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Abstract— In this paper the Set-membership Error-In-
Variables (EIV) identification problem is considered, that is
the identification of linear dynamic systems when both the
output and the input measurements are corrupted by bounded
noise. A new approach for the computation of the Parameters
Uncertainty Intervals (PUIs) is discussed. First the problem is
formulated in terms of non-convex semi-algebraic optimization.
Then, a Linear-Matrix-Inequalities relaxation technique is pre-
sented to compute parameters bounds by means of convex op-
timization. Finally, convergence properties and computational
complexity of the given algorithms are discussed. Advantages
of the proposed technique with respect to previously published
ones are discussed both theoretically and by means of a
simulated example.

Index Terms— Set-membership identification, errors-in-
variables, LMI relaxation.

I. INTRODUCTION

Linear systems identification has been the subject of
extensive studies over the last decades. A good deal of well
assessed methodologies for the solution of modeling prob-
lems in the time or in the frequency domain through either
recursive or batch scheme is presented in [1], [2], [3]. Most
of the proposed identification methods rely on the assumption
that the input signal is exactly known. Either the output error
or the equation error structures are usually considered. In
the output error framework only the output measurements
are affected by additive noise, while a single error term,
added to the difference equation, is used to generically take
into account all the possible sources of uncertainty when
the equation error structure is considered. However, in many
practical problems, input and output data sequences are ex-
perimentally collected and, as a consequence, the assumption
of noise free input is not a realistic one in such situations.
Identification problems where both the input and the output
are affected by noise are referred to as errors-in-variables
(EIV) problems. Although EIV estimation for static models
can be traced back to the seminal works of Adcock [4], [5],
identification of dynamic models when all the variables are
corrupted by noise still remains a challenging problem and
significant research efforts have been devoted to its solution
in recent years. A detailed review of the main contributions
on identification of linear dynamic systems when both the
input and the output are corrupted by stochastic measurement
noise, can be found in the recent survey paper by Söderström
[6]. A possible alternative to the stochastic description of
measurement noise is the bounded error characterization
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in the Set-membership identification framework. This is a
suitable description when uncertainties are known to be-
long to a given set: mechanical tolerances, analog-to-digital
converter quantization errors, systematic and class errors in
measurement equipments are only some examples. In this
context, all parameters consistent with the measurements, the
error bounds and the assumed model structure, are feasible
solutions of the identification problem. The interested reader
can find further details on this approach in a number of
survey papers (see, e.g., [7], [8]), in the book edited by
Milanese et al. [9], and the special issues edited by Norton
[10], [11]. On the contrary few works on identification
of linear systems when both the input and the output are
corrupted by bounded noise can be found in the literature.
First insights on the problem were given by Norton [12] in
the context of ARMAX models identification with bounded
measurement errors. A detailed analysis of the problem is
then presented by Veres and Norton in [13] where it is shown
that the exact feasible parameter region for dynamic EIV
models is described by nonlinear nonconvex bounds, whose
shape may become fairly complex when the number of data
increases. As a consequence, parameters bounds cannot be
easily computed and the use of either polytopic or ellipsoidal
outer approximation is suggested. As far as EIV for static
models is considered, an exact mathematical description of
the feasible parameter set is provided in [14] where relevant
topological features, such as convexity and connectedness,
are also discussed. Results from [14] are then applied to
EIV identification of linear dynamic systems in the work [15]
where an outer approximation of the true nonconvex feasible
parameter set is obtained as union of a number of polytopes.
Such an outer-bounding set is then used to compute the
parameter uncertainty intervals (PUI) through the solution
of a number of linear programming problems. Actually, such
PUIs are not tight and the degree of conservativeness of the
approach given in [15] is, in general, not easy to quantify.
In this paper we present an alternative approach, based on
LMI relaxation techniques, for the computation of parameter
uncertainty intervals of EIV dynamics models. The note is
organized as follows. Section II is devoted to the formulation
of the problem. Relaxation techniques for set-membership
EIV identification of linear dynamics systems are presented
in Section III. First, the approach given in [15] is briefly
reviewed, then, a new LMI relaxation-based technique is
presented together with a detailed analysis of its properties.
In Section IV, a detailed theoretical comparison between
the two relaxation methods is provided, while a simulated
example is reported in Section V. Concluding remarks end
the paper.
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Fig. 1. Errors-in-variable basic setup for dynamic linear system.

II. PROBLEM FORMULATION

Consider the single-input single-output (SISO) linear-
time-invariant (LTI) system depicted in Fig. 1. The noise-
free input sequence is denoted as xt and the linear block is
modeled by a discrete time system which transforms xt into
the noise-free output wt according to the difference equation

A(q−1)wt = B(q−1)xt, (1)

where A(·) and B(·) are polynomials in the backward shift
operator q−1 (q−1wt = wt−1)

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na, (2)
B(q−1) = b0 + b1q

−1 + . . .+ bnbq
−nb. (3)

Both input and output data sequences are corrupted by
additive noise, ξt and ηt respectively:

ut = xt + ξt, (4)
yt = wt + ηt, (5)

where ξt and ηt are assumed to range within given bounds
∆ξt and ∆ηt respectively, that is

| ξt | ≤ ∆ξt, (6)
| ηt | ≤ ∆ηt. (7)

The unknown parameter vector θ ∈ Rp to be identified is
defined as:

θ = [a1 . . . ana b0 b1 . . . bnb]
T
, (8)

where na + nb + 1 = p, while the feasible parameter set
(FPS) Dθ is defined as:

Dθ =
{
θ ∈ Rp : A(q−1) (yt − ηt) = B(q−1) (ut − ξt) ,

| ξt |≤ ∆ξt, | ηt |≤ ∆ηt; t = 1, . . . , N}
(9)

where N is the length of data sequences. Equation (9)
provides an exact description of the set of all possible
values of the unknown parameter θ consistent with measured
data, error bounds and assumed model structure. In this
work we address the problem of the evaluation of parameter
uncertainty intervals defined as

PUIj =
[
θj , θj

]
(10)

where

θj = min
θ∈Dθ

θj , (11)

θj = max
θ∈Dθ

θj . (12)

The computation of PUIjs requires the solution of con-
strained optimization problems (11) and (12). Since Dθ

is a non-convex set defined by nonlinear constraints (see,
e.g., [13]), standard nonlinear optimization tools (gradient
method, Newton method, etc.) cannot be used since they can
trap in local minima which may result arbitrary far from the
global one. Thus, the PUIjs obtained using such tools are
not guaranteed to contain the true unknown parameter, which
is a key requirement of any set-membership identification
method. One possible solution to overcome this problem is
to relax (11) and (12) to convex problems to obtain a lower
(upper) bound of θj (θj).
The relaxation technique presented in [15], which consists in
the application of the results for static EIV problems derived
in [14], provides an outer approximation of the FPS Dθ. In
this work, we present a new approach to compute the PUIs
through LMI relaxation techniques.

III. RELAXATION TECHNIQUES FOR EIV PROBLEMS

The static EIV relaxation procedure described in [14],
[15] is briefly reviewed in section III-A for completeness
and self-consistency of the paper. Then, the new technique
to evaluate parameters uncertainty intervals through LMI
relaxation techniques is presented in section III-B.

A. Static EIV relaxation procedure

The main idea in [14] is to relax the original problems
(11)-(12) assuming that uncertain variables ξt and ηt in
(9) vary independently. In other words, such a relaxation
technique is equivalent to assume that output and input
samples are collected from N independent measurements. In
this way, an outer approximation Ds

θ of Dθ can be obtained.
Its mathematical description is given by the following result.

Result 1 — Description of the FPS for a static EIV
problem [14]
A necessary and sufficient condition for θ to belong to the
set Ds

θ when uncertain variables vary independently is:

(ϕt −∆ϕt)θ ≤ yt +∆ηt,

(ϕt +∆ϕt)θ ≥ yt −∆ηt t = 1, . . . , N

where

∆ϕt =[∆ηt−1sgn(a1) . . . ∆ηt−nasgn(ana)
∆ξtsgn(b0) ∆ξt−1sgn(b1) . . . ∆ξt−nbsgn(bnb)]T

Therefore, the FPS Ds
θ for a static EIV problem has the form:

Ds
θ = {θ ∈ Rp : (ϕt −∆ϕt)θ ≤ yt +∆ηt,

(ϕt +∆ϕt)θ ≥ yt −∆ηt; t = 1, . . . , N.}
(13)



It must be pointed out that Ds
θ is an outer approximation

of Dθ, i.e. Ds
θ ⊇ Dθ.

The set Ds
θ is defined by piecewise linear constraints and,

although generally non-convex, it is the union of at most 2p

convex set Ds
θi, that is:

Ds
θ =

2p∪
i=1

Ds
θi (14)

where Ds
θi is defined by 2N + p linear constraints and it is

the intersection between Ds
θi and the i-th orthant of the space

Rp. Let the relaxed parameter uncertainty interval PUIj be:

PUIsj =
[
θsj , θ

s

j

]
(15)

where:

θsj = min
i=1,...,2p

θsji (16)

θ
s

j = max
i=1,...,2p

θ
s

ji (17)

and

θsji = min
θ∈Ds

θi

θj (18)

θ
s

ji = max
θ∈Ds

θi

θj (19)

Note that, since Ds
θ is an outer approximation of Dθ, θsj ≤ θj

and θ
s

j ≥ θj , therefore

PUIsj ⊇ PUIj j = 1, . . . , p. (20)

Unfortunately, static EIV does not guarantee that relaxed
PUIsj converges to the tight PUIj , even if the number of
measurements N goes to infinity.

Computational complexity

The definition of PUIsj for all j = 1, . . . , p requires the
computation of θsj and θ

s

j , which in turn requires the solution
of 2p2p Linear Programming (LP) optimization problems,
since problems (18)-(19) must be solved for each of the p
parameters θj and in each of the 2p set Ds

θi.

B. Dynamic EIV through LMI relaxation

In this subsection the computation of the approximate
parameter uncertainty interval PUIdj through LMI relaxation
techniques is described. The following result shows as (11)
and (12) can be rewritten as constrained polynomial
optimization problems. In order to comply with the
conference page limit constraint, the proof of all the
following results and properties are omitted and can be
found in [16].

Result 2 — Computation of θj and θj
θj and θj can be computed solving the following optimiza-
tion problems:

θj = min
θ,ξ,η

θj

s.t.
yt= −

na∑
i=1

(yt−i − ηt−i)ai+

nb∑
j=0

(ut−j − ξt−j)bj+ηt

ξt ≤ ∆ξt, ξt ≥ −∆ξt,
ηt ≤ ∆ηt, ηt ≥ −∆ηt, t = 1, . . . , N

(21)

θj = max
θ,ξ,η

θj

s.t.
yt= −

na∑
i=1

(yt−i − ηt−i)ai+
nb∑
j=0

(ut−j − ξt−j)bj+ηt

ξt ≤ ∆ξt, ξt ≥ −∆ξt,
ηt ≤ ∆ηt, ηt ≥ −∆ηt, t = 1, . . . , N

(22)

where η = [η1, η2, . . . , ηN ]
T and ξ = [ξ1, ξ2, . . . , ξN ]

T.

Remark 1 — The computation of θj and θj is then
reduced to a minimization (maximization) problem over
p + 2N optimization variables. The feasible set is semi-
algebraic, defined by N bilinear polynomial equality
constraints and 4N linear inequalities. It must be noted
that an equality constraint can be written as a set of two
inequality constraints. For instance, the equality constraints
x = 0 can be written as x ≥ 0 and x ≤ 0. Therefore,
the N equality constraints in problems (21)-(22) can be
written as a set of 2N inequality constraints. Therefore,
the total number of inequality constraints in (21)-(22) is 6N .

Considerable efforts have been devoted in the last years
to approximate semi-algebraic optimization problems by a
hierarchy of convex LMI relaxations (see the survey pa-
per [17] for a review of the literature on the subject). In
particular, the approach proposed in [18] is based on the
representation of nonnegative polynomials as Sum of Squares
(SOS), while the dual theory of moments is exploited in
[19]. More specifically, the relaxation technique described
in [19] solves semidefinite programming problems, whose
optima are guaranteed to converge monotonically to the
global optima of the original optimization problem as the
length of the number of successive LMI relaxations, the
relaxation order δ, increases. Application of the method
presented in [19] to problems (21) and (22), for a given order
of relaxation δ leads to the computation of the δ-relaxed
bounds as

θdj (δ) = min
x∈Ddδ

x

fj(x), (23)

θ
d

j (δ) = max
x∈Ddδ

x

fj(x), (24)



where x is the vector variables, called LMI decision
variables. The function fj(x) is linear and Ddδ

x is a convex
set defined by linear matrix inequalities.

Convergency properties

Let us define the relaxed uncertainty interval PUIdj (δ) for
a relaxation order δ as:

PUIdj (δ) =
[
θdj (δ), θ

d

j (δ)
]

(25)

then the following result holds.

Result 3 — Monotone convergence to tight parameter
uncertainty intervals
The relaxed uncertainty interval PUIdj (δ) becomes tighter
as δ increases, that is:

θdj (δ) ≤ θdj (δ + 1) ≤ θj for δ = 1, 2, . . . (26)

θ
d

j (δ) ≥ θ
d

j (δ + 1) ≥ θj for δ = 1, 2, . . . (27)

Thus, relaxed parameter uncertainty intervals PUIdj (δ) con-
verge to the tight uncertainty intervals PUIj , as the LMI
relaxation order goes to infinity, that is:

lim
δ→∞

θdj (δ) = θj (28)

lim
δ→∞

θ
d

j (δ) = θj (29)

It must be pointed out that the number of LMI decision
variables x and the size of matrix that describes Ddδ

x

increases with the relaxation order δ, therefore, there is
a tradeoff between accuracy and complexity of the LMI
relaxation. Although the convergency is guaranteed as the
relaxation order goes to infinity, exact global optima have
been obtained in practice for a number of small and medium
size problems with a reasonably low relaxation order (see
[20] for a collection of test problems solved with relaxation
order less or equal to 4).

Parameter uncertainty intervals computational complexity

The evaluation of PUIdj (δ) requires the solution of the
SDP problems (23)-(24) for j = 1, . . . , p. The complexity
of such problems as a function of the relaxation order δ,
the number p of unknown parameters and the number of
measurements N is described by the following property.

Property 1 — Complexity of LMI relaxation
(P1.1) The number of LMI decision variables x is(

2N + p+ 2δ
2N + p

)
-1, i.e.:

• O(δp+2N ) for fixed p and N ,
• O(N2δ + p2δ) for fixed δ.

(P1.2) The size of LMI is
(

2N + p+ δ
2N + p

)
+

6N

(
2N + p+ δ − 1

2N + p

)
, i.e.:

• O(Nδ(2N+p)) for fixed p and N ,
• O(N δ + pδ) for fixed δ.

The complexity analysis of Property 1 is performed with
reference to the LMI relaxation technique proposed in [19].
Several efforts on the reduction of LMI relaxation
complexity, exploiting the particular structure of the
optimization problem, have been carried out in the recent
years (see for instance [21], [22], [23]). Roughly speaking,
a polynomial optimization problem has a structured sparsity
when the objective function and each constraint that define
the feasible region of the optimization problem involve
only a small subset of variables (see [17], [21], [24]). The
following result shows that (11)-(12) have a structured
sparsity that can be exploited to reduce LMI complexity.

Property 2 — Structure of the original optimization
problems
Problems (11)-(12) enjoy the following features:

(P2.1) The objective function is linear in the variable θj .
(P2.2) Each linear constraint depend only on the noise ξt

or ηt.
(P2.3) The generic polynomial constraint at time k de-

pends only on 2p+ 1 variables, i.e.:
• the unknown parameters θj , j = 1, . . . , p
• the output sample noise ηt, t = k, k −

1, . . . , k − na
• the input sample noise ξt, t =

k, k − 1, . . . , k − nb

Since (21)-(22) satisfy Property 2, the LMI relaxation
method for problems with structured sparsity in the original
data, discussed in [24] in the spirit of the work of Waki
et al [21], can be exploited in order to relax the original
problems (21)-(22). Such a method enjoys the features
reported in the following property.

Property 3 — Reduced complexity of LMI relaxation
(P3.1) the number of LMI variables x is bounded by

N

(
2p+ 1 + 2δ

2p+ 1

)
, i.e.:

• O(δ2p+1) for fixed p and N ,
• O(Np2δ) for fixed δ.

(P3.2) There are N LMI constraints of size(
2p+ 1 + δ
2p+ 1

)
and 6N LMI constraints,

whose largest size is
(

2p+ 1 + δ − 1
2p+ 1

)
, then

the size of LMI is:
• O(Nδ(2p+1)) for fixed p,
• O(Npδ−1) for fixed δ.

An efficient implementation of LMI relaxation for
polynomial optimization problems with structured sparsity
has been developed by Waki, Kim, Kojima and Muramatsu
in the Matlab package SparsePOP which exploits the LMI



solver SeDuMi [25] to solve SDP problems in polynomial
time. It must be noted that, in general, such a relaxation
method does not guarantee convergency to the global
optimum of the original constrained polynomial problem.
However, it is shown in [24] that if the structure of the
original polynomial problem satisfies suitable assumptions
on the sparsity structure, this LMI relaxation method
provides a solution that converges to the global optimum
of the original polynomial optimization problem, as the
relaxation order δ goes to infinity. The following result
describes the convergency properties of the PUIdj (δ) to the
global optimum PUIj when LMI relaxation for problems
with structured sparsity is exploited.

Result 4 — The original optimization problems (21)-
(22) satisfy the sparsity conditions given by Lasserre in
[24]. Therefore, the resulting sequence of relaxed problems,
obtained applying the LMI relaxation method for problems
with structured sparsity, converges to the global optima of
problems (21)-(22), as far as δ goes to infinity, which means
that:

lim
δ→∞

PUIdj (δ) = PUIj . (30)

Remark 2 — The relaxation procedure presented in this
section allows the computation of the relaxed PUIdj exploit-
ing the LMI relaxation technique in order to approximate
the tight PUIj . While in the static EIV the sample noise
sequences are assumed to be not correlated, in the dynamic
EIV through LMI relaxation the sample noise ξt and ηt are
treated as optimization variables of the original problems
(21)-(22), in order to preserve the correlation between con-
secutive measurements.

IV. COMPARISON BETWEEN RELAXATION TECHNIQUES

In this section a comparison between static EIV approach
and dynamic EIV through LMI relaxation techniques is
presented. Furthermore, we suggest how the two techniques
can be combined in order to improve the estimation of
the parameter bounds. As previously discussed, one of the
main advantage of the LMI relaxation over the static EIV
relaxation is the convergency of the relaxed PUIdj to the
tight PUIj , as stated in results 3 and 4. Therefore, as the
relaxation order goes to infinity, dynamic EIV through LMI
relaxation provides tighter parameters bounds than the static
EIV approach, that is:

lim
δ→∞

PUIdj (δ) = PUIj ⊆ PUIsj , j = 1, . . . , p. (31)

However, for a finite value of the relaxation order δ there is
no guarantee that PUIdj (δ) is tighter than PUIsj . In order to
obtain parameters bounds tighter than PUIsj independently
on relaxation order δ, the following algorithm is suggested:

Algorithm 1
(A1.1) For each j = 1, . . . , p, compute θsj and θ

s

j exploit-
ing static EIV relaxation.

(A1.2) Add the linear constraints: θsj ≤ θj and θj ≤ θ
s

j for
j = 1, . . . , p to problems (21) and (22).

(A1.3) Compute the approximated solution of (21)
and (22) (with linear constraints added at point
2), solving the LMI problems (23)-(24) for a
relaxation order δ.

Remark 3 — Note that, since the additional constraints
imposed in the second step of Algorithm 1 are linear, they
are satisfied for any order of relaxation δ [16]. Therefore, if
Algorithm 1 is applied to compute PUIdj (δ), it follows that:

PUIdj (δ) ⊆ PUIsj
j = 1, . . . , p
δ = 1, 2, . . .

(32)

The main idea of this procedure is to compute the parameter
bounds using, first, the static relaxation in order to obtain
initial outer bounds PUIsj of the intervals PUIj . Then, the
PUIdj (δ) are computed solving the constrained polynomial
problems (21)-(22) with the additional constraints that the
parameter θj has to be contained into the interval PUIsj .

V. A SIMULATED EXAMPLE

In this section we illustrate the presented parameter bound-
ing procedure through a numerical example. The parameter
uncertainty intervals are computed exploiting both static EIV
approach and dynamic EIV through LMI relaxation. The
system considered here is characterized by (1), (2) and (3)
with: A(q−1) = (1 + 1.15q−1 + 0.8q−2) and B(q−1) =
(−2.45q−1 + 2.1q−2). Thus, the true parameter vector is
θT = [a1 a2 b1 b2] = [1.15 0.8 − 2.45 2.1]. The input is
a random sequence uniformly distributed between [−1, +1].
Both input and output sequence are corrupted by random
additive noise, uniformly distributed between [−∆ξt, +∆ξt]
and [−∆ηt, +∆ηt], respectively. The chosen error bounds
∆ξt and ∆ηt are such that the Signal to Noise Ratios on the
input SNRx and on the output SNRw, defined as:

SNRx = 10 log

{
N∑
t=1

x2
t

/
N∑
t=1

ξ2t

}
,

SNRw = 10 log

{
N∑
t=1

w2
t

/
N∑
t=1

η2t

}
are 25 db and 31 db, respectively. The number of measure-
ments N exploited to compute the parameters bounds is 300.
θsj and θ

s

j that define the PUIsj relaxing original problems
(11)-(12) by means of static EIV approach are first evaluated.
The obtained results are reported in Table II, which reports
the center θcsj and the parameter uncertainty bounds ∆θsj ,
defined as:

θcsj =
θ
s

j + θsj
2

, ∆θsj =
θ
s

j − θsj
2

Then, dynamic EIV thorugh LMI relaxation is exploited,
with a relaxation order δ = 2. Table III reports the obtained



values of θdj (2) and θ
d

j (2), the center θcdj (2) and the param-
eter uncertainty bounds ∆θdj (2), which are defined as:

θcdj (2) =
θ
d

j (2) + θdj (2)

2
, ∆θdj (2) =

θ
d

j (2)− θdj (2)

2
.

Table II: Static EIV relaxation — Parameter
central estimates (θcsj ), parameter bounds (θsj ,
θ
s

j) and parameter uncertainty bounds ∆θsj .
True θsj θcsj θ

s
j ∆θsj

Value
1.1500 0.9689 1.1583 1.3477 0.1894
0.8000 0.6319 0.8258 1.0197 0.1939
-2.4500 -5.0594 -2.7386 -0.4178 2.3208
2.1000 0.1470 2.4363 4.7256 2.2893

Table III: Dynamic EIV through LMI relaxation
— Parameter central estimates (θcdj (2)),

parameter bounds (θdj (2), θ
d

j (2)) and
parameter uncertainty bounds ∆θdj (2).

True θdj (2) θcdj (2) θ
d
j (2) ∆θdj (2)

Value
1.1500 1.0475 1.1417 1.2359 0.0942
0.8000 0.7103 0.7974 0.8846 0.0872
-2.4500 -3.5054 -2.4509 -1.3964 1.0545
2.1000 1.1218 2.2048 3.2878 1.0830

A comparison between the results reported in Table II and
Table III shows that, although a low relaxation order δ has
been used in the dynamic EIV LMI relaxation technique, the
uncertainty bounds ∆θdj (2) are less than half the uncertainty
bounds ∆θsj , for each parameter θj .

VI. CONCLUSIONS

A procedure to evaluate the parameters bounds of a
linear dynamic system for Set-Membership EIV problems is
presented. The parameters bounds evaluation is formulated
as a collection of constrained polynomial optimization prob-
lems, whose global optima is approximated by means of a
hierarchy of convex SDP relaxed problems, which guarantees
monotone convergence to global optima as the relaxation
order increases. The particular structure of the original
optimization problems makes it possible a reduction of the
computational complexity of the SDP relaxed problems,
preserving the convergence to the global optima. Finally, the
capabilities of such LMI relaxation technique to provide a
less conservative estimation of the parameter bounds with
respect to the static EIV is shown both theoretically and by
means of a numerical example.
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