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The friendship paradox states that your friends have on average more friends than you have. Does the
paradox ‘‘hold’’ for other individual characteristics like income or happiness? To address this question, we
generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two
coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized
friendship paradox (GFP) holds at the individual and network levels for various characteristics, including
the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is
shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of
the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in
large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network
structure and node characteristics in complex networks.

P
eople live in social networks. Various behaviors of individuals are significantly influenced by their positions
in such networks, whether they are offline or online1–3. Through the interaction and communication among
individuals, information, behaviors, and diseases spread4–10. Thus understanding the structure of social

networks could enable us to understand, predict, and even control social collective behaviors taking place on or
via those networks. Social networks have been known to be heterogeneous, characterized by broad distributions of
the number of neighbors or degree11, assortative mixing12, and community structure13 to name a few.

One of interesting phenomena due to the structural heterogeneity in social networks is the friendship para-
dox14. The friendship paradox (FP) can be formulated at individual and network levels, respectively. At the
individual level, the paradox holds for a node if the node has smaller degree than the average degree of its
neighbors. It has been shown that the paradox holds for most of nodes in both offline and online social net-
works14–16. However, most people believe that they have more friends than their friends have17. The paradox holds
for a network if the average degree of nodes in the network is smaller than the average degree of their neighbors14.
The paradox can be understood as a sampling bias in which individuals having more friends are more likely to be
observed by their friends. This bias has important implications for the dynamical processes on social networks,
especially when it is crucial for the process to identify individuals having many neighbors, or high degree nodes.
For example, let us consider the spreading process on networks. It turns out that sampling neighbors of random
individuals is more effective and efficient than sampling random individuals for the early detection of epidemic
spreading in large-scale social networks18,19, and for developing efficient immunization strategies in computer
networks20. Recently, the information overwhelming or spam in social networking services like Twitter16 has been
also explained in terms of the friendship paradox.

The friendship paradox has been considered only as the topological structure of social networks, mainly by
focusing on the number of neighbors, among many other node characteristics. Each individual could be described
by his/her cultural background, gender, age, job, personal interests, and genetic information21,22. This is also the
case for other kinds of networks: Web pages have their own fitness in World Wide Web23, and scientific papers
have intrinsic attractiveness in a citation network24. These characteristics play significant roles in dynamical
processes on complex networks21–25. Hence, one can ask the question: Can the friendship paradox be applied to
node characteristics other than degree?

To address this question, we generalize the friendship paradox for arbitrary node characteristics including
degree. Similarly to the FP, our generalized friendship paradox (GFP) can be formulated at individual and
network levels. The GFP holds for a node if the node has lower characteristic than the average characteristic
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of its neighbors. The GFP holds for a network if the average char-
acteristic of nodes in the network is smaller than the average char-
acteristic of their neighbors. When the degree is considered as the
node characteristic, the GFP reduces to the FP. In this paper, by
analyzing two coauthorship networks of physicists and of network
scientists, we show that your coauthors have more coauthors, more
citations, and more publications than you have. This indicates that
the friendship paradox holds not only for degree but also for other
node characteristics. We also provide a simple analysis to show that
the origin of the GFP is rooted in the positive correlation between
degree and node characteristics. As applications of the GFP, two
sampling methods are suggested for sampling nodes with high char-
acteristics. We show that these methods are simple yet effective and
efficient in large-scale social networks.

Results
Generalized friendship paradox in complex networks. We consi-
der two coauthorship networks constructed from the bibliographic
information of Physical Review (PR) journals and Google Scholar
(GS) profile dataset of network scientists (See Method Section). Each
node of a network denotes an author of papers and a link is
established between two authors if they wrote a paper together.
The number of nodes, denoted by N, is 242592 for the PR network
and 29968 for the GS network. For the node characteristics in the PR
network, we consider the number of coauthors, the number of
citations, the number of publications, and the average number of ci-
tations per publication. As for the GS network, the number of
coauthors and the number of citations are considered. The charac-
teristic of node i will be denoted by xi, and for the degree we denote it
by ki.

The generalized friendship paradox (GFP) can be studied at two
different levels: (i) Individual level and (ii) network level.

(i) Individual level. The GFP holds for a node i if the following
condition is satisfied:

xiv

P
j[Li

xj

ki
, ð1Þ

where Li denotes the set of neighbors of node i. Note that setting
xi 5 ki reduces the GFP to the FP. We define the paradox holding
probability h(k, x) that a node with degree k and characteristic x
satisfies the condition in Eq. (1). Figure 1 shows the empirical
results of h(k, x) for PR and GS networks. It is found that for
fixed degree k, h(k, x) decreases with increasing x for any char-
acteristic x other than k (Fig. 1 (b–d,f)). The same decreasing
tendency has been observed for x 5 k (Fig. 1 (a,e)). In Eq. (1),
the larger value of xi is expected to lower the probability h(k, x) if
the characteristics of node i’s neighbors remain the same. As a
limiting case, the node with minimum value of x, i.e., xmin, is most
likely to have friends with higher values of x, leading to h(k, xmin)
5 1. On the other hand, for the node with maximum value of x,
we get h(k, xmax) 5 0.

Next, the dependence of h(k, x) on the degree k can be classified as
either increasing or being constant. Here the case of x denoting the
degree is disregarded for both networks. The increasing behavior is
observed mainly for the number of citations and the number of
publications in the PR network in Fig. 1 (b,c), while the constant
behavior is observed for the average number of citations per publica-
tion in the PR network and for the number of citations in the GS
network, shown in Fig. 1 (d,f), respectively. In order to understand
such difference, we calculate the Pearson correlation coefficient
between k and x as

rkx~
1
N

XN

i~1

ki{ kh ið Þ xi{ xh ið Þ
sksx

, ð2Þ

where Æxæ and sx denote the average and standard deviation of x. We
also obtain the characteristic assortativity for each characteristic x,
adopted from12:
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L
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where xl and x0l denote characteristics of nodes of the lth link, with
l~1, � � � , L and L is the total number of links in the network. The
value of rxx ranges from 21 to 1, and it increases according to the
tendency of high characteristic nodes to be connected to other high
characteristic nodes. The values of these quantities are summarized
in Table I. From now on, we denote the degree assortativity as rkk.

The k-dependent behavior of h(k, x) can be understood mainly as
the combined effect of rkk and rkx. Since rkk < 0.47 in the PR network,
for a node i with fixed xi, the larger ki implies the larger kj of its friend
j. This may lead to the higher xj, e.g., due to rkx < 0.79 for the number
of publications, leading to the increasing behavior of h(k, x).
However, for the average number of citations per publication show-
ing rkx < 0.07, the larger kj does not imply the higher xj, which leads
to the constant behavior of h(k, x). For the number of citations in the
GS network, the almost neutral degree correlation by rkk < 20.02
inhibits any correlated behavior between characteristics, thus we
again observe the constant behavior of h(k, x). We note that the
neutral degree correlation in the GS network is unlike many other
coauthorship networks, mainly due to incomplete information avail-
able from GS profiles, and due to the snowball sampling method we
employed26.

Now we define the average paradox holding probability as

H~
X

k

ð
dxh k,xð ÞP k,xð Þ, where P(k, x) denotes the probability

distribution function of node with degree k and characteristic x. As
shown in Table I, the value of H is larger than 0.7 for every considered
characteristic, implying that the GFP holds at the individual level to a
large extent.

(ii) Network level. In order to investigate the GFP at the network level,
we define the average characteristic of neighbors Æxænn for comparing
it to the average characteristic Æxæ:

xh inn~

PN
i~1 kixiPN

i~1 ki

: ð4Þ

Here a node i with degree ki has been considered as a neighbor ki

times. The GFP holds at the network level if the following condition
is satisfied:

xh iv xh inn: ð5Þ

Note that setting xi 5 ki reduces the GFP to the FP. As shown in
Table I, the GFP holds for all characteristics considered. In other
words, your coauthors have on average more coauthors, more cita-
tions, and more publications than you have.

In summary, our results indicate that the generalized friendship
paradox holds at both individual and network levels for many node
characteristics of networks.

Origin of the GFP. The prevalence of the GFP for most nodes in
networks regardless of node characteristics implies that there
might be a universal origin of the GFP. For the original friend-
ship paradox, the existence of hub nodes and the variance of
degree have been suggested for the origin of the paradox14. In
order to investigate the origin of the GFP at the network level,
we define a function F 5 Æxænn 2 Æxæ, and straightforwardly obtain
the following equation:

F~ xh inn{ xh i~ rkxsksx

kh i : ð6Þ

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4603 | DOI: 10.1038/srep04603 2



Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x 5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probability H, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0
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One can say that the GFP holds if F . 0. Since standard deviations
sk and sx are positive in any non-trivial cases, the GFP holds if rkx

. 0. Thus the degree-characteristic correlation rkx is the key
element for the generalized friendship paradox. Note that in case
when xi 5 ki, i.e., rkk 5 1, the FP holds in any non-trivial cases.

The origin of the GFP can help us to better understand the dynam-
ical processes on networks when the characteristic x is considered to
be a node activity such as communication frequency or traffic. The
positive correlation between degree and node activity has been
observed in mobile phone call patterns27 and the air-transportation
network28, enabling the application of the GFP to those phenomena.
In case of protein interaction networks, the degrees of proteins are
positively correlated with their lethality29,30, while they are negatively
correlated with their rates of evolution31. The negative degree-char-
acteristic correlations, i.e., rkx , 0, can lead to the opposite behavior
of the GFP, which can be called anti-GFP.

Sampling high characteristic nodes using GFP in complex
networks. Identifying important or central nodes in a network is
crucial for understanding the structure of complex networks and
dynamical processes on those networks. The recent advance of
information-communication technology (ICT) has opened up
access to the data on large-scale social networks. However,
complete mapping of social networks is not feasible, partially due
to privacy issues. Thus it is still important to devise proper sampling
methods that exploit local network structure. In this sense, the
original friendship paradox has been used to sample high degree
nodes in empirical networks. It was found that the set of neighbors
of randomly chosen nodes can have the predictive power of epidemic
spreading on both offline social networks18 and online social
networks19.

We suggest two simple sampling methods using the GFP to
identify high characteristic nodes in a network: (i) Friend sampling

and (ii) biased sampling. These methods are then compared to the
random sampling method to test whether our methods are more
efficient to sample high characteristic nodes. We first choose random
nodes to make a control group. For each node in the control group,
one of its neighbors is randomly chosen. These chosen nodes com-
pose a friend group. Finally, for each node in the control group, we
choose its neighbor having the highest characteristic to make a biased
group. For the biased sampling, we have assumed that each node has
the full information about characteristics of its neighbors.

Figure 2 shows the characteristic distributions of sampled nodes
from PR and GS networks by different sampling methods. Heavier
tails of distributions imply better sampling for identifying high char-
acteristic nodes. The performance of biased sampling is the best in all
cases because this sampling utilizes more information about neigh-
bors than the friend sampling. The friend sampling shows better
performance than the random sampling (control group) for most
characteristics as it is expected by large values of rkx. One exceptional
case is for the average number of citations per publication in the PR
network, shown in Fig. 2 (d). Here the friend sampling does not
better than the random sampling due to the very small degree-char-
acteristic correlation, rkx < 0.07, while the result by biased sampling
is still better than those by other sampling methods.

Next, in order to investigate the effect of degree-characteristic
correlation on the performance of sampling methods, we consider
an auxiliary characteristic X based on the method of Cholesky
decomposition32. To each node i with degree ki in the PR network,
we assign a characteristic Xi given by

Xi~rkiz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
yi, ð7Þ

where yi denotes the ith element of the shuffled set of {ki}. Since r 5

rkX (See Method Section), the correlation can be easily controlled by
r. Then we apply the same sampling methods to identify nodes with

Figure 2 | Characteristic distributions for control group, friend group, and biased group, for each of which 5000 nodes are sampled. The original full

distributions are also plotted for comparison. We use (a) the number of coauthors (PR), (b) the number of citations (PR), (c) the number of publications

(PR), (d) the average number of citations per publication (PR), (e) the number of coauthors (GS), and (f) the number of citations (GS).

www.nature.com/scientificreports
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high X, and compare their performances for different values of rkX.
Figure 3 shows that the biased sampling performs significantly better
than any other sampling methods, independent of rkX. The friend
sampling performs better than the random sampling, while the dif-
ference in performance increases with the value of rkX.

The sampling results suggest that the biased sampling can be very
efficient and effective to detect a group of high characteristic nodes
when the information about characteristics of neighbors is available.
Otherwise the friend sampling still performs better than the random
sampling.

Discussion
Node characteristics have profound influence on the evolution of
networks23,24 and dynamical processes on such networks like spread-
ing18,19,25. By taking into account various node characteristics, we
have generalized the friendship paradox in complex networks. The
generalized friendship paradox (GFP) states that your friends have
on average higher characteristics than you have. By analyzing two
coauthorship networks of Physical Review (PR) journals and of
Google Scholar (GS) profiles, we have found that the GFP holds
at both individual and network levels for various node character-
istics, such as the number of coauthors, the number of citations,
the number of publications, and the average number of citations
per publication. It is also shown that the origin of the GFP at the
network level is rooted in the positive correlation between degree
and characteristic. Thus the GFP is expected to hold for any char-
acteristic showing the positive correlation with degree. Here the
characteristic can be also purely topological like various node cen-
tralities as they show significant positive correlations with degree,
such as PageRank33.

Despite the access to the data on large-scale social networks, com-
plete mapping of social networks is not feasible. Thus it is still
important to devise effective and efficient sampling methods that
exploit local network structure. We have suggested two simple sam-
pling methods for identifying high characteristic nodes using the

GFP. It is empirically found that a control group of randomly chosen
nodes has the smaller number of high characteristic nodes than a
friend group that consists of random neighbors of nodes in the
control group. Moreover, provided that nodes have full information
about characteristics of their neighbors, a biased group of the highest
characteristic neighbors of nodes in the control group has the largest
number of high characteristic nodes than other groups. This turns
out to be the case even when the degree-characteristic correlation is
negligible.

Our sampling methods propose an explanation about how our
perception can be affected by our friends. People’s perception of
the world and themselves depends on the status of their friends,
colleagues, and peers17. When we compare our characteristics like
popularity, income, reputation, or happiness to those of our friends,
our perception of ourselves might be distorted as expected by the
GFP. Comparing to the average friend, i.e., the friend sampling, is
biased due to the positive degree-characteristic correlation.
Furthermore, comparing to the ‘‘better’’ friend, i.e., the biased sam-
pling, is much more biased towards the ‘‘worse’’ perception of our-
selves. This might be the reason why active online social networking
service users are not happy34, in which it is much easier to compare to
other people in online social media.

Another interesting application of the GFP can be found in multi-
plex networks35,36. If degrees of one layer are positively correlated
with those of other layers, our sampling methods can be used to
identify high degree nodes in other layers. Indeed, the degrees of
each node are positively correlated across layers in a player network
of an online game37 and in a multiplex transportation network38.

Nodes are not only embedded in the topological structure, but they
also have many other characteristics relevant to the structure and
evolution of complex networks. However, the role of these non-
topological characteristics is far from being fully understood. Our
work on the generalized friendship paradox will help us consider the
interplay between network structure and node characteristics for
deeper understanding of complex networks.

Figure 3 | Performance comparison of control group, friend group, and biased group for auxiliary characteristics X with various values of correlation
with degree: rkX~0:1, � � � ,0:9. For each value of rkX, 1000 random configurations are generated, for each of which 5000 nodes are sampled as in Fig. 2.
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Methods
Data description. We describe how the data for coauthorship networks have been
collected and prepared. For the Physical Review (PR) network, the bibliographic data
containing all papers published in Physical Review journals from 1893 to 2009 was
downloaded from American Physical Society. The number of papers is 463348, and
each paper has the title, the list of authors, the date of publication, and citation
information. By using author identification algorithm proposed by39, we identified
each author by his/her last name and initials of first and middle names if available.
The number of identified authors is 242592. Combined with the numbers of citations
and the list of authors of papers, we obtained for each author the number of
coauthors, the number of citations, the number of publications, and the average
number of citations per publication.

Google Scholar (GS) service (scholar.google.com) provides profiles of academic
authors. Each profile of the author contains information of the total number of
citations and coauthor list of the author. Using snowball sampling26 starting from
‘‘Albert-László Barabási’’ (one of the leading network scientists), the coauthor rela-
tions and their citation information are collected. The number of authors in the
dataset is 29968. Here we note that not all scientists have profile in the GS and not all
coauthor relations are accessible.

Generating random node characteristics of arbitrary correlation with degree.
Consider two independent random variables Y 5 (y1, y2, …, yN) and Z 5 (z1, z2, …,
zN) with the same standard deviation, i.e., sY 5 sZ. We generate a random sequence X
5 (x1, x2, …, xN) from the following equation:

X~rYz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
Z: ð8Þ

The correlation rXY between X and Y is given by

rXY ~
E XYð Þ{E Xð ÞE Yð Þ

sX sY
, ð9Þ

where E(X) denotes the expectation of X. Using the independence of Y and Z, i.e.,
E(YZ) 5 E(Y)E(Z), we get

rXY~r
sY

sX
: ð10Þ

Then, from s2
X~E X2

� �
{E Xð Þ2, we obtain sX 5 sY, leading to

rXY ~r: ð11Þ
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