic-
tion skill at the particular lead timeL. An example of this
procedure, for the caseL = 10, is shown in Fig.3a2.

The actual forecast for a given RC series is then calculated
for the Industrial Era interval 1840–1979 AD by the same
iterative procedure. The contributions of all RCs to the LFV
in this interval are finally summed to give the total forecast
ypred; the uncertainty inypred at the various lead timesL is

computed as the square root of the sum of the squared rms
errors of the individual RC forecasts.

In order to check the robustness of the results obtained
by the approach described above – in which only a relatively
short learning section, with 180 samples, is used – we applied
also another AR prediction approach, in which the learning
section is longer. As illustrated in Fig.3b, it includes the first
Nlearn= 460 samples, from∼200 BC to∼1600 AD, while the
remainingNtest=N − Nlearn= 64 samples, from∼1600 AD
to ∼1840 AD, are used for comparing true values with those
predicted, adopting a range of distinct AR orders; no sliding
window is used in this alternative approach.

The optimal AR order for the particular component con-
sidered is then chosen on the basis of the rms error eval-
uated globally over all leads. By using this procedure
we obtained substantially the same predictions as with the
sliding-window approach, which increased our confidence in
Nlearn= 180 samples being sufficient for the AR method to
learn ourδ18O time series’ natural LFV.

(ii) Neural-network prediction

For comparison with the AR results, the forecasting of each
of the five narrow-band signals contained in ourδ18O time
series was performed also using feed-forward neural net-
works (Hagan et al., 1996; Haykin et al., 1999). In order
to be able to choose the architecture of the network a poste-
riori, on the basis of algorithm performance, the prediction
was tackled by initializing and training a set of feed-forward
neural networks that all had a single output layer and a single
hidden layer.

We used several numbersI of samples, 2≤ I ≤ 12, in the
input vector and several numbersH of neurons, 2≤ H ≤ 12,
in the hidden layer. The ranges of values forI andH were
chosen on the basis of preliminary trials performed on all five
narrow-band signals. This approach allowed us to choose the
network architecture that best reproduces the samples in the
test section, which has fixed lengthNtest, as in Fig.3b.

For this purpose, a MATLAB code was written, employ-
ing the functions of its Neural Network Toolbox. The train-
ing was performed using the Levenberg-Marquardt algorithm
(Rumelhart, 1986; Hagan and Menhaj, 1994). This algorithm
is best suited for the type of problem at hand, in which the
net is small or of medium size – with less than one hundred
weights as an order of magnitude – and the approximation
must be very accurate.

The trained network is used to forecast the considered
δ18O component in the test section, using an iterative, one-
step-into-the-future procedure, as done for the SSA-AR pre-
diction. The lastI elements of the learning section are used
to predict the first sample of the test section. Then, the first
predicted sample of the test section is inserted into the next
input vector to get the second forecast, and so on, until the
64-steps-into-the-future forecast is produced and the end of
the test section is attained; see again Fig.3b.
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Fig. 4. Prediction results for the low-frequency variability (LFV)
portion of theδ18O time series over a test section 1592–1840 AD
that immediately precedes the Industrial Era. The predictions are
shown separately for the trend (RC1) and for each oscillatory pair
of Fig. 2: observed LFV in black, cf. Eq. (1); SSA-AR prediction
in red; and neural-network prediction in blue. See text for details
of the prediction methods. Clearly the agreement between the two
forecasts and the observed LFV is excellent for a length of time
equal to that of the modern, Industrial-Era predictions in the next
figure, i.e., out to roughly 1730 AD; it deteriorates only slightly
beyond this range, i.e. for the latter part of the test section here.

Fig. 4. Prediction results for the low-frequency variability (LFV) portion of theδ18O time series over a test section 1592–1840 AD that
immediately precedes the Industrial Era. The predictions are shown separately for the trend (RC1), for each oscillatory pair of Fig.2 and for
the sum of RCs: observed LFV in black, cf. Eq. (1); SSA-AR prediction in red; and neural-network prediction in blue. See text for details
of the prediction methods. Clearly the agreement between the two forecasts and the observed LFV is excellent for a length of time equal to
that of the modern, Industrial-Era predictions in the next figure, i.e. out to roughly 1730 AD; it deteriorates only slightly beyond this range,
i.e. for the latter part of the test section here.

The best-performing net is chosen, i.e. the one that has the
smallest global rms error over the entire test section. This
optimal net is then used for calculating the 36 samples of the
post-1840 forecast, which are produced in the same way as
the test-section forecasts.

The dependence of the training process of each net on
the random choice of the initial guesses for weights and bi-
ases suggested running the program a number of times for
each narrow-band signal and then averaging the forecasts
over all the runs. Finally, the average forecasts for the five
narrow-band signals were summed to yield the total average
predictionypred.

(iii) Validation of the methodology

The 36 predicted values{ypred(j) : j = 1, . . . ,36} of δ18O for
the interval 1840–1979 AD are thus determined, either (i) by
an AR(M) model with orderM or (ii) by neural networks.
These values represent the extrapolated natural LFV of the
δ18O record and are then compared with the actualyLF ob-
served after 1840; the latter represents the total LFV, natural
plus anthropogenic, for the Industrial Era (see Sect.4 below).
Our comparison of natural and anthropogenic variability thus
eliminates higher-frequency contributions, such as year-to-
year or, more precisely, sample-to-sample fluctuations.

Before proceeding to the evaluation of the varying con-
tribution of natural and anthropogenic causes to the LFV in
δ18O during the Industrial Era, we tested our two methods
in a pure-prediction mode for a test section that is 64 points
(248 yr) long and lies toward the end of the pre-industrial era;
to be precise it spans 1592–1840 AD (Fig.4).

For greater clarity, we only show in Fig.4 a direct compar-
ison between the two predictions – using the SSA-AR and
neural-network approaches – on the one hand, and the LFV
of the observed data, on the other, according to the method il-
lustrated in Fig.3b. The test section in Fig.4 is almost twice
as long as the modern forecast section, while the agreement
between the two forecasts, as well as between either of the
two and the observed LFV, is clearly excellent for a length
of time equal to that of the modern, Industrial-Era predic-
tions; it deteriorates only slightly beyond this range, i.e. for
the latter part of the test section.

4 Results and discussion

Figure5 displays the IE forecasts obtained by the SSA-AR
method (red curves), together with the upper and lower error
bounds (pink shading); these error bounds were obtained as
explained in the previous section. Panels a–e in the figure
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Fig. 5. Prediction results for the LFV portion of theδ18O time se-
ries during the Industrial Era, taken here as 1840–1979 AD; the low-
pass filtered observationsyLF are shown back to roughly 1740 AD,
to give a better feeling for the range of natural variability.(a)–
(e) Results for individual narrow-band signals:(a) the trend given
by RC1;(b)–(e)oscillatory signals given by RCs 2–3, 4–5, 6–8 and
9–10, respectively;(f) result for the sum of the ten leading RCs, 1–
10. Black curves: observed narrow-band signals extracted from the
totalδ18O series; red curves: forecast obtained by the AR approach,
accompanied by pink shading giving the forecast uncertainty, based
on the performanceR = R(L) of the individual narrow-band-
signal forecasts over the testing section (see text for details).

Fig. 5. Prediction results for the LFV portion of theδ18O time series during the Industrial Era, taken here as 1840–1979 AD; the low-pass
filtered observationsyLF are shown back to roughly 1740 AD to give a better feeling for the range of natural variability.(a)– (e)Results for
individual narrow-band signals:(a) the trend given by RC1;(b)– (e)oscillatory signals given by RCs 2–3, 4–5, 6–8 and 9–10, respectively;
(f) result for the sum of the ten leading RCs, 1–10. Black curves: observed narrow-band signals extracted from the totalδ18O series; red
curves: forecast obtained by the AR approach, accompanied by pink shading giving the forecast uncertainty, based on the performance
R = R(L) of the individual narrow-band-signal forecasts over the testing section (see text for details).

show the forecast of the five narrow-band signals that com-
pose ourδ18O record, while Fig.5f shows their sumypred.
The black heavy curves in all panels represent observed val-
ues. In particular, the one in Fig.5f corresponds to the one
shown in Fig.1, i.e. yLF, but is limited now to the interval
≈1740–1979 AD.

Figure6 compares the total AR forecast over the Industrial
Era (1840–1979 AD, red curve), accompanied by its error
bounds (pink shading), with the low-pass filtered observed
δ18O, namelyyLF (black curve), put now into the perspective
of the entire 2200-yr record. In this figure, we show also the
forecast obtained by the neural-network methodology (blue
curve). The latter prediction stays within the error bounds of
the SSA-AR forecast.

We notice, in particular, that the natural-variability fore-
castypred, whether it is obtained by the AR or by the neural-
network approach, reachesδ18O values within the Industrial
Era, which are as low as those that characterized the Me-
dieval Optimum. The observedyLF values, though, greatly
exceed these values, even though our record stops in 1979.

In order to measure the difference between the observed
yLF values during the last 150 yr or so and the forecast
onesypred by either prediction method, we define the frac-

tion Vnat(t) of natural variability by

Vnat(t) =

[
ypred(t) − µ

]2[
ypred(t) − µ

]2
+

[
yLF(t) − ypred(t)

]2
, (3)

whereµ is the mean computed over the pre-industrial section
of the time series, i.e. before 1840 AD. The fractionVnat(t)

is shown for the AR forecast in Fig.7 (red curve); the pink
shading indicates the range of uncertainty for this fraction,
based on the errors in the forecastypred, using Eq. (3).

In agreement with our assumptions,Vnat(t) equals 100 %
at the beginning of the Industrial Era (1840 AD in this ac-
count), while the anthropogenic contribution remains negli-
gible up to about 1880 AD. Afterwards, the natural portion of
the LFV decreases gradually to about 40 % by the end of the
1970s (top of the core). The blue curve represents the same
fractionVnat(t) calculated from the neural network forecast;
the latter does lie within the uncertainty range of the AR es-
timates, further confirming our confidence in this range.

? found, for instrumental data over the IE, a natural global
climate oscillation of a period 65–70 yr; its exact period, as
well as its amplitude, differs depending on the region un-
der consideration. In the case of Eurasia, the period is actu-
ally longer than the global one and therefore even more diffi-
cult to evaluate with confidence, since it is comparable to the
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Fig. 6. Total δ18O SSA-AR forecastypred(t) (red curve) for the
Industrial Era and observed LFV valuesyLF(t) (black curve) over
the entire 2200 yr covered by our record. Bothypred(t) andyLF(t)
represent the climatic LFV recorded in theδ18O of core GT90/3,
namely the ten leading RCs; for consistency, the meanδ18O value
has been added back in, see Eq. (1). Pink shading: forecast errorof
the total SSA-AR forecast, based on the five forecasts of the narrow-
band signals, see Fig. 5; and blue curve: sum of the narrow-band-
signal forecasts obtained by neural-network prediction; see text for
details.

Fig. 6. Total δ18O SSA-AR forecastypred(t) (red curve) for the
Industrial Era and observed LFV valuesyLF(t) (black curve) over
the entire 2200 yr covered by our record. Bothypred(t) andyLF(t)

represent the climatic LFV recorded in theδ18O of core GT90/3,
namely the ten leading RCs; for consistency, the meanδ18O value
has been added back in (see Eq.1). Pink shading: forecast error of
the total SSA-AR forecast, based on the five forecasts of the narrow-
band signals (see Fig.5); and blue curve: sum of the narrow-band-
signal forecasts obtained by neural-network prediction; see text for
details.

total record length of one-and-a-half centuries. It is interest-
ing to note that our 125-yr component (RCs 9-10) forecast
over the last 150 yr (bottom panel of our Fig.2) is in rea-
sonable agreement, within the error bars, with Schlesinger
and Ramankutty’s (1994) oscillation (see panel 3 in their
Fig. 2); in particular, both their oscillation and our forecast
share a pronounced maximum (δ18O minimum) at 1850 AD
and a slightly flatter minimum (δ18O maximum) at 1895 AD.
Therefore, the natural LFV considered in our study includes
in fact, over the IE, most of the variability found by these
authors.

Comparing the naturalδ18O variationypred and the total
one yLF in Fig. 5f allows one to draw several conclusions
about temperature variation during the last century. As noted
by Taricco et al.(2009), the observed modern variation of
about 0.5 ‰ inδ18O, if entirely due to temperature effects,
would approximately correspond, according to the transfer
function ofShackleton and Kennet(1975), to an increase of
about 2◦C. This estimate is confirmed by alkenone-derived
temperature measurements performed in the same sediments
by Versteegh et al.(2007).

According to our prediction, the natural variation in
δ18O over the last century is of about 0.2 ‰, which cor-
responds to 0.8◦C. This result suggests that, as early
as the end of the 1970s, 60 % of the LFV component
of the observed temperature increase was already due to
anthropogenic effects.
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Fig. 7. FractionVnat(t) of natural variability in theδ18O series for
the Industrial Era. Red curve: for the SSA-AR method, with pink
shading for the corresponding error belt; and blue curve: for the
neural-network prediction. Both are calculated according to Eq. (3)
and shown as percentages.

Fig. 7. FractionVnat(t) of natural variability in theδ18O series for
the Industrial Era. Red curve: for the SSA-AR method, with pink
shading for the corresponding error belt; and blue curve: for the
neural-network prediction. Both are calculated according to Eq. (3)
and shown as percentages.

The high increases in temperature values, observed as
well as predicted, indicate a local amplification recorded in
the core with respect to the modern variation in Northern
Hemisphere temperatures. As argued already byTaricco et
al. (2009), this amplification is most likely related to the
shallow, semi-enclosed nature of the Gulf of Taranto.

5 Conclusions

Theδ18O record in the shallow-water sediment core GT90/3
exhibits a marked modern decrease (Taricco et al., 2009).
The remarkable length of this accurately datedδ18O series,
extending back to 188 BC (Fig.1), allowed us to separate
natural from anthropogenic variability in the modern portion
of the record, 1840–1979 AD.

In order to evaluate the contribution of natural vari-
ability to the modern decrease inδ18O, we fitted auto-
regressive (AR) models and trained neural networks on the
pre-industrial (188 BC–1840 AD)δ18O values only. As a
noise reduction strategy (Penland et al., 1991), we first ap-
plied singular-spectrum analysis (SSA) to extract the statis-
tically significant signals associated with the climate’s low-
frequency variability (LFV); these signals include a millen-
nial trend, captured by reconstructed component (RC) 1 (red
curve in Fig.1), and four oscillatory modes, captured by
RCs 2–3, 4–5, 6–7–8 and 9–10, respectively (Fig.2). These
five narrow-band signals were then fitted and forecast indi-
vidually, rather than trying to do so for the original, noisy
time series.

Both the AR and neural network algorithms were trained
and tested on the pre-1840 part of the record, according to
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the methods outlined schematically in Fig.3. The post-1840
forecast values of the narrow-band signals (Fig.5a–e) were
then summed (Fig.5f) and the sumypred(t : 1840≤ t ≤ 1979)
was assumed to represent the natural LFV during the
Industrial Era.

The predicted LFVypredwas compared to the total oneyLF
(Fig. 6), thus allowing us to assess the contribution of natural
variability to the LFV ofδ18O over the last century-and-a-
half. This contribution turned out (Fig.7) to have decreased
steadily from 100 % in the mid-19th century to about 40 %
by the end of the 1970s, while the combined high-frequency
variability and red-noise background decreased from 65 % in
the pre-industrial era to 32 % in the Industrial Era.
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