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Abstract— Identification of linear systems, a priori known
to be stable, from input output measurements corrupted by
bounded noise is considered in the paper. A formal definition
of the feasible parameter set is provided, taking explicitly
into account prior information on system stability. On the
basis of a detailed analysis of the geometrical structure of the
feasible set, convex relaxation techniques are presented to solve
nonconvex optimization problems arising in the computation
of the parameters uncertainty intervals. Properties of the
computed relaxed bounds are discussed. A simulated example is
presented to show the effectiveness of the proposed technique.

Index Terms— Set-membership identification, LMI relax-
ation, stability constraints

I. I NTRODUCTION

According to Ljung [1], any system identification pro-
cedure involves three basic ingredients: a set of input-
output measurements, a set of candidate models and the
identification method, which can roughly be described as
a rule to select a model among the candidate ones on the
basis of the measured data and a proper model quality
assessment criterion. The choice of the set of candidate
models, sometimes calledmodel structure, is the most crit-
ical step since it strongly relies on the availablea priori
information: practical experience, physical insights anden-
gineering intuitions play here a crucial role. Restrictingour
attention to the case of Linear Time Invariant (LTI) systems,
Bounded Input Bounded Output (BIBO) stability is perhaps
the most common assumption when open-loop identification
procedures are of interest. Indeed, when this hypothesis is
not satisfied, open-loop experiments cannot be performed in
practice. Although many times the system to be identified
is surely known to be stable, most of the identification
techniques do not exploit such a prior information in the
definition of the assumed model structure, since formal
inclusion of mathematical constraints related to stability
makes the estimation problem difficult to be solved. As a
result, the identification procedure may give rise to inaccurate
models and even instability may arise, especially in the pres-
ence of shortage of data, modeling error and measurement
noise. Only few contributions are available in the literature
addressing the problem of how taking into account prior
information about system stability. In paper [2] Söderstr̈om
and Stoica consider the identification of input-output linear
dynamics systems described by difference equations; through
a simple counterexample, they show that application of the
Least Squares (LS) method may lead to unstable models
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when certain conditions in terms of signal-to-noise ratio are
satisfied. A sufficient condition to ensure stability of dynamic
models obtained by LS identification is provided in [3]
where the input signal is constrained to be an autoregressive
process of a given degree. Tugnait and Tontiruttananon in [4]
provide a frequency domain solution to LS identification of
a stable system in presence of undermodeling. They present
an approach that applies when the input signal is a zero-
mean stationary process with sufficiently high persistencyof
excitation order. A stable output error identification scheme
is presented in [5] for the case of all-pole systems and
periodic excitation signals, while a procedure to include prior
information on BIBO stability in the context of the kernel-
based nonparametric identification is discussed in [6]. As
far as subspace identification is concerned, some different
approaches have been introduced in the last decade to enforce
stability. The interested reader can refer to [7] and the
references therein for a thorough review on the subject. The
most recent and effective among such approaches is the
one presented by Bernstein and Lacy in [7] where prior
information on asymptotic stability is directly taken into
account computing the LS estimate through the solution of
a proper convex optimization problem.

A common assumption in system identification is that the
measurement error is statistically described. However, when
uncertainties are known to belong to a given set, a set-
membership characterization of measurement errors should
be preferred to the stochastic description. Some examples
include mechanical tolerances, analog-to-digital converter
quantization errors, systematic and class errors in measure-
ment equipments. In this context, all parameters consistent
with the measurements, the error bounds and the assumed
model structure, are feasible solutions of the identification
problem. The interested reader can find further details on this
approach in a number of survey papers (see, e.g., [8], [9]),
in the book edited by Milanese et al. [10], and the special
issues edited by Norton [11], [12].

In this work, we consider the identification of SISO
discrete-time linear systems that are a priori known to be
stable. The aim of the paper is to compute bounds on
the system parameters when both the input and output
data are corrupted by bounded noise. To the authors’ best
knowledge, no contribution can be found in the literature on
the identification problem addressed in this paper.

The note is organized as follows. Section II is devoted to
the formulation of the problem. First a formal definition of
the feasible parameter set is provided taking explicitly into
account prior information on system stability. Then, com-
putation of the parameter uncertainty intervals is formulated
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Fig. 1. Errors-in-variable setup for dynamic linear system.

in terms of nonlinear nonconvex optimization. A detailed
analysis of the geometrical structure of the defined feasible
parameter set is presented in Section III. On the basis of this
analysis, suitable convex relaxation techniques are discussed
to solve the nonconvex optimization problems presented
in Section II. In Section IV, accuracy and convergency
properties of the relaxed bounds computed in Section III
are discussed. A simulated example is reported in Section
V in order to highlight the improvement obtained in the
computation of the parameter bounds when prior information
on stability are explicitly taken into account.

II. PROBLEM FORMULATION

Consider the Single Input Single Output (SISO) Linear-
Time-Invariant (LTI) system depicted in Fig. 1. The linear
dynamic system is modeled by a discrete time system that
transforms the noise-free input sequencext into the noise-
free outputwt according to the difference equation

A(q−1)wt = B(q−1)xt, (1)

whereA(·) andB(·) are polynomials in the backward shift
operatorq−1 (q−1wt = wt−1):

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na (2)

B(q−1) = b0 + b1q
−1 + . . .+ bnbq

−nb (3)

Let ut and yt be the noise-corrupted input and output
measured sequence respectively

ut = xt + ξt (4)

yt = wt + ηt. (5)

Measurement uncertaintiesξt and ηt are assumed to range
within given bounds∆ξt and∆ηt respectively, that is:

| ξt | ≤ ∆ξt (6)

| ηt | ≤ ∆ηt (7)

The unknown parameter vectorθ ∈ R
p to be estimated is

defined as

θT = [a1 . . . ana b0 b1 . . . bnb] (8)

wherena+ nb+ 1 = p.
In the set-membership context, all parameter vectors be-
longing to thefeasible parameter set(FPS), i.e. parameters
consistent with the measurements, the error bounds and
the assumed model structure, are feasible solutions of the
identification problem. GivenN samples of the signalsut

and yt, the feasible parameter setDθ of the linear system
described by equations (1) - (7) is defined as

Dθ ={θ ∈ R
p : A(q−1) (yt − ηt) = B(q−1) (ut − ξt) ,

| ξt |≤ ∆ξt, | ηt |≤ ∆ηt; t = 1, . . . , N}.
(9)

The exact feasible parameter regionDθ is a nonconvex
set described by nonlinear inequalities, whose shape may
become fairly complex for increasing values ofN . As a
consequence, parameters bounds might not be easily com-
puted on the basis ofDθ [13]. In order to overcome such a
problem, the following outer approximationD′

θ of the exact
FPSDθ, i.e. D′

θ ⊃ Dθ has been proposed in [14], [15]:

D′
θ ={θ ∈ R

p : (φt −∆φt)θ ≤ yt +∆ηt,

(φt +∆φt)θ ≥ yt −∆ηt; t = 1, . . . , N}
(10)

whereφt is the regression vector:

φT
t = [−yt−1 . . . − yt−na ut ut−1 . . . ut−nb]

and

∆φT
t =[∆ηt−1sgn(a1) . . . ∆ηt−nasgn(ana) ∆ξtsgn(b0)

∆ξt−1sgn(b1) . . . ∆ξt−nbsgn(bnb)].

D′
θ is the union of at most2p convex regions inRp, i.e.

D′
θ =

2
p

⋃

i=1

D′
θi (11)

where eachD′
θi is a polytope defined by2N + p linear

constraints obtained through the intersection ofD′
θ with the

i-th orthant of the parameter spaceRp.
On the basis of the setD′

θ, lower and upper boundsθj and
θj can be computed, for each componentθj of the parameter
vectorθ, solving the following two optimization problems

θj = min
i=1,...,2p

θji (12)

θj = max
i=1,...,2p

θji (13)

where

θji = min
θ∈D′

θi

θj (14)

θji = max
θ∈D′

θi

θj (15)

Computation of bounds (12) and (13) requires the solution of
2p linear programming problems given by (14) and2p linear
programming problems given by (15) for each component of
the parameter vectorθ (see [15] for details). The computed
bounds implicitly define the parameter uncertainty intervals

PUIj = [θj , θj ]. (16)

In this paper we are interested in computing parameter
uncertainty intervals for linear systems that area-priori
known to be stable. In order to explicitly take into account
this prior information, the set of all the parameters that
belong toD′

θ and guarantee BIBO stability of the identified
system will be considered, that is the setD∗

θ defined as

D∗
θ = D′

θ ∩ AST
θ (17)



where

AST
θ = {θ ∈ R

p : A(z, θ) 6= 0 ∀z ∈ C, |z| ≥ 1} (18)

A(z, θ) = zna + a1z
na−1 + . . .+ ana. (19)

Parameter uncertainty intervals for the stable linear systems
are defined as

PUI∗j =
[

θ∗j , θ∗j

]

(20)

where:

θ∗j = min
θ∈D∗

θ

θj (21)

θ∗j = max
θ∈D∗

θ

θj (22)

Computation of boundsθ∗j and θ∗j through the solution of
nonlinear nonconvex optimization problems (21) and (22)
will be discussed in Section III where a detailed analysis of
the geometric structure ofD∗

θ is also provided.

III. C OMPUTATION OF THE PARAMETER UNCERTAINTY

INTERVALS PUI∗j

In this section the mathematical structure of the nonconvex
set D∗

θ is analyzed, then it is shown how LMI relaxation
techniques can be used to compute parameter boundsθ∗j and

θ∗j .

A. Analysis of the mathematical structure of the setD∗
θ

A necessary and sufficient condition for the BIBO
stability of the discrete time linear system in Fig. 1 is that
the coefficientsa1, . . . , ana of polynomial A(q−1) satisfy
the Jury’s test [16] whose statement is recalled below for
self-consistency of the paper.

Jury’s test [16]
The roots of the polynomialA(q−1) in (2) belong to the
unit circle if and only if all the following constraints are
satisfied:

A(1) > 0 (23)

(−1)naA(−1) > 0 (24)

|ana| < 1 (25)

|cna−1| < |c0| (26)

|dna−2| < |d0| (27)
...

|q2| < |q0| (28)

where c0, d0, . . ., q0, . . ., cna−1, dna−2, . . ., q2, q0 are
polynomial functions of the parametersa1, a2, . . ., ana,
obtained by forming the Jury’s array reported in Table I,

Table I. Jury’s array.
ana ana−1 ana−2 . . . a2 a1 1
1 a1 a2 . . . ana−2 ana−1 ana

cna−1 cna−2 cna−3 . . . c1 c0
c0 c1 c2 . . . cna−2 cna−1

dna−2 dna−3 dna−4 . . . d0
d0 d1 d2 . . . dna−2

...
...

...
...

q2 q1 q0

where

cna−jc = det

([
ana ana−jc

1 ajc

])

,

for jc = 1, . . . , na anda0 = 1

(29)

dna−jd = det

([
cna−1 cna−jd

c0 cjd−1

])

,

for jd = 2, . . . , na

(30)

det(·) is the determinant of a matrix andq2, q1 and q0 are
the last three elements of the Jury’s array. Therefore, on the
basis of the Jury’s criterion, the setAST

θ can be described as
the set of all the parameters valuesθ that satisfy the Jury’s
test. Topological features of the setAST

θ are summarized in
the following result.

Result 1: If na ≥ 2, AST
θ is the union of2na−2 semial-

gebraic sets, that is

AST
θ =

2
na−2

⋃

k=1

AST
θk (31)

whereAST
θk is a semialgebraic set defined by:

• 4 linear inequalities,
• 3 (na− 2) polynomial inequalities.

Proof — First, note thatAST
θ , defined by inequalities

(23) – (28), can be written as:

AST
θ = A1 ∩ C ∩ D ∩ . . . ∩ Q

︸ ︷︷ ︸

intersection ofna−2 sets

(32)

where:

A1 ={θ ∈ R
p : A(1) > 0, (−1)naA(−1) > 0,

|ana| < 1}
(33)

C = {θ ∈ R
p : |cna−1| < |c0|} (34)

D = {θ ∈ R
p : |dna−2| < |d0|} (35)

...

Q = {θ ∈ R
p : |q2| < |q0|} (36)

Besides,C = C1 ∪ C2, D = D1 ∪ D2 and so on, up to



Q = Q1 ∪ Q2, where:

C1 = {θ ∈ R
p : c0 ≥ 0, −c0 ≤ cna−1 ≤ c0} (37)

C2 = {θ ∈ R
p : c0 < 0, c0 ≤ cna−1 ≤ −c0} (38)

D1 = {θ ∈ R
p : d0 ≥ 0, −d0 ≤ dna−2 ≤ d0} (39)

D2 = {θ ∈ R
p : d0 < 0, d0 ≤ dna−2 ≤ −d0} (40)

...

Q1 = {θ ∈ R
p : q0 ≥ 0, −q0 ≤ q2 ≤ q0} (41)

Q2 = {θ ∈ R
p : q0 < 0, q0 ≤ q2 ≤ −q0} (42)

Therefore, Eq. (32) can be rewritten as

AST
θ = A1 ∩ (C1 ∪ C2) ∩ (D1 ∪ D2) . . . ∩ (Q1 ∪ Q2)

= (A1 ∩ C1 ∩ D1 . . . ∩ Q1)
︸ ︷︷ ︸

AST
θ1

∪ (A1 ∩ C1 ∩ D1 . . . ∩ Q2)
︸ ︷︷ ︸

AST
θ2

∪

. . . ∪ (A1 ∩ C2 ∩ D2 ∩ . . . ∩ Q2)
︸ ︷︷ ︸

AST

θ2na−2

Each setAST
k , for k = 1, . . . , 2na−2, is then given by

the intersection ofA1, Cc, Dd, . . ., Qq, for all possible
combination of the indexc = 1, 2, d = 1, 2, . . ., q = 1, 2.
Since A1 in (33) is defined by 4 linear inequalities and
each one of the setsC1, C2, D1, D2, . . ., Q1, Q2 described
by equations (37) – (42) is defined by 3 polynomial
inequalities,AST

θk results to be a semialgebraic set.

Remark 1: For the casena ≤ 2, it is not necessary to
form the Jury’s array. As a matter of fact, whenna = 1, the
root of the polynomialA(q−1) has modulus less than1 if
and only if the linear inequalities (23) and (24) are satisfied.
Thus, whenna = 1, AST

θ is a convex set defined by2 linear
constraints. Analogously, whenna = 2, the root of the
polynomialA(q−1) has modulus less than1 if and only if
the linear inequalities (23) – (25) are satisfied. In this case,
AST

θ results to be a convex set defined by4 linear constraints.

The next result provides a description of the geometrical
structure ofD∗

θ . In order to comply with the conference
page limit constraint, the proof of all the following results
are omitted. The interested reader is referred to [17].

Result 2: D∗
θ is the union of22na+nb−1 semialgebraic

setsD∗
θik, that is:

D∗
θ =

2
p

⋃

i=1

2
na−2

⋃

k=1

D∗
θik (43)

where
D∗

θik = D′
θi ∩ AST

k (44)

for all i = 1, . . . , 2p and k = 1, . . . , 2na−2. Besides, each
setD∗

θik is defined by:

• p+ 2N linear inequalities that defineD′
θi,

• 4 linear inequalities + 3 (na− 2) polynomial
inequalities that defineAST

θk

B. Computation ofPUI∗ by means of LMI relaxation tech-
niques

In this section a procedure to compute approximate
solutions of problems (21) and (22) is discussed.

Result 3: Boundsθ∗j andθ∗j can be computed solving the
following optimization problems:

θ∗j = min
i = 1, . . . , 2p

k = 1, . . . , 2na−2

θ∗jik (45)

θ∗j = max
i = 1, . . . , 2p

k = 1, . . . , 2na−2

θ∗jik (46)

where

θ∗jik = min
θ∈D∗

θik

θj (47)

θ∗jik = max
θ∈D∗

θik

θj (48)

Results 2 and 3 show that the evaluation of the
parameter uncertainty intervalPUI∗j for all the
components of the parameter vectorθ requires, in the
general case, the solutions of2p22na+nb−1 semialgebraic
optimization problems withp optimization variables and
m = p + 2N + 4 + 3(na − 2) = 4na + nb + 2N − 2
constraints. However, in many practical situations,D′

θ lies
only in few orthants of the parameter spaceR

p which means
that a large number of subsetD′

θi results to be empty. When
such a case occurs, the number of optimization problems
to be solved can be significantly reduced since the number
of subsetsD∗

θik 6= ∅ is small. Thus, in order to reduce the
computational complexity of the proposed approach, we
suggest first to compute thePUIj for all j = 1, . . . , p.
Such a computation can be performed by means of linear
programming (LP) techniques. Analysis of the signs of
boundsθj and θj allow us to detect which orthants are not
intersected by the feasible setD′

θ. Then, (47) and (48) can
be solved by constraining the indexi to belong to the set
ID′

θ
= {i = 1, . . . , 2p : D′

θi 6= ∅}.
Considerable efforts have been devoted in the last years

to approximate semialgebraic optimization problems by a
hierarchy of convex LMI relaxations (see the survey pa-
per [18] for a review of the literature on the subject). In
particular, the approach proposed in [19] is based on the
representation of nonnegative polynomials as Sum of Squares
(SOS), while in [20] the dual theory of moments is exploited.
More specifically, the relaxation technique described in [20]
solves semidefinite programming (SDP) problems, whose
optima converge to the global optima of the original problem
as the length of the number of successive LMI relaxations,
the so called relaxation orderδ, increases. An efficient
MATLAB implementation of this relaxation technique has
been developed in the open source software Gloptipoly
[21] which exploits the SDP solver SeDuMi [22] to solve
optimization problems in polynomial time. In this paper, the
method presented in [20] is applied to relax (21) and (22)



to convex optimization problems, leading to the computation
of the δ-relaxed parameter uncertainty intervals defined as:

PUI∗j (δ) = [θ∗j (δ), θ∗j (δ)], j = 1, . . . , n (49)

where θ∗j (δ) and θ∗j (δ) are optimal solutions of the SDP
problem obtained by applying the theory of moments for a
relaxation orderδ to (21) and (22) respectively.

Remark 2: If na ≤ 2, D∗
θ is defined by a set of linear

inequalities (as pointed out in Remark 1). Therefore, global
optima of problems (21) and (22) can be computed, in this
case, by means of linear programming techniques.

Remark 3: Since constraints described in equations (23)
– (28) are strict inequalities, the feasible regionD∗

θ is not
guaranteed to be a closed set. As a consequence, solutions
to problems (21)-(22) are not guaranteed to exist. A possible
way to overcome such a technical problem is to modified
constraints (23) – (28) as follows:

A(1) ≥ ε (50)

(−1)naA(−1) ≥ ε (51)

|ana| ≤ 1− ε (52)

|cna−1| ≤ |c0| − ε (53)

|dna−2| ≤ |d0| − ε (54)
...

|q2| ≤ |q0| − ε (55)

whereε > 0 can be chosen arbitrarily small.

Remark 4: The prior information on system stability can
be also exploited in the LS estimation by constraining the
parameterθ to belong toAST

θ . Then, the LS estimation
problem with stability constraints can be formulated as

θ∗LS = arg min
θ∈AST

θ

N∑

t=na+1

(yt − θTφt)
2
. (56)

From Result 1, the nonconvex optimization problem (56)
can be written as the collection of2na−2 semialgebraic
optimization problems

θ∗LS,i = arg min
θ∈AST

θi

N∑

t=na+1

(yt − θTφt)
2

with i = 1, . . . , 2na−2,

(57)

whose approximate optimal solutions can be found through
the convex LMI relaxation techniques previously described.
The optimal LS estimatorθ∗LS guaranteed to belong to the
regionAST

θ is then computed by solving the minimization
problem over a2na−2-element set, that is

θ∗LS = arg min
θ∗LS,i

i = 1, . . . , 2na−2

N∑

t=na+1

(

yt − θ∗
T

LS,iφt

)2

. (58)

IV. PROPERTIES OF RELAXED PARAMETER UNCERTAINTY

INTERVALS PUI∗j (δ)

The following results present some properties of the
relaxed stable parameter uncertainty intervalsPUI∗j (δ).

Result 4: Guaranteed relaxed uncertainty intervals.
For any relaxation orderδ, the δ-relaxed parameter uncer-
tainty interval PUI∗j (δ) is guaranteed to contain the true
unknown parameterθj to be estimated, for allj = 1, . . . , p,
i.e.

θj ∈ PUI∗j (δ) for all j = 1, . . . , p. (59)

Result 5: Convergence to tight parameter uncertainty
interval PUI∗j .
The δ-relaxed parameter uncertainty intervalPUI∗j (δ) con-
verges to the tight parameter uncertainty intervalPUI∗j as
far as the relaxation order goes to infinity, i.e.:

lim
δ→∞

θ∗j (δ) = θ∗j , lim
δ→∞

θ∗j (δ) = θ∗j (60)

Result 6: Accuracy improvement of PUI∗j over PUIj .
The δ-relaxed stable parameter uncertainty intervals
PUI∗j (δ) of equation (49) are included in thePUIj of
equation (16) for any value of the relaxation orderδ, that is:

PUI∗j (δ) ⊆ PUIj (61)

V. A SIMULATE EXAMPLE

In this section a simulated example is presented in order
to show the effectiveness of the presented approach. A
third order system is considered, characterized by (2) and
(3), with A

(
q−1

)
= (1 + 0.9q−1 − 0.85q−2 − 0.95q−3)

and B
(
q−1

)
= (2.27q−1 − 1.25q−2 − 0.92q−3). Thus,

the true parameter vector isθT = [a1 a2 a3 b1 b2 b3] =
[0.9 − 0.85 − 0.95 2.27 − 1.25 − 0.92]. The system has
been excited by a random input sequence uniformly dis-
tributed in [−1, +1]. Both input and output data se-
quences have been corrupted by random additive uncertain-
ties ξt and ηt, uniformly distributed in[−∆ξt, +∆ξt] and
[−∆ηt, +∆ηt], respectively. The chosen error bounds∆ξt
and∆ηt are such that the Signal to Noise Ratios on the input
SNRx and on the outputSNRw, defined as

SNRx = 10 log









N∑

t=1

x2
t

N∑

t=1

ξ2t









, SNRw = 10 log









N∑

t=1

w2
t

N∑

t=1

η2t









are equal to33 db and48 db, respectively. The length of
the data sequence isN = 300. First, boundsθj and θj
definingPUIj are evaluated without imposing the stability
constraints. The obtained results are reported in Table II
together with the central estimatedθcj and the parameter
uncertainty∆θj , defined as

θcj =
θj + θj

2
, ∆θj =

θj − θj

2



Then, stability constraints (50) – (55) have been imposed to
compute boundsθ∗j andθ∗j through the solution of problems
(21)-(22) with an LMI relaxation orderδ = 2. Table III
shows the obtained values ofθ∗j andθ∗j , the central estimate
θc∗j and the parameter uncertainty∆θ∗j , defined as

θc∗j =
θ∗j + θ∗j

2
, ∆θ∗j =

θ∗j − θ∗j

2

Comparison between results reported in Table II and Table
III shows that, imposition of stability constraints leads to a
significant reduction of parameters uncertainty for both the
coefficients of the denominatorA(q−1), and the coefficients
of numerator B(q−1), although stability constraints
involves polynomialA(q−1) only. The improvement on
the estimation accuracy is particulary noticeable for the
denominator parametersa1, a2 and a3 as shown by the
value of ∆θ∗j which, for eachj = 1, 2, 3, is at least50%
less than∆θj .

Table II: Parameter central estimates (θcj ), parameter
bounds (θj , θj) and parameter uncertainty bounds∆θj
(without stability constraints).

Parameter True θj θ
c
j θj ∆θj

Value
a1 0.9000 0.3904 0.7987 1.2070 0.4083
a2 -0.8500 -1.7604 -1.0349 -0.3093 0.7255
a3 -0.9500 -1.4561 -1.0514 -0.6467 0.4047
b1 2.2700 1.5388 2.3212 3.1036 0.7824
b2 -1.2500 -2.3156 -1.3592 -.4027 0.9565
b3 -0.9200 -1.7957 -0.9802 -0.1647 0.8155

Table III: Parameter central estimates (θc∗j ), parameter
bounds (θ∗j , θ∗j ) and stable parameter uncertainty bounds
∆θ∗j (with stability constraints).

Parameter True θ
∗

j θ
c∗
j θ∗j ∆θ

∗

j

Value
a1 0.9000 0.8251 1.0104 1.1956 0.1853
a2 -0.8500 -0.9127 -0.6110 -0.3093 0.3017
a3 -0.9500 -1.000 -0.8234 -0.6467 0.1766
b1 2.2700 1.5388 2.3193 3.0998 0.7805
b2 -1.2500 -2.1455 -1.2741 -0.4027 0.8714
b3 -0.9200 -1.7584 -0.9616 -0.1647 0.7969

VI. CONCLUDING REMARKS AND FUTURE WORKS

Set-membership identification of linear systems a priori
known to be stable is addressed in the paper. First, it is
shown that explicit enforcement of stability constraints in the
evaluation of parameter bounds leads to complex nonconvex
optimization problems. Then, suitable relaxation techniques
are presented to compute global optima of those problems.
The computed relaxed bounds are shown to converge mono-
tonically to the global solution of the original nonconvex
problems as far as the relaxation order goes to infinity. Fur-
thermore, accuracy improvement over the parameter bounds
computed without stability constraints, irrespective of the
value of the relaxation order, is theoretically proved. Effec-
tiveness of the proposed technique is shown by means of a
simulated example.

The convex relaxation approach discussed in the paper
is based on a detailed analysis of the geometrical structure

of the mathematical constraints arising from the necessary
and sufficient stability conditions provided by the Jury’s
test. Therefore, the idea presented in the paper can readily
be applied also outside the Set-membership framework.
For instance, the computation of Least squares estimate,
constrained to the set of parameters satisfying the Jury’s
test conditions, requires the solution of a finite number of
semialgebraic problems.
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