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Although most networks in nature exhibit complex topologies, the origins of such complexity remain

unclear. We propose a general evolutionary mechanism based on global stability. This mechanism is

incorporated into a model of a growing network of interacting agents in which each new agent’s

membership in the network is determined by the agent’s effect on the network’s global stability. It is

shown that out of this stability constraint complex topological properties emerge in a self-organized

manner, offering an explanation for their observed ubiquity in biological networks.
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Complex networks of interacting agents are ubiquitous,
in a wide range of scales, from the microscopic level of
genetic, metabolic, and proteins networks to the macro-
scopic human level of the Internet [1,2]. All of them exhibit
high clustering and a relatively short path length compared
with random networks. In addition, they frequently show a
nonhomogeneous structure, characterized by a degree dis-
tribution (the probability of a node to be connected to k
other ones) with a broad tail PðkÞ � k�� for large values of
k, with exponents � < 3 [1–3]. Several mechanisms have
been proposed to give rise to these kinds of topologies
[1,4]. These mechanisms have successfully explained the
origin of complexity in some networks, but it is recognized
that another, equally large, number of cases cannot be
accounted for by either class of models. In particular,
growing biological networks involve the coupling of at
least two dynamical processes. The first one concerns the
addition of new nodes, attached either during a slow evolu-
tionary (i.e., species lifetime) or a relatively faster devel-
opmental (i.e., organism lifetime) process. A second one is
the node dynamics which affects and in turn is affected by
the growing processes. It is reasonable to expect that the
network topologies we finally witness could have emerged
out of these coupled processes. This Letter is dedicated to
discuss a simple model of this problem, showing that
complex networks do emerge under general realistic con-
straints. It needs to be noted from the outset that the aim of
this Letter is not to describe an arbitrary algorithm but to
identify a dynamical process able to be implemented by
natural systems.

Before introducing the model, and to fix ideas, let us
dwell on some concrete general examples. First consider a
food web, which is constructed through community assem-
bly rules, strongly influenced by the underlying dynamics
of species and specific interactions among them [5,6].
Another example could be neuronal networks, where the
addition of hundreds of thousands of new neurons is fol-
lowed by a dynamical process in which neuronal dynamics

and connectivity are interrelated in a way not fully under-
stood. Yet a third example at another scale, could be
imagined in the context of social networks, in which novice
members can be accepted or rejected based on their indi-
vidual contribution to a global interest, fitness, perform-
ance, or profit. In the three examples it is relatively easy to
visualize the two processes mentioned above. The conse-
quence of adding a new member with a given connectivity
affecting a global instability (stability) is represented in
these examples by the abundance (lack) of food, the neuro-
nal welfare (death), or profits going up (down). Notice that
each new member may not only result in its own addition
or rejection to the system, but it can also promote ava-
lanches of extinctions amongst existing members, an effect
we found that strongly influences the network’s topology.
Let us consider a system of n interactive agents, whose

dynamics is given by a set of differential equations

d~x=dt ¼ ~Fð ~xÞ, where ~x is an n-component vector describ-

ing the relevant state variables of each agent and ~F is an
arbitrary nonlinear function. One could imagine that ~x in
different systems may represent concentrations of some
hormones, or the average density populations in a food
web, or the concentration of a chemicals in a biochemical
network, or the activity of genes in a gene regulation net,
etc. We assume that a given agent i interacts only with a
limited set of ki < n other agents; thus Fi depends only on
the variables belonging to that set. This defines the inter-
action network, as was done previously [7].
We will assume that there are two time scales in the

dynamics. On the long time scale (much larger than the
observation time), the system is subjected to an external
flux (migration, mutation, etc.) of new agents that interact
with some of the previous ones and can be incorporated
into the system or not, so n (and the whole set of differen-
tial equations) can change. On short time scales we assume
that n is constant and the dynamics already led the system

to a particular stable stationary state ~x� defined by ~Fð ~x�Þ ¼
0 [8]. The stability of that solution is determined by the
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eigenvalue with the maximum real part of the Jacobian

matrix ai;j � ð@Fi

@xj
Þx� . Therefore, a new agent will be incor-

porated into the network if its inclusion results in a new
stable fixed point, that is, if the values of the interaction
matrix ai;j are such that the eigenvalue with maximum real

part � of the enlarged Jacobian matrix is negative (� < 0).
Assuming that isolated agents will reach stable states by
themselves after a certain characteristic relaxation time,
the diagonal elements of the matrix ai;i are negative and

given unity value to further simplify the treatment [7]. The
interaction values (i.e., the nondiagonal matrix elements
ai;j) will take random values (both positive and negative)

taken from some statistical distribution. In this way we
have an unbounded ensemble of systems [7] characterized
by a ‘‘growing through stability’’ history. Randomness
would be self-generated through the addition of new agents
processes. Each specific set of matrix elements after ad-
dition defines a particular dynamical system, and the sub-
sequent analysis for time scales between successive migra-
tions is purely deterministic.

These ideas are implemented in a numerical model as
follows: At every step the network can either grow or
shrink. In each step an attempt is made to add a new
node to the existing network, starting from a single agent
(n ¼ 1). Based on the stability criteria discussed, the at-
tempt can be successful or not. If successful, the agent is
accepted, so the existing n� nmatrix grows its size by one
column and one row. Otherwise the novate agent will have
a probability to be deleted together with some other nodes
as further explained below. More specifically, suppose that
we have an already created network with n nodes, such that
the n� n associated interaction matrix ai;j is stable. Then,

for the attachment of the nþ 1th node we first choose its
degree knþ1 randomly between 1 and n with equal proba-
bility. Then the new agent interaction with the existing
network member i is chosen such that nondiagonal matrix
elements (ai;nþ1, anþ1;i) (i ¼ 1; . . . ; n) are zero with proba-
bility 1� knþ1=n and different from zero with probability
knþ1=n; to each nonzero matrix element we assign a differ-
ent real random value uniformly distributed in ½�b; b�. b
determines the interaction range variability, and it is one of
the two parameters of the model. Then, we calculate
numerically � for the resulting ðnþ 1Þ � ðnþ 1Þ matrix.
If � < 0, the new node is accepted. If � > 0, it means that
the introduction of the new node destabilized the entire
system and we will impose that either the new agent is
eliminated or it remains but produces the extinction of a
certain number of previous existing agents. In order to
further simplify the numerical treatment, we will allow
up to q � knþ1 extinctions, taken from the set of knþ1

nodes connected to the new one [9]; q is the other parame-
ter of the model. To choose which nodes are to be elimi-
nated, we first select one with equal probability in the set of
knþ1 and remove it. If the resulting n� n matrix is stable,
we start a new trial; otherwise, another node among the

remaining knþ1 � 1 is chosen and removed, repeating the
previous procedure. If after q removals the matrix remains
unstable, the new node is removed, we return to the origi-
nal n� n matrix, and we start a new trial [10].
First we calculated the average connectivity CðnÞ, de-

fined as the fraction of nondiagonal matrix elements differ-
ent from zero, averaged over different runs. We found that

CðnÞ � n�ð1þ�Þ (see supplementary information [11]) for
large values of n, where the exponent � depends on b and q,
taking values 0< �< 1. Such behavior is characteristic of
food webs [12], and it has been interpreted in terms of self-
organized criticality concepts [13]; the present results sug-
gest that this is a general behavior in stability-driven self-
organized systems.
Next we calculated the degree distribution PðkÞ of the

network with n ¼ nmax for different values of b and q. The
typical behavior of PðkÞ is illustrated in Fig. 1 for b ¼ 2,
q ¼ 3, and different values of nmax. We see the emergence
of a fat tail PðkÞ � k�� for large values of n, with an
exponent �, independently of the network size (this figure
also shows that the drop in the tail of the distribution is a
finite size effect). Notice that this relatively small range of
the broad tail is what more often is seen in real networks.
The qualitative behavior of PðkÞ for other values of b and q
is the same (see supplementary information [11]). The
inset of Fig. 1 shows the value of the exponent � as a
function of b for different values of q. We see that �
presents a minimum around b ¼ 2 for all values of q; as
q increases the exponent decreases, and for large enough
values of q we obtain a nontrivial value of � < 3 for a
broad range of values of b.
To exclude the possibility that the observed network

topology is trivially associated with a hidden preferential
attachment process, we computed the attachment proba-
bility �ðkÞ, defined as the probability that a new node
connects with an already existing node with degree k.
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FIG. 1 (color online). Degree distribution PðkÞ for b ¼ 2, q ¼
3, and different values of nmax; the dashed lines correspond to a
power law PðkÞ � k�� with � � 2:4. The inset shows � as a
function of b for different values of q.
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Assuming that the average degree hkii 	 n, the attachment
probability can be expressed as�ðkÞ ¼ Pnk

i �i, where�i

is the probability that the new node connects to the already
existing node i, nk � nPðkÞ is the number of nodes with
degree k, and the sum runs over all sites i with degree ki ¼
k. If stability selection would favor some kind of prefer-
ential attachment mechanism (i.e., if new nodes are at-
tached with larger probability to nodes highly connected),

we should expect�i ¼ ki=
P

n
j¼1 kj � ki

nðn�1ÞCðnÞ and there-
fore

�ðkÞ � PðkÞk
ðn� 1ÞCðnÞ : (1)

In Fig. 2 the relative attachment probability �ðkÞ=PðkÞ
in the present model for a fixed network size n and different
values of b is compared with the corresponding results for
a network of the same size obtained with the Barabási-
Albert (BA) [1] algorithm with connectivity CðnÞ. This
quantity shows the expected behavior �ðkÞ=PðkÞ � k for
large values of k, consistently with Eq. (1). In the present
model�ðkÞ=PðkÞ remains almost constant for a wide range
of values of k [including a range of values for which the
power law behavior of PðkÞ has already established] but
displays an increasing trend consistent with Eq. (1) for
large values of k. In other words, in the present model at
variance with the BA model, as the network grows, the
assembly mechanisms selected by stability show a cross-
over between two regimes: one dominated by preferential
attachment and the other not.

Considering that biological systems are probably never
in a completely stable situation, we relaxed the condition
of stability � < 0 and look at networks growing by allow-
ing � to take small positive values so that the characteristic
time to leave an unstable fixed point � ¼ ��1 
 1. By
accepting nodes as long as � <�, the calculation of PðkÞ
for different values of � (positive and negative) showed

similar qualitative behavior, with small variations of the �
exponent (see supplementary information [11]).
Next we calculated the average path length L between

two nodes and the average cluster coefficient Cc for the
networks obtained by the present algorithm as a function of
the network size n. L is defined as the minimum number of
links needed to connect any pair of nodes in the network,
and Cc is defined as the fraction of connections between
topological neighbors of any site [1]. In Fig. 3 we show the
typical behavior of LðnÞ and CcðnÞ. We see that CcðnÞ �
n�0:75 and LðnÞ � A lnnþ C. Such scaling behavior is the
same one observed in the BA model [1].
As shown in Fig. 3 larger networks becomes less clus-

tered and have a longer minimum path on the average. L
and Cc are inversely related, as can be seen in the single
run plotted in Fig. 3(b). The data correspond to values
computed every 50 trials, whether or not the attempt to
add a nodewas successful or not at that trial. In a sense, this
is how a natural network would look to an observer if one
could take snapshots in time. Clearly both quantities fluc-
tuate in opposite directions, as further shown in the inset,
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FIG. 2 (color online). Relative attachment probability
�ðkÞ=PðkÞ for different values of nmax, compared with the
corresponding results for a BA network of the same size. The
dashed line corresponds to a linear behavior �ðkÞ=PðkÞ � k.
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FIG. 3 (color online). (a) Networks’ average clustering coef-
ficient CcðnÞ and LðnÞ for b ¼ 2 and different values of q as
functions of network size. The dashed line is a guide to the eye
corresponding to CcðnÞ � n�0:75. The inset shows the same data
plotted against each other. (b) CcðnÞ and LðnÞ as functions of
network size computed from a single network realization. Data
are samples taken every 50 trials, regardless of the resulting
stability. Notice how fluctuations increase as the network grows.
The inset shows the same data plotted against each other (filled
circles), in addition to the data computed from a random network
with equal size and density of connections (open circles).
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where the data corresponding to a randomly shuffled net-
work are also plotted for comparison. The behavior of Cc
and L is linked with the selection dynamics ruling which
node is accepted or rejected. The stability constraint favors
the nodes with few links, since they modify the matrix ai;j
stability much less than new nodes with many links [of
course this is reflected in the PðkÞ density]. Thus, most
frequently the network grows at the expense of adding
nodes with one or few links, producing an increase of L
and a decrease of Cc. Most of the times, nodes with many
links destabilize the network and are rejected, but when
one is finally accepted, a large decrease in L together with
an increase in Cc is observed. This sudden change is the
signature of a new network hub, as seen in the example
denoted with an arrow in Fig. 3(b). We also verified that
those fluctuations lead to a slow diffusivelike growth of the

network size nðtÞ � t1=2 (not shown), where the time is
measured in number of trials.

Finally, to consider the effect of local stability selection
pressure, we modified the algorithm as follows. Once the
new candidate node and its 1st nearest neighbors (NN) are
chosen, we analyze the stability of the subnetwork com-
posed of neighbors up to a range R (R ¼ 1, 1st NN; R ¼ 2,
2nd NN; etc.). In Fig. 4 we show PðkÞ at n ¼ nmax for
different values of R. We see that the fat tail PðkÞ � k��

appears as long as R � 3, which coincides with the value
of L for the corresponding net size (see Fig. 3), suggesting
a correlation between stability and the self-organized
emergence of small world topology. Notice also that con-
sidering local stability allows a larger variability in the
value of � (� � 0:9 for R ¼ 3), although � quickly con-
verges to the global stability result (for R> 4 both results
are almost indistinguishable).

The robustness of complex networks against error and
attack has already been investigated [14] considering the
effects of nodes’ or links’ deletion. The present results

show that the consequences of perturbing a single node
may depend also on stability, a topic that deserves further
clarification. Indeed, closely related results on Boolean
networks dynamics already support the generality of this
approach [15].
In summary, the analysis of a simple model shows that

complex topology can appear in networks as an emergent
property driven by a stability selection pressure during the
growing process. This suggests yet another explanation for
the ubiquity of complex topology observed in different
networks in nature.
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correspond to power law fits.

PRL 103, 108701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

108701-4


