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Abstract

Least-Squares Support Vector Machines (LS-SVM’s), originating from Stochastic Learning
theory, represent a promising approach to identify nonlinear systems via nonparametric es-
timation of nonlinearities in a computationally and stochastically attractive way. However,
application of LS-SVM’s in the identification context is formulated as a linear regression aim-
ing at the minimization of the ¢y loss in terms of the prediction error. This formulation
corresponds to a prejudice of an auto-regressive noise structure, which, especially in the non-
linear context, is often found to be too restrictive in practical applications. In [1], a novel
Instrumental Variable (IV) based estimation is integrated into the LS-SVM approach provid-
ing, under minor conditions, a consistent identification of nonlinear systems in case of a noise
modeling error. It is shown how the cost function of the LS-SVM is modified to achieve an
[V-based solution.

In this technical report, a detailed derivation of the results presented in Section 5.2 of [1]
is given as a supplement material for interested readers.

1 IV in the dual form

Consider the primal minimization problem (eq. (52) in [1]):
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Introduce the Lagrangian
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with oy and f8; being the Lagrangian multiplier. According to [1], the terms ' (k) and 6 can
be decomposed as

pk) = [1 ol (yk=1) ... ol (ylk—na) i pa(ulk) oo of (ulk—m)) ],
(3a)
o=[c 0 ... 00 ], (3b)
where ¢;(s) = [ ¢i1(s) ... Ging() |7, 0i=10i1 ... bipnyl" and c € R.

The global optimum of Problem (1) is obtained when the KKT conditions are fulfilled,
ie.,
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foralli=1,...,ngand k=1,...,N.

By substituting (4d) and (4e) into (4b) and (4c), we get
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for ke {l,...,N} and i € {1,...,n,}. Let introduce the following notation (used in [1}):

E =[e(1) e(N)]', (6a)
Y =[y(1) ... gV, (6b)
a=lo ... an]', (6¢)
B=[B o Bu]' (6d)
1y =1 11" e RY, (6e)
O, = [0 0]" € R, (6f)
T
©; =] ¢i(xi(1)) ¢i(zi(N)) |, (6g)
Do =[ ®161(0) ... Py, (0) ], (6h)
Dy =diag (6] (0)61(0), -, 6/,(0)6,,(0)) (61)
Egs. (5) can also be written in the matrix form
E=Y — (1N17V D <I>iq>j> a — Dgf3, (7a)
i=1
On, = D+ Dof. (7b)
Then substitution of (7a) into (4a) leads to the solution:
o] [ &=HG+1y HHDs | ' [ LHY ®
gl ~Dg ~ Dy O, ’
where H =TT and G = 151}, + 7%, ®®;. Note that the (4, 5)-th entry of the matrix G
——
at)
is given by
l) jk - <¢’L xz (bz xz > K ( ( ) xl<k)) (9)

with K (‘)( (7)), xl(k)) being a positive definite kernel function defining the inner product
<ngz zi(4)), iz (k ))> Similarly, the entries of the matrices Dy and Dy can be defined in
terms of a kernel function as

[D<I>]lk - <¢l xz > cho(xl O)’ (10)

Dolii = {6:(0), 9:(0)) = K{3(0,0). (11)

Once the Lagrangian multipliers o and 3 are computed through (8), the estimate 0 of the
model parameters 6 is obtained from (4d) and (4e), i.e
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The estimate of the nonlinear functions ¢, (.)6; can be then obtained from (12) and (4d), i.e.,
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