Set-membership identification of block-structured nonlinear feedback systems

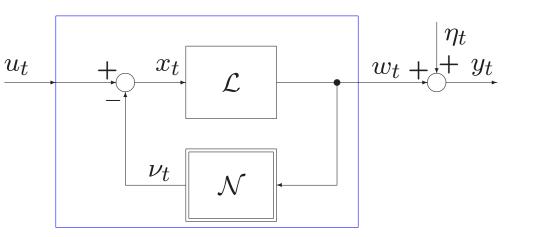
V. Cerone, D. Piga, D. Regruto

Dipartimento di Automatica e Informatica Politecnico di Torino (Italy)

e-mail: vito.cerone@polito.it, dario.piga@polito.it, diego.regruto@polito.it

48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Session ThA14: "Identification of Block Structured Models" Shanghai, China — December 17, 2009

Nonlinear feedback systems



 \boldsymbol{n}

 \mathcal{N} : nonlinear static block \mathcal{L} : linear dynamic subsystem x_t , ν_y : not measurable inner signals u_t : known input signal y_t : noise-corrupted measurement of w_t

$$\nu_{t} = \mathcal{N}(w_{t}) = \sum_{k=1}^{n} \gamma_{k} w_{t}^{k} \text{ with } n \text{: polynomial degree}$$

$$w_{t} = \frac{B(q^{-1})}{A(q^{-1})} x_{t} \text{ with } \begin{array}{l} A(q^{-1}) = 1 + a_{1}q^{-1} + \ldots + a_{na}q^{-na} \\ B(q^{-1}) = b_{0} + b_{1}q^{-1} + \ldots + b_{nb}q^{-nb} \\ q^{-1}w_{t} = w_{t-1} \end{array}$$

Problem formulation

- Aim: compute bounds on the parameters $\gamma^{\top} = [\gamma_1, \gamma_2 \dots \gamma_n]$ and $\theta^{\top} = [a_1 \dots a_{na} \ b_0 \dots b_{nb}]$
- Prior assumption on the system:
- BIBO stability
- *na* and *nb* are known
- *n* is finite and known
- the steady-state gain of the linear subsystem is not zero
- a rough upper bound on the settling time of the system is known
- Prior assumption on the measurement uncertainty:
- η_t is UBB: $|\eta_t| \leq \Delta \eta_t$
- $\Delta \eta_t$ is known

Proposed solution

ree-stage procedure:

- First stage: computation of bounds on the nonlinear block parameters γ .
- Second stage: computation of bounds on the inner (unmeasurable) signal x_t .
- Third stage: computation of bounds on the linear block parameters θ .

Proposed solution: first stage

Bounds on the parameters γ of the nonlinear block:

- Stimulate the system with square-wave of M different amplitude and get steady-state measurements
- The feasible parameters set \mathcal{D}_{γ} of the nonlinear block is described as:

$$\mathcal{D}_{\gamma} = \{ \gamma \in \mathbb{R}^{n} : (\overline{y}_{s} - \overline{\eta}_{s}) + \sum_{k=1}^{n} \gamma_{k} (\overline{y}_{s} - \overline{\eta}_{s})^{k} = \overline{u}_{s}, \\ | \overline{\eta}_{s} | \leq \Delta \overline{\eta}_{s}; \ s = 1, \dots, M \},$$

- \mathcal{D}_{γ} is the set of all parameters γ consistent with the M given measurements, the error bounds and the assumed model structure
- Bounds on parameter γ_k :

$$\gamma_k^{min} = \min_{\gamma \in \mathcal{D}_{\gamma}} \gamma_k \qquad \gamma_k^{max} = \max_{\gamma \in \mathcal{D}_{\gamma}} \gamma_k$$

Proposed solution: first stage

Computation of γ_k^{min} and γ_k^{max} :

$$\gamma_k^{min} = \min_{(\gamma,\overline{\eta})\in\mathcal{D}_{\gamma\overline{\eta}}}\gamma_k \qquad \gamma_k^{max} = \max_{(\gamma,\overline{\eta})\in\mathcal{D}_{\gamma\overline{\eta}}}\gamma_k$$

ere:

 $= \left[\overline{\eta}_1 \ \overline{\eta}_2 \dots \overline{\eta}_M\right]^T,$

$$\bar{\eta} = \{ (\gamma, \bar{\eta}) \in \mathbb{R}^n \times \mathbb{R}^M : (\bar{y}_s - \bar{\eta}_s) + \sum_{k=1}^n \gamma_k (\bar{y}_s - \bar{\eta}_s)^k = \bar{u}_s, \\ |\bar{\eta}_s| \le \Delta \bar{\eta}_s; \ s = 1, \dots, M \}$$

 $\mathcal{D}_{\gamma\overline{\eta}}$ is a semialbegraic set over \mathbb{R}^{n+M}

The above problems are semialgebraic (nonconvex) optimization problems

Proposed solution: first stage

Standard nonlinear optimization tools can not be exploited to compute γ_k^{min} and γ_k^{max} ce they can trap in local minima

The true value of
$$\gamma_k$$
 could not lie in $\left[\gamma_k^{min}, \; \gamma_k^{max}
ight]$

Relax original identification problems to convex optimization problems \downarrow Bounds on each parameter γ_k can be obtained

Convex relaxation

MI relaxation for semialgebraic optimization problems:

- SOS decomposition
 - P. Parrillo, "Semidefinite programming relaxations for semialgebraic problems", Mathematical Programming 2003
- Theory of moments
 - J. B. Lasserre, "Global optimization with polynomials and the problem of moments", SIAM J. on Opt. 2001

-relaxed bounds $\gamma_k^{min^{\delta}}$ and $\gamma_k^{max^{\delta}}$ computed solving the following SDP problems:

$$\gamma_k^{\min^{\delta}} = \min_{x \in \mathcal{D}_x^{\delta}} f(x) \quad \gamma_k^{\max^{\delta}} = \max_{x \in \mathcal{D}_x^{\delta}} f(x)$$

nere:

- LMI decision variables
- x) : linear function
- : Convex set described by LMI constraints

Tightness and convergence

perty 1 — δ -relaxed bounds become tighter as δ increases:

$$\gamma_k^{\min\delta} \leq \gamma_k^{\min\delta+1} \leq \gamma_k^{\min}$$

$$\gamma_k^{\max\delta} \geq \gamma_k^{\max\delta+1} \geq \gamma_k^{\max}$$

operty 2 — δ -relaxed bounds converge to the true bounds as $\delta \to \infty$:

$$\lim_{\delta \to \infty} \gamma_k^{\min^{\delta}} = \gamma_k^{\min}$$
$$\lim_{\delta \to \infty} \gamma_k^{\max^{\delta}} = \gamma_k^{\max}$$

Computational complexity of the LMI relaxation

n practice, due to an high computational complexity, LMI relaxation techniques can be ploited only for a small set of measurements

A reduction of the complexity of SDP relaxed problems is necessary

Reduced complexity of the relaxed problems

$$\mathcal{D}_{\gamma\overline{\eta}} = \{ (\gamma,\overline{\eta}) \in \mathbb{R}^n \times \mathbb{R}^M : (\overline{y}_s - \overline{\eta}_s) + \sum_{k=1}^n \gamma_k (\overline{y}_s - \overline{\eta}_s)^k = \overline{u}_s, \\ | \overline{\eta}_s | \leq \Delta \overline{\eta}_s; \ s = 1, \dots, M \}$$

perty 3 The variables $\overline{\eta}_s$ defining $\mathcal{D}_{\gamma\overline{\eta}}$ are not correlated with each other

a In constructing moment matrix defining \mathcal{D}_x^δ do not consider the correlation between iables $\overline{\eta}_s$

Reduced complexity of the relaxed problems

Value of *M* greater than 400 can be exploited in the identification (for $\delta \leq 4$)

operty 4 — Convergence to tight bounds is preserved

Proposed solution: second stage

Bounds on the inner signal x_t :

Stimulate the system with a persistently exciting input signal u_t

- Bounds on ν_t can be computed by means of LMI relaxation
- Structure of the problem can be exploited to reduce the computation complexity

Proposed solution: third stage

Bounds on the linear block parameters θ :

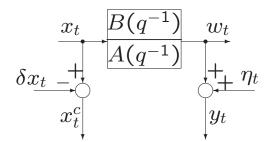
nner signal x_t described in terms of its central value x_t^c and its perturbation δx_t :

h:

$$x_t = x_t^c + \delta x_t$$

 $x_t \mid \leq \Delta x_t, \quad x_t^c = \frac{x_t^{min} + x_t^{max}}{2}, \quad \Delta x_t = \frac{x_t^{max} - x_t^{min}}{2}$

dentification of a linear model with noisy output sequence $\{y_t\}$ and uncertain input seence $\{x_t\}$



Errors-in-variables (EIV) problem with bounded errors

Proposed solution: bounds on θ

oloiting previous results on EIV problems with bounded errors

Cerone, "Feasible parameter set of linear models with bounded errors in all variables", Automatica 1993)

Bounds on θ_j are computed by means of linear programming

Example

rameters of the simulated system

$$\begin{aligned} (w_t) &= -1.5w_t + 1.2w_t^2 + 0.9w_t^3 \\ q^{-1}) &= 1 - 1.5193q^{-1} + 0.5326q^{-2} \\ q^{-1}) &= 0.1549q^{-1} - 0.1416q^{-2} \end{aligned}$$

asurements output errors

 $| \leq \Delta \overline{\eta}_s, \ \{\overline{\eta}_s\}$ random variables belonging to $[-\Delta \overline{\eta}_s, +\Delta \overline{\eta}_s]$ $| \leq \Delta \eta_t, \ \{\eta_t\}$ random variables belonging to $[-\Delta \eta_t, +\Delta \eta_t]$

ring the simulated experiment the SNR is about 25 db.

nlinear block parameters: central estimates and parameters bounds ($M = 50, \delta = 3$)

True Value	γ_k^{min}	γ_k^c	γ_k^{max}	$\Delta \gamma_k$
-1.5000	-1.5369	-1.4890	1.4410	0.0480
1.2000	1.1931	1.2072	1.2213	0.0141
0.9000	0.8898	0.9020	0.9141	0.0121

$$\Delta \gamma_k = \frac{\gamma_k^{max} - \gamma_k^{min}}{2}$$

Ν	True Value	$ heta_j^{min}$	$ heta_j^c$	$ heta_j^{max}$	$\Delta heta_{j}$
100	-1.5193	-2.0326	-1.6422	-1.2518	0.3904
	0.5326	0.3046	0.6364	0.9681	0.3318
	0.1549	0.1424	0.1579	0.1734	0.0155
	-0.1416	-0.2201	-0.1232	-0.0264	0.0969
300	-1.5193	-1.8569	-1.5633	-1.2697	0.2936
	0.5326	0.3265	0.5761	0.8256	0.2496
	0.1549	0.1452	0.1555	0.1659	0.0104
	-0.1416	-0.1951	-0.1348	-0.0746	0.0602

ds L

$$\Delta \theta_j = \frac{\theta_j^{max} - \theta_j^{min}}{2}$$

Conclusion

- Three stage procedure to evaluate parameters bounds of a nonlinear feedback system
- Bounds on the nonlinear block parameters have been evaluated by means of LMI relaxation techniques
- The particular structure of the identification problems allows the reduction of the complexity of the LMI relaxation
- Convergence to tight bounds is guaranteed
- Bounds on the parameters of the linear block has been computed through the evaluation of bounds on the unmeasurable inner signal x_t