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Abstract

In this work we introduce a neural network model for associative memory based on a
diluted Hopfield model, which grows trough a neurogenesis algorithm that guarantees
that the final network is a small-word and scale—free one. We also analyze the storage
capacity of the network and prove that its performance is larger than that measured
in a randomly dilute network with the same connectivity.

Key words: Neural networks, Scale—free networks, Strong dilution
PACS: 84.35.+i1

Artificial neural networks have been a subject of intense study during the last
decades, mainly because their applications to both mathematical modelling of
biological nervous systems and artificial intelligence. A cornerstone in the de-
velopment of artificial neural networks was the work by Hopfield [1] where he
showed, through a very simplified model, how distributed associative memory
can emerge as the result of a) a non linear universal neural dynamics and b)
a plastic network of synaptic interactions. Although highly unrealistic from
the biological point of view, the Hopfield model was able to emulate some
associative processes used by animals when storing and retrieving informa-
tion. Moreover, it linked this field and the statistical mechanics of disordered
magnetic systems.

Since then, several modifications of the Hopfield model have been proposed in
order to endow it with some biological features, and many of these modifica-
tions concerned the structure of the underlying connectivity network. The
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Hopfield model assumed that all the neurons are fully and symmetrically
connected, two biologically undesired features that make the model analyt-
ically tractable. The memory load of the system, defined as the ratio be-
tween the number of stored bits and the total number of synapses in the
network o = % ~ £ presents, for uncorrelated patterns, a critical value
a. ~ 0.138, above which the network cannot longer recover the stored pat-
terns. Derrida, Gardner and Zippelius [2] presented an ultra—diluted Hopfield
model (hereafter referred as DGZ network), where every node is connected
asymmetrically to just C' other random chosen nodes, with ¢’ < InN. In
this case, the storage parameter « takes the form o« = pN/CN = p/C and
its critical value increases to 2/m. In other words, not only associative mem-
ory appears as a robust property against dilution and asymmetry, but those
properties improve it. Later on, Arenzon and Lemke [3| showed, through very
extensive numerical simulations, that this improvement actually holds for the
more realistic and feasible case C' < N.

Montemurro and Tamarit [4] presented a modification of the ultra—diluted
model (hereafter referred as MT network) in which the synapses of an ini-
tially fully connected network are removed systematically through an extremal
pruning strategy. For every node of the network, all but the C' strongest
synapses are removed, where strongest refers to the absolute value of the
synaptic weights. They showed that, even in the less restrictive limit C' < N,
a.. diverges logarithmically with N and therefore the storage capacity of the
network never disappears in the limit N — oo. This shows that the storage
capacity of a neural network can be highly improved by correlating the un-
derlying connectivity of the nodes to the synaptic weights, or equivalently, to
the activity of the network under working conditions.

Both the above mentioned models (DGZ and MT) leads to an underlying con-
nectivity network which is a fully random graph. However, it has been shown
in the last years that networks of interacting entities appearing in biological
systems are not random, but display complex properties, such us small-world
character [5] and scale—free distribution of connectivity degree [6]. Moreover, in
a recent study on the human brain activity using fMRI, Eguiluz and cowork-
ers [7] showed that a functional network, defined through the correlations
between the activities of different areas, displays small world and scale free
properties. Although such network is based on a heavily coarsening process of
the information in the brain, a recent work by Kim [8] support the possibil-
ity that such properties of the functional network reflect a similar structure
of the underlying neural networks. Clearly, such structure is not expected to
be a fully random graph, since it is highly determined by some learning pro-
cess. In other words, the wiring and rewiring of a brain is known to be highly
correlated with the activity of the neurons during some stage of the learning
process. Moreover, it has been recently realized that adult neurogenesis, i.e.,
the incorporation of new neurons into already developed neural structures, is



another form of adaptation to environmental changes, i.e., learning [9]. Hence,
it is of interest to analyze how the performance of basic neural networks mod-
els is affected by the incorporation of learning rules which work during the
growing stage of a network that develops a complex structure.

Stauffer and coworkers [10,11] analyzed recently the storage capacity of a Hop-
field model defined on a scale free network constructed following the Barabasi—
Albert algorithm [6]. Although this network reflects the observed structure of
nervous systems, it is important to stress that its development does not take
into account the activity of the neurons. In other words, it presumes a com-
plete genetic imprinting of the topology of the neural network, irrespectively
of any pattern of brain activity. Despite this unrealistic feature, the model, as
occurs with the MT model, predicts an unlimited storage capacity.

In this work we introduce a neural growing algorithm in which new neurons
link others taking into account the pattern of activity of the network. As will
become clear soon, this algorithm produces small-world scalefree networks
characterized by a large cluster coefficient, a small average path length and a
power—law connectivity distribution, reminiscent of those neural nets observed
in some regions of large nervous systems.

Our model is a modified version of the Hopfield one where each neuron is
modelled by an Ising variable S; = +1 (representing the firing (+1) and
resting (—1) states) and the synaptic architecture is constructed following
a Neuro-Genesis Algorithm (NGA). We start with a small network of size Ny
constructed according to the MT algorithm, i.e., optimizing the pruning pro-
cess in such a way that only the C' strongest synapses survive after dilution.
This deterministic process can be thought as mimicking the genetic initial im-
printing of every natural nervous system. The p stored patterns are denoted
as {&'} withi=1,...,N; and g = 1,...,p, and the surviving synapses are
constructed following the Hopfield rule:

Wij = Z@“%‘ for i#j and w; =0 (1)

I

The quantities ¢! are independent random variables taking the values =41
with equal probability. Once the initial net has been constructed, we add
sequentially new neurons and connect each of them to C of the previously
existing neurons, in such a way that the probability of linking the new neuron
to a preexisting neuron i is given by

(1) = 2 [wis| + |wjil
' i (Wil + [we;]

(2)

In other words, we consider the numerator >, |w;;| + [w;;| as a measure of the
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Fig. 1. Connectivity distribution function for Ny = 60, N2 = 20000 and p = 20.

activity of neuron i, irrespectively of the inhibitory or excitatory character of
the synapses. Note that the sum runs only over the connected neurons, or in
terms of graphs, over the nearest neighbors. After creating a new neuron j we
provide it with p new random binary variables 5;‘ (w=1,...,p) that represent
the states of this neuron on each stored pattern. Once the neighbors are chosen
the new synapsis are constructed according to the Hebbian rule (1). Note that
the synapses are asymmetric and more than this, they are always ingoing
connections. The biological appealing of this algorithm is straightforward. In
what follows we will analyze both the topology of the emerging network and
its recognition capacity in order to compare it with the already presented
modifications of the Hopfield model.

In Fig. 1 we display, in a double logarithmic plot, the connectivity distribution
function NP(k) of a neural network of Ny = 20000 neurons when the system
is initialized with N; = 60 neurons and p = 20 configurations are stored. The
power law behavior observed is a clear signature of the scale—free character
of the net, and the best fitting (continuous line) corresponds to an exponent
v = 2.98 4+ 0.02, which is numerically indistinguishable from the exponent
obtained with the Barabasi—Albert algorithm [6]. It is important here to stress
that these results are almost independent of the value of p but as /N; increases
the topology gains a more complicated structure (to be published elsewhere).

In order to characterize the small word character of the net, we have also
analyzed both the clustering coefficient ¢ and the mean free path [. The clus-
tering coefficient of a given neuron ¢ measures the connectivity of its nearest—
neighbors and it is defined as the probability of any two direct neighbors to
be connected,
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where k; is the connectivity of neuron ¢ and Ej; is the total number of existing
synapsis between its direct neighbors. The global clustering coefficient c is then
the average of all the clustering coefficients of the network. Topologically, a
high value of ¢ indicates a tendency to form triangles (note that in our case,
¢ does not take into account the weight of the synapsis). We have measured
the mean cluster coefficient of the final neural network starting with different
initial sizes and different numbers of stored memories. In all these cases we
have verified that the cluster coefficient is close to ¢ = 5.2 x 1072, which is
almost twice the cluster coefficient corresponding to a non—directed Barabasi-
Albert network.

The mean path length | between two nodes, defined as the number of edges
along the shortest path connecting them, is another relevant topological prop-
erty of a graph, and in particular for scale—free nets the value of [ is relatively
small, growing logarithmically as their sizes increases. We have calculated [ for
different values of the parameters, finding in all the cases that is of the order
or smaller than six, and that it decreases as the connectivity of the network
C increases. The large clustering coefficient ¢ together with the small average
path length [ confirm the small world character of the network.

Next we present a numerical study of the storage capacity of the neural net-
work created by the NGA. To do that we follow the usual protocol: after
constructing a net of N, neurons with p stored patterns, we initialize the sys-
tem in one these memories, let’s say the v-th. Next, we let the system evolve
using a sequential deterministic dynamics governed by the rule,

Si(t+ At) =sign(hy(t))  with  hy(t) = f;wij . (4)
J#i

until it reaches a stationary regime and from then on we measure the temporal
average m of the overlap of the system with the pattern v, defined as,

1

() =+ 3 ser 5)

=1

The closer m approaches to one (zero), the more stable (unstable) is the
corresponding stored pattern.

We first compare the performance of the NGA network with those obtained
with the optimization pruning process (MT) and with the randomly ultra
diluted (DGZ) networks. In Fig. 2 we plot m vs. « = p/(C) for networks
of Ny = 20000 neurons and fixed connectivity C' = 20. Note that the curve
corresponding to the NGA has an initial rapid decay, indicating a poorer
behavior than that observed for the MT networks but, what it is important
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Fig. 2. Comparison between different network topologies of the behavior of m vs a:
MT (full circles), NGA (full squares) and DGZ (full triangles). In all the cases the
system size and the connectivity are No = 10000 and C' = 20 respectively. For the
NGA case the initial network has N7 = 50 neurons.

here to highlight is the fact that it largely improves the performance of the
random DGZ network. Furthermore, the decay of m(a) seems to be slow
enough to guaranty that the model can retrieve the storage patterns for any
finite value of o, though with a poor load parameter m. The performance of
the NGA is also poorer than that observed when, after creating a Barabési—
Albert scale-free network a Hopfield matrix is imprinted on it [10], but this
biologically unrealistic process implies the existence of symmetric couplings,
a property that it is known to improve the storage capacity. When compared
with the asymmetric version of this last model the NGA is slightly better [11].

In Fig. 3 we plot m vs « for N = 10000, C' = 20 and different sizes of the
initial network (increasing from bottom to top). As can be seen, the larger
the initial network, the better the retrieval performance of the network, a fact
that reveals the increasing role that play the optimization pruning process on
the overall behavior of the system. This is an biologically appealing result that
somehow explain the tendency observed in nature to create complexity along
specialization by enlarging the size of the embrional brain, preserving almost
the unchanged the connectivity and reducing the role of neurogenesis on both
adaptation and learning [12].

Summarizing, we have introduced a growing neural algorithm that creates
neurons taking into account the activity pattern of the previously existing
network. Starting with a very small optimized net that emulates the basic
genetic structure of any nervous system (which in fact has been submitted to
the optimization process of natural selection) the network is able to recover
information even for large load parameter. Furthermore, the load performance
deteriorate slow enough to assure at leat an unusual large storage capacity.

This work was partially supported by grants from CONICET (Argentina),
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Fig. 3. m vs. a for a NGA network of Ny = 20000 neurons with (C) = 20 and
different sizes of the initial MT network Np: 50 (full circles), 500 (full squares), 1000
(full diamonds) and 2000 (full triangles).
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