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Contextual analysis framework for bursty dynamics
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To understand the origin of bursty dynamics in natural and social processes we provide a general analysis
framework in which the temporal process is decomposed into subprocesses and then the bursts in subprocesses,
called contextual bursts, are combined to collective bursts in the original process. For the combination of
subprocesses, it is required to consider the distribution of different contexts over the original process. Based on
minimal assumptions for interevent time statistics, we present a theoretical analysis for the relationship between
contextual and collective interevent time distributions. Our analysis framework helps to exploit contextual
information available in decomposable bursty dynamics.
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I. INTRODUCTION

In a wide range of natural and social phenomena, inho-
mogeneous or non-Poissonian temporal processes have been
observed. They are described in terms of 1/f noise [1,2], or in
terms of bursts that are rapidly occurring events within short
time periods alternating with long periods of low activity [3–5].
In studies of inhomogeneous temporal processes one finds a
unified scaling law for the interoccurrence time of earthquakes
[6–8], 1/f frequency scaling and power law for interspike
interval distributions in neuronal activities [9,10], and heavy-
tailed interevent time distributions in human task execution
and communication patterns [3,11–14]. The origin of these
temporal inhomogeneities has been extensively investigated
in terms of self-organized criticality (SOC) [2,15], where
temporal inhomogeneities are a consequence of self-similar
structures in temporal patterns. On the other hand, for bursts,
other mechanisms have also been suggested, such as memory
effects [5] and an inhomogeneous Poisson process with a
time-varying event rate [16].

For a more comprehensive understanding of bursty behav-
ior, let us consider a temporal process that can be decomposed
into subprocesses. In other words, a set of events with timings
comprises events of different contexts, where each context
corresponds to each subprocess. For example, communication
events of an individual could be classified as being either
family related or work related according to the communication
partner or content [17,18]. We define contextual bursts as bursts
of events with the same context, while collective bursts are
defined for all kinds of events, i.e., independent of context.
Then understanding the contextual bursts can give us more
detailed insights into collective bursts. However, the effect
of context on bursts has been largely ignored except for a
few recent works on human dynamics [19,20]. In order to
relate contextual bursts to collective bursts, the distribution of
contexts over the original process must be considered in terms
of the ordinal time frame, where the real timings of events are
replaced by their orders in the original event sequence. The
ordinal time frame is useful when the order of events is more
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crucial for the process than their real timings or when the real
timings are not available, such as the sequence of words in the
text [21]. In addition, the origin of bursts can be explored more
explicitly as the effect of any intrinsic temporal patterns, such
as circadian and weekly cycles of humans [22], is excluded.
Moreover, the human bursty dynamics has often been modeled
in terms of the ordinal time frame by ignoring the real time
frame to some extent [3,11,23–25]. Hence, understanding the
relation between contextual bursts in real and ordinal time
frames is essential for bridging the gap between the models
and reality.

In this paper, we provide a general framework for analyzing
decomposable bursty dynamics in terms of context and
time frame, by studying a minimal model with uncorrelated
interevent times. Interestingly, the main part of our model can
be translated into the broad class of mass transport models
[26,27], although they emerged from totally different back-
grounds. We find that the statistical properties of contextual
bursts in a real time frame can be dominated by either collective
bursts or contextual bursts in an ordinal time frame, or can be
characterized by both. We also show that the real and ordinal
time frames are related successively by means of deseasoning
such that the real time frame is dilated (contracted) for the
moment of high (low) activity [22].

The paper is organized as follows. In Sec. II, we devise
and analyze the model with uncorrelated interevent times to
investigate the relationship between interevent time distribu-
tions for collective and contextual bursts in real and ordinal
time frames. In Sec. III, we apply the deseasoning method to
successively relate the real and ordinal time frames. Finally,
we summarize the results in Sec. IV.

II. MODEL

Let us now introduce an uncorrelated interevent time
model. We denote the collective interevent time by l, whereas
contextual interevent times in real and ordinal time frames
are denoted by τ and n, respectively (see Fig. 1). Their
corresponding distributions are written as P (l), P (τ ), and
P (n). In general, the contextual real interevent time is obtained
by the sum of consecutive collective interevent times, τ =∑n

i=1 li . By means of this relation, the three interevent time
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FIG. 1. (Color online) An example of event series with various
contexts A, B, and C, presented in (a) a real time frame and in
(b) an ordinal time frame. l and τ represent the collective and con-
textual real interevent times, respectively. n represents the contextual
ordinal interevent time, while every collective ordinal interevent time
is trivially 1.

distributions are interrelated as follows:

P (τ ) =
∞∑

n=1

P (n)Fn(τ ), (1)

Fn(τ ) ≡
n∏

i=1

∫ ∞

l0

dliP (li)δ

(
τ −

n∑
i=1

li

)
. (2)

Here Fn(τ ) is the probability of obtaining τ as the sum of
n ls, each of which is independently drawn from the same
distribution P (l). Since only one event can occur at a time in
our setup, l must have a positive lower bound, l0 > 0. When
the variance or tail of P (l) is small, one can approximate
τ = ∑n

i=1 li ≈ n〈l〉 for sufficiently large n, where 〈·〉 denotes
an average. This leads to the trivial solution P (τ ) ≈ P (n),
implying irrelevance of the time frame. As the general case,
we consider the heavy-tailed distribution P (l) ∝ l−α with α >

1. The distribution of P (n) is closely related to the context
distribution over the event sequence. For the case with very few
contexts, as n is mostly 1, i.e., τ = l, we obtain P (τ ) ≈ P (l),
implying irrelevance of the context. In general we assume that
the contexts are unevenly distributed over the event sequence
by considering P (n) ∝ n−β with β > 1. Then we find that
P (τ ) shows an asymptotic power-law behavior, τ−α′

.

A. Main results

In Fig. 2, we depict the main results. Both collective
bursts and contextual bursts in an ordinal time frame are
generally expected to affect contextual bursts in a real
time frame. This is the case only when both kinds of bursts
are sufficiently strong, i.e., α′ = (α − 1)(β − 1) + 1 for α < 2
and β < 2. This scaling relation can be understood by the
identity P (τ )dτ = P (n)dn with the fact that τ = ∑n

i=1 li is
dominated by max{li} that is proportional to n1/(α−1) [28]. On
the other hand, when α > 2 and α > β, it turns out that the
same power-law exponent characterizes contextual bursts in
both time frames, i.e., α′ = β. This implies that the time frame
is not relevant to contextual bursts. Finally, when β > 2 and
β > α, we find α′ = α, implying that the context distribution
over the event sequence is not relevant to bursts in a real time
frame.

FIG. 2. Phase diagram summarizing the relation between heavy-
tailed distributions of l, τ , and n, in terms of their corresponding
power-law exponents α, α′, and β. Contextual bursts in a real time
frame are dominated by contextual bursts in an ordinal time frame
if α > 2 and α > β, by collective bursts if β > 2 and β > α, or
otherwise characterized by both kinds of bursts.

B. Analysis

For analysis, we change variables by mi ≡ li − l0 and
M ≡ τ − nl0 to rewrite Zn(M) ≡ Fn(M + nl0) and f (mi) ≡
P (mi + l0):

Zn(M) =
n∏

i=1

∫ ∞

0
dmif (mi)δ

(
M −

n∑
i=1

mi

)
. (3)

This is exactly the “canonical partition function” for mass
transport models and its analytical solution for f (m) 	 Am−α

has been extensively studied [26,27].
For 1 < α < 2, Zn(M) follows a scaling form as [27]

Zn(M) 	
{

n−νg−
1 (Mn−ν) if M < n,

n−νg+
1 (Mn−ν) if M > n,

with ν = 1
α−1 and the scaling functions are

g−
1 (x) = ax

− 3−α
2(2−α) exp

( − bx− α−1
2−α

)
, (4)

g+
1 (x) = cx−α, (5)

where a, b, and c are constants depending on α and A [29].
After plugging this scaling form into Eq. (1), we perform the
summation over n with the upper bound of τ

l0
due to M � 0.

Then, we get

P (τ ) =
τ/ l0∑
n=1

P (n)Zn(τ − nl0)

∝
∫ n×

1
n−β−νg+

1 [(τ − nl0)n−ν]dn

+
∫ τ/ l0

n×
n−β−νg−

1 [(τ − nl0)n−ν]dn

∝ τ−αc

[∫ x×

0
xαc−1g−

1 (x)dx +
∫ τ

x×
xαc−1g+

1 (x)dx

]
,

(6)
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with αc ≡ (α − 1)(β − 1) + 1 and crossovers n× and x× =
(τ − n×l0)n−ν

× . For derivation, (τ − nl0)n−ν has been replaced
by x and then approximated as x ≈ τn−ν . While the first term
in the parentheses is independent of τ , the second term is
obtained as ταc−α − x

αc−α
× , leading to

P (τ ) ∝ c1τ
−αc + c2τ

−α, (7)

with coefficients c1 and c2. Thus, we obtain

α′ = min{αc,α} if 1 < α < 2. (8)

The condition for αc = α is β = 2, when the second term in
Eq. (6) gives the logarithmic correction as ln τ . That is, if the

tail of P (n) is sufficiently small, α′ = α is obtained, implying
that contextual bursts in a real time frame are determined only
by collective bursts. In any case, we get α′ < β, implying that
contextual bursts in a real time frame are stronger than those
in an ordinal time frame due to large fluctuations of collective
interevent times.

Figures 3(a) and 3(b) show that our analysis is confirmed
by the numerical simulations (to be described later) for α = 3

2
and l0 = 1. We find that the numerically obtained Fn(τ ) for
different ns collapse into one curve corresponding to g−

1 (x)
for x < x× and g+

1 (x) for x > x×. Then, based on the simple
scaling form P (τ ) ∼ τ−α′

, we estimate the value of α′, which
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FIG. 3. (Color online) Numerical results of the model for α = 3
2 (top), 5

2 (middle), and 4 (bottom), all with l0 = 1. (a) Numerical results
of Fn(τ ) for different values of n collapsed into one curve, i.e., g−

1 (x) for x < x× and g+
1 (x) for x > x×, drawn with a black curve. (b) The

power-law exponent α′ is estimated from P (τ ) ∼ τ−α′
for each β to be compared with the scaling relation α′ = min{ β+1

2 , 3
2 }, denoted by a

black line in the inset. (c)–(f) Scaling collapse of Fn(τ ) and the estimated values of α′ comparable to α′ = min{α,β} support our analysis for
α > 2. Here τc for each n is determined to maximize Fn(τ ). In (c) x0 ≈ 0.659 is used. In the inset of (e), tail parts are collapsed by Fn(τ )n vs
(τ − τc)n−1/2.
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shows a slight discrepancy from the analytic result in Eq. (8),
due to the correction term in Eq. (7).

Next, for more realistic considerations such as finite-size
data, we discuss the effect of cutoff by assuming that P (n) ∝
n−βh( n

nc
) with a cutoff function h(x). Let us consider the case

of steep cutoff, i.e., h(x) = 1 for x � 1 and 0 for x > 1. If τ is
sufficiently large as τ > x×nν

c , we obtain the asymptotic result
α′ = α, implying that α′ is determined only by α. In the case
of the exponential cutoff h(x) = e−x , the same result, α′ = α,
is also confirmed by numerical simulations (not shown).

For 2 < α < 3, Zn(M) is a function of M − Mc with
the “critical point” Mc = n〈m〉, at which the condensation
transition occurs [27]. Thus, we separate the subcritical and
supercritical cases as follows:

Zn(M) 	
{

n−νg−
2 [(Mc − M)n−ν] if M < Mc,

n−νg+
2 [(M − Mc)n−ν] if M > Mc,

where ν = 1
α−1 . g−

2 (x) has the same form as g−
1 (x) in Eq. (4),

and g+
2 (x) ∝ x−α . Since M − Mc = τ − n(l0 + 〈m〉) = τ −

n〈l〉, we split the summation over n in Eq. (1) at τ
〈l〉 as follows:

P (τ ) ∝
∫ τ/〈l〉

1
n−β−νg+

2 [(τ − n〈l〉)n−ν]dn

+
∫ τ/ l0

τ/〈l〉
n−β−νg−

2 [(n〈l〉 − τ )n−ν]dn.

Similarly to the calculation for g+
1 (x) in Eq. (6), the first

term gives the form of τ−αc + τ−α . For the second term, we
assume that g−

2 (x) ≈ δ(x − x0), where the location of peak
x0 > 0 is defined by g−

2
′
(x0) = 0 [30]. Since the root of the

equation n〈l〉−τ

nν − x0 = 0 is in the range of ( τ
〈l〉 ,

τ
l0

), one finds

τ−β , leading to α′ = min{αc,α,β}. Knowing that β < αc for
α > 2, we find

α′ = min{α,β} if 2 < α < 3. (9)

In other words, collective bursts and contextual bursts in an
ordinal time frame compete for contextual bursts in a real
time frame. In particular, the result α′ = β for β < α implies
that the approximation τ = ∑n

i=1 li ≈ n〈l〉 is still valid even
when 〈l2〉 diverges. It is because only the subcritical part of
Zn(M), where the fluctuation of l is negligible, contributes to
P (τ ).

For α > 3, Zn(M) can be written by means of central and
peripheral scaling functions as [27]

Zn(M) 	
{

n−νg<
3 [(M − Mc)n−ν] if |M − Mc| � O

(
n

2
3
)
,

n−μg>
3 [(M − Mc)n−ν] if M − Mc � O(n),

where ν = 1
2 and μ = α

2 − 1. The central scaling function is

g<
3 (x) = 1√

2π�2
exp

(
− x2

2�2

)
, (10)

where �2 = 〈m2〉 − 〈m〉2. The peripheral scaling function
g>

3 (x) is the same as g+
2 (x). By assuming that g<

3 (x) ≈ δ(x),
we obtain α′ = min{α,β}. Our analysis is confirmed by the
numerical results as shown in Figs. 3(c)–3(f). Finally, all
analytical results are summarized as

α′ = min{(α − 1)(β − 1) + 1,α,β} (11)

and depicted in Fig. 2.

In our numerical methods, l is considered to be an integer
starting from l0 = 1, and so is τ . We prepare a set of
collective real interevent times as L = {1, . . . ,2, . . . ,lmax},
where the number of l is proportional to P (l) = Al−α with
A−1 = ∑lmax

l=1 l−α . Here lmax is determined under the condition
A−1 > 0.999ζ (α). When n is given, we randomly select
n elements from the set L and get the sum of them as
τ = ∑n

i=1 li , which is repeated up to 109 times to make
the distribution Fn(τ ). By plugging these Fn(τ ) into Eq. (1)
together with P (n), we numerically obtain P (τ ).

III. DESEASONING METHOD

Although real and ordinal time frames are qualitatively
different, we can successively relate them in terms of the
deseasoning method [22]. In order to deseason intrinsic cyclic
activity, denoted by ρ(t), the real time frame is dilated
(contracted) for the moment of high (low) activity. Let us
denote the number of events at time t by a(t), being either 0
or 1 in our setup. Given the deseasoning period T , the event
rate reads

ρ(t) = T

s

∑
k

a(t + kT ), (12)

with the total number of events s and by the normalization
1
T

∫ T

0 ρ(t)dt = 1. The deseasoned time t∗ is defined by means
of ρ∗(t∗)dt∗ = ρ(t)dt , with ρ∗(t∗) = 1, which implies no
cyclic patterns in the deseasoned time frame. Correspondingly,
the deseasoned interevent time between event timings t1
and t2 is defined by τ ∗ = ∫ t2

t1
ρ(t ′)dt ′. As the minimum of

the deseasoned interevent time is T
s

, the domain of the
deseasoned interevent time distribution becomes smaller for
the larger deseasoning period. This means that the deseasoning
generically leads to less bursty behavior.

When the time series is fully deseasoned, i.e., T = Tf

with the entire period Tf , we get ρ(t) = Tf

s
a(t) ≡ l∗0a(t).

Since every collective deseasoned interevent time is l∗0 , the
contextual deseasoned interevent time must be a multiple of
l∗0 , such that τ ∗ = nl∗0 . Here n denotes the contextual ordinal
interevent time. Conclusively, all temporal properties in the
fully deseasoned real time frame should be identical to those
in the ordinal time frame. This in turn leads to an interesting
question whether contextual bursts in real and ordinal time
frames can also be successively related.

IV. SUMMARY

In summary, we have provided a general framework for
analyzing decomposable bursty dynamics in terms of context
and time frame, by studying an uncorrelated interevent time
model. We derived asymptotic relationships between the
collective bursts and contextual bursts in real and ordinal
time frames. We found that the contextual bursts in a real
time frame can be dominated by either collective bursts or
contextual bursts in an ordinal time frame, or be characterized
by both kinds of bursts. This implies that collective bursts
may have different origins. In particular, the (in)difference
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between the contextual bursts in the real and ordinal time
frames is important to relate models in the ordinal time frame
with the real systems. Our framework of decomposing a
temporal process into subprocesses and combining them after
understanding each subprocess helps us to investigate complex
systems showing temporal inhomogeneities such as 1/f noise
or bursts in more detail. Although temporal inhomogeneities
could be understood to some extent only by interevent
time distributions, it is important to extend our minimal

model to take various correlations and memory effects into
account.
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