Bounding the parameters of linear systems with stability constaints
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Abstract— Identification of linear systems, a priori known — when certain conditions in terms of signal-to-noise ratie a
to be stable, from input output measurements corrupted by satisfied. A sufficient condition to ensure stability of dgria
bounded noise is considered in the paper. A formal definition models obtained by LS identification is provided in [3]

of the feasible parameter set is provided, taking explicitly h the i t si ] trained to b ¢ .
into account prior information on system stability. On the WNere the nputsignalis constrained 1o be an autoregeessiv

basis of a detailed analysis of the geometrical structure of the Process of a given degree. Tugnait and Tontiruttananonin [4
feasible set, convex relaxation techniques are presented to solve provide a frequency domain solution to LS identification of
nonconvex optimization problems arising in the computation g stable system in presence of undermodeling. They present
of the parameters uncertainty intervals. Properties of the an approach that applies when the input signal is a zero-

computed relaxed bounds are discussed. A simulated example is tati ith sufficiently high istaf
presented to show the effectiveness of the proposed techniu mean statonary process wiin sutiiciently nigh persistesicy

Index Terms— Set-membership identification, LMI relax- ~ €XcCitation order. A stable output error identification soiee

ation, stability constraints is presented in [5] for the case of all-pole systems and
periodic excitation signals, while a procedure to includem
|. INTRODUCTION information on BIBO stability in the context of the kernel-

According to Ljung [1], any system identification pro-based nonparametric identification is discussed in [6]. As
cedure involves three basic ingredients: a set of inpufar as subspace identification is concerned, some different
output measurements, a set of candidate models and #@@proaches have been introduced in the last decade to enforc
identification method, which can roughly be described astability. The interested reader can refer to [7] and the
a rule to select a model among the candidate ones on tfgferences therein for a thorough review on the subject. The
basis of the measured data and a proper model qualifyost recent and effective among such approaches is the
assessment criterion. The choice of the set of candida@g®e presented by Bernstein and Lacy in [7] where prior
models, sometimes calledodel structureis the most crit- information on asymptotic stability is directly taken into
ical step since it strongly relies on the availatalepriori ~account computing the LS estimate through the solution of
information: practical experience, physical insights @md & proper convex optimization problem.
gineering intuitions play here a crucial role. Restrictimgy A common assumption in system identification is that the
attention to the case of Linear Time Invariant (LTI) systemgneasurement error is statistically described. Howeveerwh
Bounded Input Bounded Output (BIBO) stability is perhapsgincertainties are known to belong to a given set, a set-
the most common assumption when open-loop identificatiomembership characterization of measurement errors should
procedures are of interest. Indeed, when this hypothesishe preferred to the stochastic description. Some examples
not satisfied, open-loop experiments cannot be performed iiiclude mechanical tolerances, analog-to-digital caever
practice. Although many times the system to be identifieguantization errors, systematic and class errors in measur
is surely known to be stable, most of the identificatiorment equipments. In this context, all parameters congisten
techniques do not exploit such a prior information in thevith the measurements, the error bounds and the assumed
definition of the assumed model structure, since formadnodel structure, are feasible solutions of the identifirati
inclusion of mathematical constraints related to stapilit problem. The interested reader can find further details isn th
makes the estimation problem difficult to be solved. As @pproach in a number of survey papers (see, e.g., [8], [9]),
result, the identification procedure may give rise to inaatas  in the book edited by Milanese et al. [10], and the special
models and even instability may arise, especially in the-preissues edited by Norton [11], [12].
ence of shortage of data, modeling error and measurementn this work, we consider the identification of SISO
noise. Only few contributions are available in the literatu discrete-time linear systems that are a priori known to be
addressing the problem of how taking into account priogtable. The aim of the paper is to compute bounds on
information about system stability. In paper [2p&rstom the system parameters when both the input and output
and Stoica consider the identification of input-output éine data are corrupted by bounded noise. To the authors’ best
dynamics systems described by difference equations; ghrouknowledge, no contribution can be found in the literature on
a simple counterexample, they show that application of tHée identification problem addressed in this paper.

Least Squares (LS) method may lead to unstable modelsThe note is organized as follows. Section Il is devoted to
the formulation of the problem. First a formal definition of
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and y;, the feasible parameter s of the linear system
described by equations (1) - (7) is defined as

-1
n Bl )| Dy ={0 €R”: A(q™") (yr —m) = Blg™") (e — &),

A —1
Al | | & IS AL, [ne |[<An t=1,...,N}.
&t N

9)

The exact feasible parameter regid@y is a nonconvex

set described by nonlinear inequalities, whose shape may

become fairly complex for increasing values df. As a

Fig. 1. Errors-in-variable setup for dynamic linear system. consequence, parameters bounds might not be easily com-

puted on the basis dPy [13]. In order to overcome such a
problem, the following outer approximatia®y, of the exact

in terms of nonlinear nonconvex optimization. A detailedFPSDy, i.e. Dj, D Dy has been proposed in [14], [15]:

analysis of the geometrical structure of the defined feasibl Dy —{0 € R : (¢ — Aj)0 < y1 + Anp,

Ut Yt

parameter set is presented in Section Ill. On the basis &f thi (10)
analysis, suitable convex relaxation techniques are szl (1 +Ag)0 >y — Amy; t=1,...,N}

to solve the nonconvex optimization problems presentefhere¢, is the regression vector:

in Section Il. In Section IV, accuracy and convergency

properties of the relaxed bounds computed in Section llI G =1"Yt—1 -+ —Yt-na Ut W1 .. Up_pp]

are discussed. A simulated example is reported in Sectigpg

V in order to highlight the improvement obtained in the -

computation of the parameter bounds when prior information Ad; =[Am-15grar) .. Ane—naSGrlana) A&SGrbo)
on stability are explicitly taken into account. A&—15gn(b1) - .. A&e—npSYNbs)]-

Il. PROBLEM EORMULATION Dy, is the union of at mos?? convex regions irR?, i.e.

Consider the Single Input Single Output (SISO) Linear- . 2" .
Time-Invariant (LTI) system depicted in Fig. 1. The linear D, = |J i (11)
dynamic system is modeled by a discrete time system that =1
transforms the noise-free input sequengeinto the noise- where eachD;, is a polytope defined bgN + p linear

free outputw; according to the difference equation constraints obtained through the intersectioryfwith the
T _ i-th orthant of the parameter spageé.

Alg™we = Blg™ ), (@) on the basis of the sé®, lower and upper boundg and
where A(-) and B(-) are polynomials in the backward shift §; can be computed, for each componénof the parameter
operatorg=! (¢~ twy = wi_1): vector §, solving the following two optimization problems

Alg") = 14aq '+ +ang "™ ) 9; = _min_ 0 (12)
—1 _ —1 —nb - =L, 20 ==
B(g7") = bo+big” ' +... +bug ®3) 6, = _max 7 (13)
Let u; and y; be the noise-corrupted input and output T
measured sequence respectively where
w = Tt+& @) b5i = Join 0 (14)
2X3
Ye = Wt N (5) 0, = max 9 (15)
Measurement uncertainti€s and n; are assumed to range . P _ _
within given boundsA¢, and A, respectively, that is: Computation of bounds (12) and (13) requires the solution of
2P linear programming problems given by (14) aztdlinear
& < AL (6) programming problems given by (15) for each component of
[ne ] < Am (7) the parameter vectdt (see [15] for details). The computed

The unknown parameter vectére RP to be estimated is bounds implicitly define the parameter uncertainty intkrva

defined as PUI; = [0;, 0;]. (16)

0"=1la1 ... ana by b1 ... bup] (8) In this paper we are interested in computing parameter
uncertainty intervals for linear systems that aepriori

known to be stable. In order to explicitly take into account
this prior information, the set of all the parameters that

. ) belong toD), and guarantee BIBO stability of the identified
consistent with the measurements, the error bounds ang 9 o 9 y

) ) stem will be considered, that is the defined as
the assumed model structure, are feasible solutions of tﬁg a2

identification problem. GivenV samples of the signals; Dy =D, nA;T a7

wherena +nb+1 = p.
In the set-membership context, all parameter vectors b
longing to thefeasible parameter s€FPS), i.e. parameters



where

Table I. Jury’s array.

Una Ana—1 Upa—2 ER a2 ai 1
AgT = {9 e RP: A(Z, 9) # 0Vz e C, |Z‘ > 1} (18) 1 aj a2 Gna—2 Opa—1 Qna
Cna—1 Cna—2 Cna—3 .o C1 Co
_ . na na—1 Co C1 C2 cee Cna—2 Cna—1
A(z,0) =2"" 4+ a1z + ...+ ang. (19) Ao doos doos do
L . do dy do cor dpg—2
Parameter uncertainty intervals for the stable linearesyst _ _ _ _
are defined as : : :
puT; =05, 7] (20) P E——
* where
where:
Cra—j, = det ([ Gna  Gna—j, :|> ’
0; = min (21) ’ Looa (29)
— b€D; for j.=1,...,na anday = 1
b5 = maxb; (22)
. . — . d . =det <|: Cna—1 Cna—jq :|>
Computation of boundﬁi and ¢; through the solution of na=ia o Cjy—1 ’ (30)
nonlinear nonconvex optimization problems (21) and (22) for ju=2,...,na

will be discussed in Section Il where a detailed analysis of

the geometric structure dPj is also provided. det(-) is the determinant of a matrix ang, ¢; and ¢, are

the last three elements of the Jury’s array. Therefore, en th

basis of the Jury’s criterion, the séf;” can be described as

the set of all the parameters valugshat satisfy the Jury’s

test. Topological features of the SAI,?T are summarized in
In this section the mathematical structure of the nonconveke following result.

set D; is analyzed, then it is shown how LMI relaxation

techniques can be used to compute parameter batjnaisd

IIl. COMPUTATION OF THE PARAMETER UNCERTAINTY
INTERVALS PUI;-k

Result 1: If na > 2, A57 is the union of2"2~2 semial-

97%_ gebraic sets, that is
. . 2na—2
A. Analysis of the mathematical structure of the Bgt AST = U AST (31)
A necessary and sufficient condition for the BIBO k=1

stability of the discrete time linear system in Fig. 1 is that ST ; . . ' i
the coefficientsas, ..., a,, of polynomial A(g~!) satisfy where Ay, is a semialgebraic set defined by:
the Jury’s test [16] whose statement is recalled below for « 4 linear inequalities,

self-consistency of the paper. e 3(na — 2) polynomial inequalities.

Jury’s test [16] Proof — First, note that4;7, defined by inequalities
The roots of the polynomial(¢—!) in (2) belong to the (23) — (28), can be written as:

unit circle if and only if all the following constraints are

satisfied: AT =A1n CNDN...NQ (32)
~——
A1) > 0 23) intersection of.a—2 sets
(=1)"*A(=1) >0 (24)  where:
|ana| < 1 (25) ./4 {9 RP A(l) 0 ( 1)77aA( 1) 0
= S . > U, (= ) - >0,
lena—1 < |col (26) 1|a|<1} (33)
|dna72| < |d0| (27) e
C = {0eR?: |cha1| <lco|} (34)
: D = {0eR: |dpa2| <|dol} (35)
g2| < |qol (28) :
where Co, do, ceo 4oy ooy Cpa—1, dna,Q, ..+ @2, qo are Q = {9 € RP: |q2‘ < |q0|} (36)
polynomial functions of the parametets, as, ..., apna,

obtained by forming the Jury’s array reported in Table I,

Besides,C = C; UCy, D = D; U D, and so on, up to



Q = Q1 U Qy, where: B. Computation ofPU I* by means of LMI relaxation tech-

, niques
Ci = {#eR?: ¢ >0, —co < cna—1 < o} (37) |(?u h . q -
n this section a procedure to compute approximate
= p. b < < - - H H
Co {0ER": o <0, co < enar < —co} (38) o iong of problems (21) and (22) is discussed.
Dy = {#eRP: dy>0, —do < dpa_z <do}(39)
Dy = {0€RP: dy<0, dy <dpg—2 < —dp} (40) Result 3: Boundsf; and?;? can be computed solving the
following optimization problems:
Q1 = {#eRP: >0, —g0<q2<q} (41) o = i {mn op Ojix (45)
Qy = {0eR’: ¢ <0, go<q2<—qo} (42) k=1,...,2nme2
Therefore, Eq. (32) can be rewritten as 05 = e o 0%in (46)
— na—2
AT = A1 N (CLUC) N (D1 UDy)...N(Q1 U Q) k=1...,2
=(A4NCiND;...Nn Q) U(ANCIND;...NQx)U  Where
A5 A5 gk = min 0 (“47)
ANCNDyN...NQs) — -
L UAINCNDeN ... N Qy 0 = max 0 (48)
ST Oik
gona—2
ST _ na—2 j i
Iiach SetAk, ’ forfk; =1...,2 ' |sfthen” g|ven.btl)y Results 2 and 3 show that the evaluation of the
the intersection ofAy, Cc, Da, ..., Qq, for all possible parameter uncertainty intervalPUI; for all the

combination of the index =1,2,d = 1,2, ..., ¢ = 1,2. components of the parameter vectér requires, in the

Since A; in (33) is defined by 4 linear inequalitie_s andgeneral case, the solutions @p22"+mb—1 semialgebraic
each one.of the sets;, Cs, Dl_’ Da, s Q1. Q2 descrlbed. optimization problems withp optimization variables and
py eqqa}tlonsST(37) - (42) is defmed by _3 polynomial -~ _ p+2N + 4+ 3(na — 2) = 4na + nb + 2N — 2
inequalities, Az, results to be a semialgebraic set. constraints. However, in many practical situatiofi®, lies
only in few orthants of the parameter sp&&which means
that a large number of subsBY, results to be empty. When
such a case occurs, the number of optimization problems
to be solved can be significantly reduced since the number
of subsetsDj,. # 0 is small. Thus, in order to reduce the
computational complexity of the proposed approach, we
suggest first to compute theUI; for all j = 1,...,p.
Such a computation can be performed by means of linear
programming (LP) techniques. Analysis of the signs of
boundsf; andd; allow us to detect which orthants are not
intersected by the feasible sBY,. Then, (47) and (48) can

The next result provides a description of the geometric%e solved by constraining the indéxto belong to the set
structure of Dj. In order to comply with the conferenceI e D . Ty
D/—{Z—l,...,Q : Del#w}

bage I|r_n|t constra}lnt, the proof of "?l” the following resailt &onsiderable efforts have been devoted in the last years
are omitted. The interested reader is referred to [17].

to approximate semialgebraic optimization problems by a
hierarchy of convex LMI relaxations (see the survey pa-
per [18] for a review of the literature on the subject). In

particular, the approach proposed in [19] is based on the

Remark 1: For the casena < 2, it is not necessary to
form the Jury’s array. As a matter of fact, when = 1, the
root of the polynomial4(¢—!) has modulus less thanh if
and only if the linear inequalities (23) and (24) are satikfie
Thus, whema = 1, A37 is a convex set defined [linear
constraints. Analogously, whena = 2, the root of the
polynomial A(¢~!) has modulus less thanif and only if
the linear inequalities (23) — (25) are satisfied. In thisecas
A5T results to be a convex set defineddljnear constraints.

Result 2: D is the union of2?natnb=1 semialgebraic
setsDj,,., that is:

op gna—2 representation of nonnegative polynomials as Sum of Square
D;=J U Diu (43) (SOS), while in [20] the dual theory of moments is exploited.
i=1 k=1 More specifically, the relaxation technique described @] [2
where solves semidefinite programming (SDP) problems, whose
D = D N AfT (44) optima converge to the global optima of the original problem
as the length of the number of successive LMI relaxations,
foralli =1,...,2” andk = 1,...,2"*">. Besides, each the so called relaxation ordef, increases. An efficient
setDy,; is defined by: MATLAB implementation of this relaxation technique has
e p+ 2N linear inequalities that defin®;,, been developed in the open source software Gloptipoly
e 4 linear inequalites + 3(na—2) polynomial [21] which exploits the SDP solver SeDuMi [22] to solve
inequalities that definets,” optimization problems in polynomial time. In this papef th

method presented in [20] is applied to relax (21) and (22)



to convex optimization problems, leading to the computatiolV. PROPERTIES OF RELAXED PARAMETER UNCERTAINTY
of the é-relaxed parameter uncertainty intervals defined as: INTERVALS PUI(6)
*(S\ _ [p* e C_ The following results present some properties of the
PUI(6) =[0:(9), 0%(9)], 7=1,...,n 49 o
7(0)=16;(0), 950}, 3 (49) relaxed stable parameter uncertainty intendalg > ().
where ¢%() and 07*.(6) are optimal solutions of the SDP

problem obtained by applying the theory of moments for a Result 4: Gugranteed relaxed uncertainty intervals.
relaxation orded to (21) and (22) respectively. For any relaxation orded, the é-relaxed parameter uncer-

tainty interval PUI;(5) is guaranteed to contain the true

Remark 2: If na < 2, Dj is defined by a set of linear unknown parametefl; to be estimated, for alf =1,...,p,

inequalities (as pointed out in Remark 1). Therefore, dloba®-
optima of problems (21) and (22) can be computed, in this
case, by means of linear programming techniques.

0; € PUI;(d) forallj=1,...,p. (59)

Result 5: Convergence to tight parameter uncertainty
Remark 3: Since constraints described in equations (23)nterval PUI7.
— (28) are strict inequalities, the feasible regiDy is not The é-relaxed parameter uncertainty interval/ I () con-
guaranteed to be a closed set. As a consequence, solutigrgges to the tight parameter uncertainty inter#dl /7 as
to problems (21)-(22) are not guaranteed to exist. A possibfar as the relaxation order goes to infinity, i.e.:
way to overcome such a technical problem is to modified

constraints (23) — (28) as follows: 511_?010 95(3) =3, 513{,10 05(6) = 03 (60)
A(l) > € (50) Result 6: Accuracy improvement of PUI} over PUI;.
(—1)"A(-1) > € (51) The ¢é-relaxed stable parameter uncertainty intervals
lana| <1—¢ (52) PUI;(5) of equation (49) are included in theUI; of
o equation (16) for any value of the relaxation ordethat is:
|cna—1] <co| — € (53)
|dna—2| < |do| — € (54) PUI; (%) € PUI, (61)
: V. A SIMULATE EXAMPLE
lg2| < |qo| — € (55) In this section a simulated example is presented in order
o to show the effectiveness of the presented approach. A
wheree > 0 can be chosen arbitrarily small. third order system is considered, characterized by (2) and

(3), with A (¢7') = (1 +0.9¢7" — 0.85¢72 — 0.95¢™2)
Remark 4: The prior information on system stability canand B (¢~1) = (2.27¢7! — 1.25¢2 — 0.92¢~%). Thus,
be also exploited in the LS estimation by constraining théhe true parameter vector & = [a; as a3 by by b3] =
parameterd to belong to A5”. Then, the LS estimation [0.9 —0.85 —0.95 2.27 — 1.25 — 0.92]. The system has
problem with stability constraints can be formulated as  been excited by a random input sequence uniformly dis-

N tributed in [-1, +1]. Both input and output data se-
0% ¢ = arg min Z (ys — 0" ¢t)2- (56) quences have bgen corru'pte.d by ra}ndom additive uncertain-
DeAT , o | ties & andn;, uniformly distributed in[—A¢&;, +A¢;] and

—Any, +An], respectively. The chosen error boundls;

From Result 1, the nonconvex optimization problem (56)nq Ay, are such that the Signal to Noise Ratios on the input
can be written as the collection df**—2 semialgebraic SNR, and on the outpus N R,,, defined as

optimization problems
N N
N 2 2
* _ . T 2 Z T Z W
Oisi=arg min, > (y—0'¢)

5T, (57) SNR, =10log | =— |, SNR,, = 10log | =

with i = 1,...,272, S >oni
whose approximate optimal solutions can be found through ! . =
the convex LMI relaxation techniques previously describec'® €qual 1033 db and48 db, respectively. The length of

The optimal LS estimatof ; guaranteed to belong to the the data sequence & = 300. First, boundsf; and 6;
region A57 is then computed by solving the minimization d€fining PUI; are evaluated without imposing the stability
problem over &2"%—2-element set, that is constraints. The obtained results are reported in Table I

together with the central estimatetj and the parameter

N . .
. . R 2 uncertaintyAd;, defined as
05 ¢ = arg min Z (yt - 9Ls,7;¢t) . (58) e B
i1, Dhna—e PEMOF] fe — 0; +0; _ 0; -0,

J 2 I 2



Then, stability constraints (50) — (55) have been imposed taf the mathematical constraints arising from the necessary
compute bounds; and&?through the solution of problems and sufficient stability conditions provided by the Jury’s

(21)-(22) with an LMI relaxation ordes = 2. Table Il test. Therefore, the idea presented in the paper can readily
shows the obtained values 6f and?;, the central estimate be applied also outside the Set-membership framework.
gs* and the parameter unceT‘tairM;’f, defined as For instance, the computation of Least squares estimate,
constrained to the set of parameters satisfying the Jury’s

0r + 05 0x —0; test conditions, requires the solution of a finite humber of

05" = =, Af] =
Comparison between results reported in Table Il and Table
[l shows that, imposition of stability constraints leadsa [

significant reduction of parameters uncertainty for both th

coefficients of the denominatot(q~!), and the coefficients [?!
of numerator B(¢~!), although stability constraints
involves polynomial A(g~!) only. The improvement on [3]

the estimation accuracy is particulary noticeable for the

denominator parameterg;, a; and a3 as shown by the 4
value of A¢% which, for eachj = 1,2,3, is at least50%
less thanAd;.
) (5]
Table II: Parameter central estimated;)( parameter
bounds ¢;, 6;) and parameter uncertainty bounds);
(without stability constraints). 6]
Parameter  True 0; 05 0; Ab;
Value —

ai 0.9000 0.3904 0.7987 1.2070 0.4083 [7]

a -0.8500 -1.7604 -1.0349 -0.3093 0.7255

as -0.9500 -1.4561 -1.0514 -0.6467 0.4047

b1 22700 15388 23212 3.1036 0.7824 [8]

b2 -1.2500 -2.3156 -1.3592 -4027  0.9565

b3 -0.9200 -1.7957 -0.9802 -0.1647 0.8155 [9]
Table Il Parameter central estimateg;"), parameter

bounds ¢;, 97?) and stable parameter uncertainty bounds[10]
Af5 (with stability constraints).

Parameter  True 0; 05" 07 A [11]
Value —

a 0.9000 0.8251 1.0104 1.1956 0.1853 [12]
as -0.8500 -0.9127 -0.6110 -0.3093 0.3017
as -0.9500 -1.000 -0.8234 -0.6467 0.1766 [13]
by 2.2700 1.5388 2.3193 3.0998 0.7805
ba -1.2500 -2.1455 -1.2741 -0.4027 0.8714 [14]
b3 -0.9200 -1.7584 -0.9616 -0.1647 0.7969

VI. CONCLUDING REMARKS AND FUTURE WORKS 1s]
Set-membership identification of linear systems a priori

known to be stable is addressed in the paper. First, it {4°]
shown that explicit enforcement of stability constraimtshie 17
evaluation of parameter bounds leads to complex nonconvex
optimization problems. Then, suitable relaxation techag)
are presented to compute global optima of those problen%?]
The computed relaxed bounds are shown to converge mono-
tonically to the global solution of the original nonconvex
. o 1

problems as far as the relaxation order goes to infinity. FuL—
thermore, accuracy improvement over the parameter boungds]
computed without stability constraints, irrespective bé t
value of the relaxation order, is theoretically proved.e€ff |,
tiveness of the proposed technique is shown by means ot[ a
simulated example.

The convex relaxation approach discussed in the pap@rz]
is based on a detailed analysis of the geometrical structure

2 semialgebraic problems.
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