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Abstract: In this paper a procedure is presented for deriving parameters bounds of linear
systems with output backlash when the output measurement errors are bounded. First, using
steady-state input/output data, parameters of the backlash are bounded. Then, given the
estimated uncertain backlash and the output measurements collected exciting the system with
a PRBS, bounds on the unmeasurable inner signal are computed. Finally, such bounds, together
with the input sequence, are used for bounding the parameters of the linear block.

1. INTRODUCTION

Nonlinearities in actuators and sensors commonly em-
ployed in control systems can introduce a variety of inter-
esting although sometimes undesirable behaviours that, in
general, may be responsible of phenomena such as delays
and oscillations which, in turn, may cause inaccuracy and,
more generally, limitations on both the static and the
dynamic performance of control systems (see, e.g. Tao and
Kokotovic [1996]). Backlash (see Fig. 1) is one of the most
important nonlinearities that strongly affects the chosen
control strategies in the industrial machines, for example,
deteriorating the overall performances: its presence gives
rise to inaccuracies in the position and velocity. This par-
ticular nonlinearity, which can be classified as a dynamic
(i.e., with memory) and hard (i.e. non-differentiable) one,
commonly occurs in mechanical, hydraulic and magnetic
components, e.g.: bearings, gears and impact dampers
(see, e.g. Nordin and Gutman [2002]). It can arise from
unavoidable manufacturing tolerances or sometimes can
be deliberately incorporated in the system in order to cope
with thermal expansion Bapat et al. [1983]. The interested
reader is referred to Tao and Kokotovic [1996] for real-life
examples of systems with either input or output backlash
nonlinearities. The control of systems with backlash has
been investigated by several authors and a number of
approaches can be found in the literature. For example, in
order to cope with the limitations caused by the presence
of backlash, either robust or adaptive control techniques
can be successfully employed (see, e.g., Corradini et al.
[2004], and Tao and Canudas de Wit [Eds.] respectively)
which, on the other hand, require the characterization of
the nonlinear dynamic block. Surprisingly, there are only
few contributions in the literature on the identification
of systems with nonstatic hard nonlinearities (Bai [2002],
Cerone and Regruto [2007]). Therefore, the identification
of systems with unknown backlash is an open theoretical
problem of major relevance to applications.
The configuration we are dealing with in this paper, shown
in Fig. 2, closely resembles that of a Wiener model which
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in turn consists of a linear dynamic system followed by
a static nonlinear part N . The identification of such a
model relies solely on input-output measurements, while
the inner signal xt is not assumed to be available. The
identification of Wiener models has attracted the attention
of many authors Billings [1980] exploiting a number of dif-
ferent techniques. The main difficulty in the identification
of Wiener systems is that the internal signal is not avail-
able for measurement. However, under the assumption of
invertible nonlinearities, which is a common one, the inner
signal can be recovered from the output measurements
through inversion of the previously estimated nonlinearity.
Unfortunately, many output nonlinearities encountered in
real world problems are non-invertible Wigren [1998], thus
the invertibility assumption appears to be quite restrictive.
Removal of such an hypothesis makes the consistent eval-
uation of the inner signal sequence a difficult task even in
the case of exactly known nonlinearities.
It must be stressed that existing identification procedures
mostly require that the nonlinearity be static and differ-
entiable, usually a polynomial (see e.g., Bai [1998], Cerone
and Regruto [2003], Narenda and Gallman [1966] and the
references therein). On the side of linear systems with
hard nonlinearities, Bai [2002] considers the case of non-
linearities parameterized by one parameter. The proposed
algorithm, based on the idea of separable least squares, can
be applied to several common static and nonstatic input
nonlinearities.
In identification, a common assumption is that the mea-
surement error ηt is statistically described. A worthwhile
alternative to the stochastic description of measurement
errors is the bounded-errors characterization, where un-
certainties are assumed to belong to a given set. In the
bounding context, all parameter vectors belonging to the
Feasible Parameter Set (FPS), i.e. parameters consistent
with the measurements, the error bounds and the assumed
model structure, are feasible solutions of the identification
problem. The interested reader can find further details on
this approach in a number of survey papers (see, e.g., Mi-
lanese and Vicino [1991], Walter and Piet-Lahanier [1990]).
In this paper we present a scheme for the identification
of linear systems with output backlash. More precisely,
we address the problem of bounding the parameters of a
stable single-input single-output SISO discrete time linear
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system with unknown backlash at the output (see Fig. 2)
when the output error is considered to be bounded. Note
that the inner signal x(t) is not supposed to be measurable.
To the author’s best knowledge, no contribution can be
found in the literature which address the above described
identification problem.
The paper is organized as follow. Section 2 is devoted to
the formulation of the problem. In Section 3, parameters of
the nonlinear block are tightly bounded using input-output
data collected from the steady-state response of the system
to a suitably filtered square wave input. Then, in Section
4, through a dynamic experiment, for all ut belonging to
a Pseudo Random Binary Signal (PRBS) sequence {ut},
we compute tight bounds on the inner signal, through a
suitable inversion of the output, which, together with the
corresponding input sequence are used for bounding the
parameters of the linear part in Section 5. A simulated
example is reported in Section 6.
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Fig. 1. Backlash.

2. PROBLEM FORMULATION

Consider the SISO discrete-time linear system with output
backlash depicted in Fig. 2, where

xt = G(q−1) =
B(q−1)
A(q−1)

ut. (1)

A(·) and B(·) are polynomials in the backward shift
operator q−1, (q−1wt = wt−1), A(q−1) = 1 + a1q

−1 +
. . . + anaq−na and B(q−1) = b0 + b1q

−1 + . . . + bnbq
−nb.

In line with the work done by a number of authors, in
the contest of identification of block oriented systems, we
assume that (i) the linear system is asymptotically stable
(see, e.g., Stoica and Söderström [1982], Krzyżak [1993],
Lang [1993, 1997], Sun et al. [1999]); (ii)

∑nb
j=0 bj �= 0, that

is, the steady-state gain is not zero (see, e.g. Lang [1993,
1997], Sun et al. [1999]).The nonlinear block transforms
xt into the noise-free output wt according to the following
map (see, e.g., Tao and Kokotovic [1996])

wt =

⎧⎨
⎩

ml(xt + cl) for xt ≤ zl

mr(xt − cr) for xt ≥ zr

xt−1 for zl < xt < zr

(2)

where ml > 0, mr > 0, cl > 0, cr > 0 are constant
parameters characterizing the backlash and

zl =
wt−1

ml
− cl, zr =

wt−1

mr
+ cr (3)

� B(q−1)
A(q−1)

� � ��Nxtut wt yt

ηt

+ +

Fig. 2. Single-input single-output discrete-time
linear system with output backlash N .

are the u-axis values of intersections of the two lines,
with slopes ml and mr, with the horizontal inner segment
containing wt−1. The backlash characteristics is depicted
in Figure 1.

Let yt be the noise-corrupted output
yt = wt + ηt. (4)

where η is known to range within given bounds Δηt, i.e.,
| ηt |≤ Δηt. (5)

Unknown parameter vectors γ ∈ R4 and θ ∈ Rp are
defined, respectively, as

γT = [ γ1 γ2 γ3 γ4 ] = [ ml cl mr cr ] , (6)

θT = [ a1 . . . ana b0 b1 . . . bnb ] , (7)
where na + nb + 1 = p. It is easy to show that the
parameterization of the structure of Fig. 2 is not unique.
To get a unique parameterization, in this work we assume,
without loss of generality, that the steady-state gain of the
linear part be one, that is

g =

∑nb
j=0 bj

1 +
∑na

i=1 ai
= 1 (8)

In this paper we address the problem of deriving bounds on
parameters γ and θ consistently with given measurements,
error bounds and the assumed model structure.
First, exploiting M steady-state input-output data, one
gets the feasible parameter set Dγ of the nonlinear block
parameters, which is a convex polytope. Then, given the
estimated uncertain nonlinearity N (xt, γ) and the output
measurements collected exciting the system with a PRBS,
bounds on the inner signal xt are computed through a
suitable inversion of the output sequence.
Last, the bounds computed in the second stage, together
with the input PRBS, are used to obtain a polytopic outer
approximation of the exact feasible parameter set of the
linear system. The proof of all the propositions presented
in the paper can be found in found in Cerone et al. [2009].

� � ��Nūi w̄i ȳi

η̄i

+ +

Fig. 3. Steady-state behaviour of the system un-
der consideration when g = 1.

3. EVALUATION OF BOUNDS ON THE BACKLASH
PARAMETERS

3.1 Input design for the steady-state experiment

In this section we exploit steady-state operating conditions
to bound the parameters of the backlash. The output
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response of the linear block to a square wave input may
show oscillations during the transients, which excite the
hysteretic behaviour of the backlash, leading to possible
constant output sequences in presence of non-constant
input sequences. When such a case occurs, the relation
between the input and the output of the backlash is no
longer static and, as a consequence, the steady-state value
of the backlash input is no longer uniquely related to the
steady-state value of the input ut since it also depends on
some past input/output samples. On the contrary, under
assumption (8), the steady-state output of the backlash is
uniquely related to the steady-state value of ut when xt

does not overshoot its steady-state value. Thus, in order
to estimate the backlash parameters, we look for an input
signal ut such that the output of the linear dynamic block
xt does not overshoot its steady-state value. A possible
idea to design such an input is to obtain ut by filtering
a square wave signal by means of a suitable linear filter.
More specifically let us consider a linear low pass filter
with transfer function F (z) = (1− a)/(z − a). Applying a
step signal rt of amplitude β at the input of the filter and
using the output of the filter as input of the linear block
G(q−1) we get:

X(z) = G(z)U(z), U(z) = F (z)R(z) (9)
where U(z) and X(z) are the z-transforms of the sequences
{ut} and {xt} respectively, G(z) is the transfer function of
G(q−1) and R(z) = β/(z − 1).
The design of the filter is based on the following result:
Proposition 1. For any constant ε > 0 there exists a value
of the filter pole a ∈ [0, 1[ such that:

xt = gut + et, |et| ≤ ε ∀t, (10)
where g is the steady-state gain of G(z).

Proposition 1 can be trivially proved on the basis of the
intuitive fact that the output response modes of a linear
system excited by a step input can be attenuated to an
arbitrary extent by filtering through a low-pass filter with
sufficiently low bandwidth.
Proposition 1 shows that by properly filtering a square
wave input, which is a sequence of steps, we can constrain
the input of the backlash nonlinearity to be as close as
desired to the output of the filter F (z) scaled by the
steady-state gain of the linear system. In turn, this imply
that, by properly filtering the square wave input we can
constrain the input of the backlash xt not to overshoot its
steady-state value since the step response of the filter F (z)
does not overshoot its steady-state value by construction.

Assuming that a rough lower bound ωb of the system
bandwidth is known, a signal xt without overshoot can be
guaranteed by setting a = ã such that the bandwidth of
the filter is significantly lower than ωb. However, the choice
a = ã can lead to quite a conservative design of the filter.
Since for each different amplitude of the square-wave input
one needs to wait until the filter reaches the steady-state
operating condition before collecting the output sample, a
conservative filter can lead to a time-consuming backlash
parameters identification procedure. In order to avoid this
problem, the bisection-like search procedure, reported in
the Appendix, is proposed to maximize the filter band-
width. The key step of the procedure is the condition
(expressed in line 4.) to test if the designed filter provides

a signal xt without overshoot. As a matter of fact each
filter which provides a signal xt without overshoot leads
to the same steady-state value of the backlash output.

Remark 1 — The proposed search procedure is based on
the assumption of using a first order filter. However, the
same approach can be used to design a n-order filter of the
form F (z) = (1 − a)n/(z − a)n.

3.2 Steady-state experiment

In this subsection a few details about the steady-state
experiment are presented. For each value of the input
square wave amplitude, only one steady-state value of the
noisy output is considered on the positive half-wave of
the input and one steady-state value of the noisy output
on the negative half-wave. Thus, given a set of square
wave inputs with M different amplitudes, 2M steady-
state values of the output are taken into account. Indeed,
combining equations (2), (3) and (4) at steady-state, we
get the following input-output description involving only
the parameters of the backlash:

ȳi = mr(ūi − cr) + η̄i, for ūi ≥ x̄i−1

mr
+ cr i = 1, . . . ,M ;

(11)

ȳj = ml(ūj + cl) + η̄j , for ūj ≤ x̄j−1

ml
− cl j = 1, . . . ,M ;

(12)
where the triplets {ūi, ȳi, η̄i} and {ūj , ȳj , η̄j} are collec-
tions of steady-state values of the known input signal, out-
put observation and measurement error collected during
the positive and the negative square wave respectively. A
block diagram description of the steady-state response is
depicted in Fig. 3 for equation (11) only; equation (12)
leads to a similar block diagram representation. Since the
pairs (ml, cl) and (mr, cr) affect the collected measure-
ments, i.e. equations (11) and (12), separately, we can
define the feasible parameter region of the backlash as

Dγ = Dr
γ

⋃
Dl

γ (13)

where
Dr

γ = {mr, cr ∈ R+ : ȳi = mr(ūi − cr) + η̄i,

η̄i ∈ [−Δη̄i − αi,Δη̄i]; i = 1, . . . ,M} (14)

Dl
γ = {ml, cl ∈ R+ : ȳj = ml(ūj + cl) + η̄j ,

η̄j ∈ [−Δη̄j − αj ,Δη̄j ]; j = 1, . . . ,M} (15)
where {Δη̄i} and {Δη̄j} are the sequences of bounds
on measurements uncertainty, αi = 2Δη̄iūi/r̄F , αj =
2Δη̄j ūj/r̄F and r̄F is the steady-state value of the step
input used in the experiment performed to tune the filter
pole a. From definition (13) it can be seen that Dγ

is exactly described by the following constraints in the
parameter space

ȳi −mr(ūi − cr) ≥ −Δη̄i −αi, ȳi −mr(ūi − cr) ≤ Δη̄i,

mr > 0, cr > 0, i = 1, . . . , M (16)

ȳj −ml(ūj + cl) ≥ −Δη̄j −αj , ȳj −ml(ūj + cl) ≤ Δη̄j ,

ml > 0, cl > 0, j = 1, . . . , M (17)

3.3 Outer-bounding Orthotope description of Dγ

An exact description of Dγ can be given in terms of
edges, each one being described, from a practical point
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of view, as a subset of an active constraint lying between
two vertices. Since Dγ has exactly the same geometrical
structure of the feasible parameter set of the backlash
nonlinearity considered in Cerone and Regruto [2007], we
can exploit the effective procedure proposed in such a
paper for deriving active constraints, vertices and edges.
Edges provide exact description of Dγ which, on the
downside, could be not so easy to handle. A somewhat
more practical description, although approximate, can be
obtained by the computation of the following orthotope
outer-bounding set Bγ tightly containing Dγ :

Bγ = {γ ∈ R4 : γj = γc
j + δγj , | δγj |≤ Δγj , j = 1, . . . , 4},

(18)
where

γj
c =

γmin
j + γmax

j

2
, Δγj =

| γmax
j − γmin

j |
2

(19)

γmin
j = min

γ∈Dγ

γj , γmax
j = max

γ∈Dγ

γj . (20)

Since constraints (16) (17) defining Dγ are nonlinear in γ,
at least in principle the solution of the above optimization
problems (20) requires the use of nonconvex optimization
techniques which, however, do not guarantee the finding of
the global optimal solution. Problems (20) can be solved
to global optimum thanks to the result reported in Cerone
and Regruto [2007].

4. INNER SIGNAL BOUNDS EVALUATION

In Section 3 an uncertain description of the backlash is
obtained exploiting steady-state data. In order to estimate
the parameters of the linear model in the third stage, one
should first evaluate the inner signal xt ∈ R from the
output records yt of a dynamic experiment. Unfortunately,
one must consider the fact that the backlash nonlinear
characteristic is in general noninvertible, which means
that, given the measured output yt, the signal xt cannot
be evaluated uniquely, giving rise to possible nonconsis-
tent inner signal estimates. Given the estimated uncertain
backlash nonlinearity N (γ) and a sequence of measured
outputs {yt}, obtained exciting the system under consid-
eration with a suitable exciting input sequence {ut}, in
this section it is shown how upper and lower bounds on
the samples of the unmeasurable inner signal xt can be
evaluated.

The solution to the above described problem given in this
paper is based on the following ideas: (a) the backlash
input cannot be uniquely determined when the backlash
output samples exhibit constant values (which means that
the input lies somewhere in the deadzone although it is
not known precisely where) and (b) given a suitable ex-
citing input sequence {ut}, only a set of output sequences
without consecutive constant samples are considered for
inversion in order to estimates the inner signal xt.

It is pointed out that the dynamic experiment has been
carried out using a PRBS input, which, thanks to its nice
properties, is successfully employed in linear system iden-
tification (Ljung [1999], Söderström and Stoica [1989]). Al-
though PRBS inputs are not suitable for nonlinear system
identification in general (Bai [2002], Ninness and Gibson
[2002]) since it may not adequately excite the unknown

nonlinearity, in Bai [2004] it is shown that such a signal
can be effectively used to decouple the linear and nonlinear
parts in the identification of Hammerstein model with
static nonlinearity. In paper Cerone and Regruto [2007]
it is shown that the use of a PRBS sequence is profitable
for the identification of linear system with input backlash.
The following definitions and results are given.
Definition 1. Y ⊂ R, also called the set of Invertible
Output Sequence, is the set of yt ∈ R for which the backlash
input xt can be uniquely determined, i.e.:

Y = {yt ∈ R : xt ↔ yt} (21)
Proposition 2. An output sample yt belongs to the set of
Invertible Output Sequence Y if and only if |yt − yt−1| >
2Δη.
Definition 2. X ⊂ R, also called the set of Feasible Inner-
signal Sequence, is the set obtained through the inversion
of the set of the Invertible Output Sequence Y , i.e.:

X =
{
xt ∈ R : xt = N−1(yt, γ), yt ∈ Y

}
(22)

Proposition 3. Given the estimated Backlash nonlinearity
N (xt, γ) with γ ∈ Dγ , a PRBS input {ut} and the
sequence of output yt ∈ Y , each sample xt of the set of the
Feasible Inner-signal Sequence X is bounded as follows:

xmin
t ≤ xt ≤ xmax

t (23)

xmax
t = max

|ηt|≤Δη, γ∈Dγ

yt − ηt

γ1
+ γ2 if yt < yt−1 − 2Δη

(24)

xmax
t = max

|ηt|≤Δη, γ∈Dγ

yt − ηt

γ3
+ γ4 if yt > yt−1 + 2Δη

(25)

xmin
t = min

|ηt|≤Δη, γ∈Dγ

yt − ηt

γ1
+ γ2 if yt < yt−1 − 2Δη

(26)

xmin
t = min

|ηt|≤Δη, γ∈Dγ

yt − ηt

γ3
+ γ4 if yt > yt−1 + 2Δη

(27)
Proposition 4. The global optimal solutions of problems
(24) – (27) occur on the vertices of Dγ and for η = ±Δη.

5. BOUNDING THE PARAMETERS OF THE
LINEAR DYNAMIC MODEL

In this section bounds θmax
j and θmin

j on each parameter
of the linear dynamic block are evaluated. Defining the
quantities

xc
t =

xmin
t + xmax

t

2
, Δxt =

xmax
t − xmin

t

2
(28)

the following relation can be established between the
unknown inner signal xt and the central value xc

t :
xt = xc

t + δxt (29)
| δxt |≤ Δxt. (30)

The identification of the linear block can be formulated
in the frame of output error models, i.e., in terms of
the known input sequence {ut} and the uncertain inner
sequence {xt} as shown in Figure 4. This stage of the
procedure is quite standard and it will not be discussed
in the paper. The interested readers can find the details
in the previous works by the authors Cerone and Regruto
[2003], Cerone and Regruto [2007] and Cerone [1993].
Applying results from Cerone [1993] to the considered
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Fig. 4. Output error set-up for bounding the parameters
of the linear system.

problem uncertainty bounds Δθj =
| θmax

j − θmin
j |

2
and

central estimates θc
j =

θmin
j + θmax

j

2
are computed for each

parameter θj .

6. A SIMULATED EXAMPLE

In this section we illustrate the proposed parameter
bounding procedure through a numerical example. The
system considered here is characterized by a linear block
with A(q−1) = (1 + 0.5q−1 + 0.7q−2) and B(q−1) =
(1.4q−1+0.8q−2) and a nonsymmetric backlash with ml =
0.248, mr = 0.252, cl = 0.0698, cr = 0.0349. Thus,
the true parameter vectors are γ = [ml cl mr cr]

T =
[0.248 0.0698 0.252 0.0349]T and θ = [a1 a2 b1 b2]

T =
[0.5 0.7 1.4 0.8]T. We emphasize that the backlash param-
eters have been realistically chosen: as a matter of fact
we considered the parameters of a real world precision
gearbox which features a gear ratio equal to 0.25 and a
deadzone as low as 0.0524 rad (≈ 3o) and simulated a
possible fictitious nonsymmetric backlash with gear ratio
ml = 0.248, mr = 0.252 and deadzone cl = 0.0698
(≈ 4o), cr = 0.0349 (≈ 2o). Bounded absolute output
errors have been considered when simulating the collection
of both steady state data, {ūs, ȳs}, and transient sequence
{ut, yt}. Here we assumed | ηt |≤ Δηt and | η̄s |≤ Δη̄s

where ηt and η̄s, are random sequences belonging to the
uniform distributions U [−Δηt,+Δηt] and U [−Δη̄s,+Δη̄s]
respectively. Bounds on steady-state and transient output
measurement errors were supposed to have the same value,
i.e., Δηt = Δη̄s

.= Δη. Different values of Δη were chosen
in such a way as to simulate the measurement errors of
commercial absolute binary encoder with a number of bits
nbit varying from 8 to 15. For a given Δη, the length
of steady-state and the transient data are M = 50 and
N = [100] respectively. The value a = 0.8125 of the
filter pole has been set using the procedure described
in the Appendix. The steady-state input samples ūs are
equally spaced values from 0.6 and 3, while the transient
input sequence {ut} is a PRBS which takes the values
±1. Results about the nonlinear and the linear block are
reported in Table I and Tables II respectively. For low noise
level (nbit > 10 bits) and for all N , the central estimates
of both the nonlinear static block and the linear model
are consistent with the true parameters. For higher noise
levels (nbit ≤ 10 bits), both γc and θc give satisfactory
estimates of the true parameters.

7. CONCLUSION

A three-stage parameter bounding procedure for linear
systems with output backlash in presence of bounded
output errors has been outlined. The proposed approach
is based on suitable strategies for the decoupling of the

linear and nonlinear blocks. More specifically, in the first
stage the backlash parameters are estimated exciting the
system with a properly filtered square wave, while in the
second stage inner-signal bounds are computed through a
suitable inversion of the backlash nonlinearity. Once such
inner-signal bounds have been computed, linear system
parameters bounds are evaluated by means of standard
results.

APPENDIX

Search procedure (Design of filter pole a)
1. Set aU = ã, aL = 0, a∗ = aL.
2. Set tol and ε.
3. Compute wã

s = steady-state value of the output
with filter pole ã when the input rt of the filter
is a step signal of amplitude r̄F.
4. Compute wa∗

s = steady-state output of the system
with filter pole a∗ when the input rt of the filter
is a step signal of amplitude r̄F.
5. If |wã

s − wa∗
s | ≤ ε then

6. aU = a∗,
7. else
8. aL = a∗
9. end if
10. If |aU − aL| ≥ tol then
11. a∗ = aU+aL

2
12. goto 3.
13. end if
14. a = a∗
15. end.

Remark — In presence of output measurement noise with
bounds ±Δη, step 4 of the proposed search procedure
becomes |yã

s − ya∗
s | ≤ 2Δη + ε.
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A. Krzyżak. Identification of nonlinear block-oriented
systems by the recursive kernel estimate. Int. J. Franklin
Inst., 330(3):605–627, 1993.

Z.Q. Lang. Controller design oriented model identification
method for Hammerstein system. Automatica, 29(3):
767–771, 1993.

Z.Q. Lang. A nonparametric polynomial identification
algorithm for the Hammerstein system. IEEE Trans.
Automatic Control, 42(10):1435–1441, 1997.

L. Ljung. System Identification, Theory for the User.
Prentince Hall, Upper Saddle River, 1999.

M. Milanese and A. Vicino. Optimal estimation theory
for dynamic sistems with set membership uncertainty:
an overview. Automatica, 27(6):997–1009, 1991.

K.S. Narenda and P.G. Gallman. An iterative method for
the identification of nonlinear systems using a Hammer-
stein model. IEEE Trans. Automatic Control, AC-11:
546–550, 1966.

B. Ninness and S. Gibson. Quantifying the accuracy of
Hammerstein model estimation. Automatica, 38:2037–
2051, 2002.
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Table I: Nonlinear block parameter central es-
timates γc and parameter uncertainty bounds
Δγ against varying number of bits (nbit).

nbit γj True γc
j Δγj

Value

15 ml 0.2480 0.2481 1.1e-4
cl 0.0698 0.0702 4.8e-4
mr 0.2520 0.2520 2.1e-5
cr 0.0349 0.0349 1.0e-4

12 ml 0.2480 0.2474 6.6e-4
cl 0.0698 0.0678 2.4e-3
mr 0.2520 0.2521 1.3e-4
cr 0.0349 0.0354 7.0e-4

10 ml 0.2480 0.2503 2.8e-3
cl 0.0698 0.0825 1.6e-2
mr 0.2520 0.2513 8.0e-4
cr 0.0349 0.0306 5.2e-3

8 ml 0.2480 0.2475 2.9e-3
cl 0.0698 0.0655 1.8e-2
mr 0.2520 0.2615 1.1e-2
cr 0.0349 0.0625 3.7e-2

Table II: Linear system parameter central esti-
mates (θc

j) and parameter uncertainty bounds
(Δθj) against varying number of bits (nbit) and
signal to noise ratio (SNR) when N = 100.

nbit SNR θj True θc
j Δθj

(dB) Value

15 73.2 θ1 0.500 0.500 4.3e-4
θ2 0.700 0.700 2.5e-4
θ3 1.400 1.400 4.3e-4
θ4 0.800 0.800 7.2e-4

12 56.2 θ1 0.500 0.500 4.8e-3
θ2 0.700 0.700 2.8e-3
θ3 1.400 1.400 8.7e-3
θ4 0.800 0.800 1.0e-2

10 43.0 θ1 0.500 0.503 1.8e-2
θ2 0.700 0.698 1.9e-2
θ3 1.400 1.400 4.2e-2
θ4 0.800 0.806 4.6e-2

8 30.9 θ1 0.500 0.510 6.9e-2
θ2 0.700 0.706 5.3e-2
θ3 1.400 1.410 1.1e-1
θ4 0.800 0.805 1.2e-1
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