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Abstract— A single-stage procedure to evaluate tight bounds
on the parameters of Hammerstein systems from output
measurements affected by bounded errors is presented. The
identification problem is formulated in terms of polynomial
optimization and relaxation techniques based on linear matrix
inequalities are proposed to evaluate parameters bounds by
means of convex optimization. The structured sparsity of the
identification problem is exploited to reduce the computational
complexity of the convex relaxed problem. Convergence proper-
ties, complexity analysis and advantages of the proposed tech-
nique with respect to previously published ones are discussed.

Index Terms— Bounded error identification, Hammerstein
systems, Sparse LMI relaxation, Parameters bounds.

I. INTRODUCTION

Identification of block-structured nonlinear systems, mod-
eled by interconnected memoryless nonlinear gains and lin-
ear dynamic subsystems, has attracted the attention of many
authors in the last decades. Early works are summarized in
the survey papers [1], [2] while an up-to-date collection of
results and algorithms can be found in the recent book [3].
These models have been successfully used in many engi-
neering fields, thanks to their ability to embed prior process
structure knowledge like, e.g., the presence of nonlinearity
either in the actuator or in the measurement equipment. The
configuration we are dealing with in this note, commonly
referred to as a Hammerstein model, is shown in Fig. 1;
it consists of a static nonlinear part N followed by a
linear dynamic system. The identification of such a model
relies solely on input-output measurements, while the inner
signal zt, i.e. the output of the nonlinear block, is not
assumed to be available. A number of algorithm have been
proposed in the literature to address such a problem. Among
others we mention the over-parametrization method [4], [5],
the subspace identification [6], the blind approach [7], the
iterative method [8], the nonparametric approach [9] and
the frequency domain method [10], [11]. In all the papers
mentioned above, the authors assume that the measurement
error ηt is statistically described. A worthwhile alternative
to the stochastic description of measurement errors is the
bounded-errors, or set-membership, characterization, where
uncertainties are assumed to belong to a given set. The reader
can find further details on this approach in the survey papers
[12], [13] and in the book [14]. As far as set-membership
identification of Hammerstein systems is concerned, Sznaier
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Fig. 1. Hammerstein system.

has recently shown in [15] that the problem is NP-hard in
the size of the experimental data sequence pointing out the
need of computationally tractable relaxations. In this paper
we consider the identification of single-input single-output
(SISO) Hammerstein models when the nonlinear block can
be modeled by a linear combination of a finite and known
number of nonlinear static functions, the linear dynamic
part is described by an output error model and the output
measurement errors are bounded. In a previous paper by
the authors [16], a two-stage identification procedure is
presented. First, parameters of the nonlinear block are tightly
bounded using input-output data collected from the steady-
state response of the system to a set of step inputs with
different amplitudes. Then, through a dynamic experiment,
for all ut belonging to a given input transient sequence {ut},
tight bounds on the inner signal are computed which, to-
gether with noisy output measurements are used for bounding
the parameters of the linear part. The main drawback of the
procedure proposed in [16] is that it requires two different
experiments where two specific input signals have to be used.
On the contrary, when the input signal cannot be arbitrarily
chosen, a one-step procedure without particular constraints
on the input signal is required. In this paper an LMI-
relaxation based one-stage algorithm is proposed to compute
bounds on the parameters of both the nonlinear and the linear
subsystems without constrains on the class of input signals.
The paper is organized as follows. Background results on the
relaxation of semialgebraic optimization problems through
the theory of moments is presented in Section II. Section III
is devoted to the problem formulation. In Section IV we show
that computation of tight parameters bounds requires the
solution to nonconvex optimization problems. The proposed
LMI relaxation-based technique, together with a detailed
analysis of its properties, is described in Section V. A
simulated example is reported in Section VI.

II. NOTATION AND BACKGROUND RESULTS ON
CONSTRAINED POLYNOMIAL OPTIMIZATION

In this section we briefly review some preliminary results
on the relaxation of sparse polynomial optimization problems



through a hierarchy of semidefinite programming (SDP)
problems of increasing dimension. The reader is referred to
[17] and the references therein for further details.

A. Polynomial representation and theory of moments

Let us denote with Pn
m[x] the space of real-valued poly-

nomials of the degree at most m in the variable x =
[x1, x2, . . . , xn]

T ∈ Rn and let h be the canonical ba-
sis of Pn

m[x], i.e. h =
[
1 x1 x2 · · · xn x21 x1x2 · · · x1xn

x22 x2x3 · · · x2n · · · x31 · · ·xmn
]T
. Let us define the set Am

as Am = {α ∈ Nn
0 :

∑n
i αi ≤ m}, where αi is the i-th

component of the vector α and Nn
0 denotes the set of n-

dimensional nonnegative integers vectors. Then, the basis h
of the space Pn

m[x] can be written as h = {xα}α∈Am , where
xα = xα1

1 xα2
2 · · ·xαn

n .
Let f and gs be in Pn

m[x]. We denote the sequence f =
{fα}α∈Am and gs = {gsα}α∈Am as the coefficients of the
polynomials f and gs, respectively, on the basis hm, i.e.
f(x) =

∑
α∈Am

fαx
α, gs(x) =

∑
α∈Am

gsαx
α.

Let p = {pα}α∈Am
be the sequence of moments (up to order

m) of a probability measure µ on Rn, i.e. pα =
∫
xαµ(dx)

and Mm(p) be the truncated moment matrix associated with
the distribution µ, i.e. Mm(p) =

∫
hhTµ(dx). Let us denote

with Mm(gkp) the localizing matrix associated with the
sequence of moments p and with the polynomial gk(x). The
reader is referred to [18] for details on the construction of
the localizing matrix associated with a polynomial.

B. LMI-relaxation for polynomial optimization problems

The LMI-relaxation technique based on the theory of
moments and proposed in [18] is briefly reviewed here.
Let us consider the constrained optimization problem

f⋆ = min
x∈S

f(x), (1)

where f ∈ Pn
m[x] and S ⊆ Rn is a compact semialgebraic

set defined as

S = {x ∈ Rn : gs(x) ≥ 0, s = 1, . . . ,Ξ} , (2)

where gs is a real-valued polynomial in the variable x ∈ Rn

of degree ds = deg(gs), i.e. gs ∈ Pn
ds
[x]. Let δ ∈ N be

such that 2δ ≥ max{m,max
s
ds} and h = {xα}α∈A2δ

be
the canonical basis of the space Pn

2δ[x]. Indeed, f and gs
belong to Pn

2δ[x].
Now, let us consider the SDP problem

fδ = min
p

∑
α∈An

2δ

fαpα

s.t. Mδ(p) ≽ 0, Mδ−d̃s
(gsp) ≽ 0, s = 1, . . . ,Ξ(3)

where d̃s =
⌈
ds

2

⌉
, p = {pα}α∈A2δ

is the sequence of
moments up to order 2δ of some probability measure µ with
support on S, while Mδ(p) is the moment matrix associated
with the moments p and Mδ−d̃s

(gsp) is the localizing matrix
associated with the polynomial gs. Problem (3) is referred to
as LMI-relaxed problem of order δ of the original polynomial
problem (1). The solution fδ to the convex problem (3) is

a lower bound of the global optimum f⋆ of the nonconvex
problem (1). Besides, under mild conditions, fδ converges
to f⋆ as the relaxation order δ goes to infinity. Although the
convergence properties are guaranteed as the relaxation order
goes to infinity, exact global optimum f⋆ can obtained in
practice with a reasonably low relaxation order (see [19] for a
collection of problems solved with relaxation order less than
5). Unfortunately, due to high computational complexity, the
discussed LMI-relaxation is restricted to polynomial prob-
lems with a small number of variables, in general not greater
than 10 for relaxation order smaller than 4. Several efforts on
the reduction of LMI relaxation complexity, by exploiting the
structured sparsity of the original polynomial problems, have
been carried out in recent years (see, e.g., [20], [21], [22]).
Roughly speaking, an optimization problem has a structured
sparsity when the functional and each constraint defining the
feasible region involve only a small subset of variables. In the
next section we describe the relaxation technique presented
in [23] in the spirit of the work of Waki et al [21]. Such
a technique exploits the sparsity in the original polynomial
problems to formulate a sparse version of the SDP-relaxation
previously described, in order to extend the applicability of
such a methodology to medium and large scale problems.

C. Sparse LMI-relaxation for polynomial problems

Let us consider the optimization problem (1) with S as in
(2). Let I0 = {1, . . . , n} be the union of a collection of R

sets Ir ⊂ {1, . . . , n}, that is {1, . . . , n} =
R∪

r=1

Ir. Further,

let us partition the index set S0 = {1, . . . ,Ξ} into R disjoint
sets Sr, r = 1, . . . , R.
Let h(Ir) be the canonical basis of the polynomial
Pnr
m [x(Ir)], where x(Ir) = {xi|i ∈ Ir}. Let us construct

the partial moment matrixes Mm(p, Ir) (respectively the
partial localizing matrixes Mm(gsp, Ir)) by retaining only
those rows and columns of the moment matrix Mm(p)
(respectively of the localizing matrix Mm(gsp)), where the
variables pα are such that supp(α) ∈ Ir, with supp(α)
denoting the support of the vector α.
For a given δ ∈ N such that 2δ ≥ max{m,max

s
ds}, let us

define the SDP problem

fδsp = min
p

∑
α∈A2δ

fαpα

s.t. Mδ(p, Ir) ≽ 0 (4)
Mδ−d̃s

(gsp, Ir) ≽ 0, s ∈ Sr, r = 1, . . . , R.

Let us consider the following assumptions.
Assumption 1: For every r = 1, . . . , R and for every s ∈

Sr, the constraint gs(x) ≥ 0 defining S in (2), depends only
on the variables x(Ir) = {xi|i ∈ Ir}.

Assumption 2: The objective function f can be written as

f =

R∑
r=1

fr, with fr ∈ Pn
m[x(Ir)], for every r = 1, . . . , R.

Assumption 3: There exists a value G > 0 such that
∥x∥∞ ≤ G for all x ∈ S.



Assumption 4: For every r = 1, . . . , R− 1,

Ir+1 ∩
r∪

j=1

Ij ⊆ Iq, for some q ≤ r.

According to [23], the following result holds.

Theorem 1: Under Assumptions 1 and 2 we have:
fδsp ≤ fδ+1

sp ≤ f∗. Furthermore, if also Assumptions 3 and
4 are satisfied, then lim

δ→∞
fδsp = f∗.

An implementation of the discussed sparse LMI-relaxation
can be found in the Matlab package SparsePOP [24], which
exploits the SDP solvers SeDuMi [25] and SDPA [26].

III. PROBLEM STATEMENT

Consider the SISO discrete-time Hammerstein model de-
picted in Fig. 1. The nonlinear block maps the input signal ut
into the unmeasurable inner variable zt through the following
nonlinear function

zt =

nγ∑
k=1

γkψk(ut), t = 1, . . . , N ; (5)

where (ψ1,.....,ψnγ ) is a known basis of nonlinear functions
and N is the length of data sequence. The linear dynamic
block L, supposed to be stable, is modeled by a discrete-
time system transforming zt into the noise-free output wt

according to equation

wt = −
na∑
i=1

aiwt−i +
nb∑
j=0

bjzt−j . (6)

Let yt be the noise-corrupted output

yt = wt + ηt. (7)

Measurements uncertainty is known to range within given
bounds ∆ηt, i.e.,

| ηt |≤ ∆ηt. (8)

Unknown parameter vectors γ ∈ Rnγ and θ ∈ Rnθ are
defined, respectively, as γ =

[
γ1 γ2 . . . γnγ

]T and θ =
[a1 . . . ana b0 b1 . . . bnb]

T, with nθ = na + nb + 1. It
must be pointed out that the parametrization of the structure
of Fig. 1 is not unique. As a matter of fact, any parameters
set b̃j = α−1bj , j = 0, 1, . . . , nb, and γ̃k = αγk, k =
1, 2, . . . , nγ , for some nonzero and finite constant α, provides
the same input-output behaviour. Thus, any identification
procedure cannot perceive the difference between parameters
{bj , γk} and {α−1bj , αγk}. To get a unique parametrization
we assume, without loss of generality, that the steady-state
gain of the linear part be one, i.e.

na∑
i=1

ai = 1 +
nn∑
j=0

bj . (9)

In this paper we address the problem of deriving bounds
on the parameters γ and θ consistently with given measure-
ments, error bounds and the assumed model structure.

IV. EVALUATION OF TIGHT PARAMETERS UNCERTAINTY
INTERVALS

The mapping between the input signal ut and the noise-
free output wt for the Hammerstein model in Fig. 1 can be
obtained by substituting (5) in (6), which leads to the relation

wt = −
na∑
i=1

aiwt−i +

nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j). (10)

Therefore, from (7) and (10), we get the following mapping
between the input signal and the output measurement:

yt = −
na∑
i=1

ai(yt−i − ηt−i) +
nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt.

(11)
Indeed, the set Dγθη of all the Hammerstein system param-
eters (γ, θ) and the noise samples ηt consistent with the
measurement data sequence, the assumed model structure
and the error bounds is described by (8), (9) and (11), i.e.

Dγθη =
{
(γ, θ, η) ∈ Rnγ+nθ+N :

yt = −
na∑
i=1

ai(yt−i − ηt−i)+

+

nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt,

|ηr| ≤ ∆ηr,

na∑
i=1

ai = 1 +

nn∑
j=0

bj ,

t = na+ 1, . . . , N ; r = 1, . . . , N
}
,

(12)

which is rewritten as

Dγθη =
{
(γ, θ, η) ∈ Rnγ+nθ+N :

gt(γ, θ, η) = −
na∑
i=1

ai(yt−i − ηt−i)+

+

nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt − yt ≥ 0,

gt+N (γ, θ, η) =

na∑
i=1

ai(yt−i − ηt−i)−

−
nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j)− ηt + yt ≥ 0,

gr+2N (γ, θ, η) = ∆ηr − ηr ≥ 0,

gr+3N (γ, θ, η) = ∆ηr + ηr ≥ 0,

g4N+1(γ, θ, η) =

na∑
i=1

ai − 1−
nn∑
j=0

bj ≥ 0,

g4N+2(γ, θ, η) = −
na∑
i=1

ai + 1 +
nn∑
j=0

bj ≥ 0,

t = na+ 1, . . . , N ; r = 1, . . . , N
}
.

(13)

with η = [η1, . . . , ηN ]
T. Therefore, for every k = 1, . . . , nγ

and j = 1, . . . , nθ, tight bounds on the parameters γk and
θj can be computed by solving the optimization problems:

γ
k
= min

(γ,θ,η)∈Dγθη

γk, γk = max
(γ,θ,η)∈Dγθη

γk, (14)



θj = min
(γ,θ,η)∈Dγθη

θj , θj = max
(γ,θ,η)∈Dγθη

θj . (15)

Thus, parameter uncertainty intervals on γk and θj

are implicitly defined as PUIγk
=

[
γ
k
; γk

]
and

PUIθj =
[
θj ; θj

]
. Note that the identification problems

(14) and (15) are semialgebraic optimization problems. In
fact, the objective function is linear and the feasible region
Dγθη is semialgebraic, since the constraints gt(γ, θ, η) ≥ 0
and gt+N (γ, θ, η) ≥ 0 defining Dγθη in (13) are bilinear
inequalities because of the product between the variable
ai and the noise ηt−i as well as the product between
the unknown parameters bj and γk. Because of bilinear
constraints gt(γ, θ, η) ≥ 0 and gt+N (γ, θ, η) ≥ 0 defining
the feasible region Dγθη , problems (14) and (15) are
nonconvex. Therefore, standard nonlinear optimization tools
(gradient method, Newton method, etc.) cannot be used
since they can trap in local minima, which may prevent
the computed uncertainty intervals from containing the
true parameters, key requirement of any set-membership
identification method. One possible solution to overcome
such a problem is to relax identification problems (14)
and (15) to convex optimization problems in order to
numerically compute guaranteed parameter bounds.

V. EVALUATION OF PARAMETERS BOUNDS THROUGH
CONVEX RELAXATION TECHNIQUES

Since (14) and (15) are semialgebraic optimization
problems, they can be relaxed through a direct
implementation of the dense LMI-relaxation technique
described in Section II-B, which guarantees monotone
converge to the exact parameters bounds defined in (14) and
(15). In particular, for a given relaxation order δ, relaxing
(14) and (15) through dense LMI-relaxation leads to SDP
problems where the number of variables is O(N2δ) and
the size of the largest LMI defining the feasible region is
O(Nδ). Thus, the use of the dense LMI-relaxation technique
is limited to Hammerstein system identification problems
with a small number N of measurements (in general not
greater than 5) because of an high computational burden.
In order to handle a larger number of measurements, the
particular structure of the identification problems (14) and
(15) has been analyzed to apply the sparse LMI-relaxation
presented in Section II-C. The following result shows that
problems (14) and (15) have inherent structured sparsity.

Property 1: Problems (14) (resp. (15)) enjoy the follow-
ing features:

P 1.1: The functional involves only the variable γk (resp.
θj).

P 1.2: For every t = na + 1, . . . , N , the bilinear con-
straints gt ≥ 0 and gt+N ≥ 0 depend only on nγ+nθ+na+1
variables, i.e. nγ nonlinear block parameters γ; nθ linear
block parameters θ and na + 1 noise samples ηt−i, for
i = 0, 1, . . . , na.

P 1.3: For every r = 1, . . . , N , constraints gr+2N ≥ 0
and gr+3N ≥ 0 depend only on the noise variable ηr.

P 1.4: The linear constraints g4N+1 ≥ 0 and g4N+2 ≥ 0
depend only on the system parameters θ. �

A sparsity pattern in the identification problems (14) and (15)
has been detected by exploiting results provided in Property
1. This allows us to formulate sparse SDP-relaxed problems
for (14) and (15) as described in the following.
Let X ∈ Rnγ+nθ+N be the collection of the optimization
variables for the identification problems (14) and (15), i.e.
X =

[
γT θT ηT

]T and let Xi the i-th component of the
vector X . In such a way, the first nγ components of X
are the nonlinear block parameters γ, the components from
position nγ + 1 to nγ + nθ are the linear block parameters
θ, while the components from position nγ + nθ + 1 to
nγ + nθ + N are the noise variables η. Let us define
the index sets Ir ⊂ {1, 2, . . . , nγ + nθ +N} and Sr ⊂
{na+ 1, . . . , N,N + na+ 1, . . . , 2N + 1, . . . , 4N + 2} as

Ir = {1, 2, . . . , nγ + nθ,

nγ + nθ + r, nγ + nθ + r + 1, . . . , nγ + nθ + r + na}
for r = 1, . . . , N − na

(16)

S1 = {na+ 1, N + na+ 1,

2N + 1, 2N + 2, . . . , 2N + na+ 1,

3N + 1, 3N + 2, . . . , 3N + na+ 1, 4N + 1, 4N + 2}
(17)

Sr = {na+ r,N + na+ r, 2N + na+ r, 3N + na+ r} ,
for r = 2, . . . , N − na

(18)

Note that the index sets Ir and Sr defined in (16)-(18)
enjoy the following features.

Property 2: For every r = 1, . . . , N − na, the index sets
Ir and Sr are such that:

P 2.1: The set of the variables indexes I0 =
{1, 2, . . . , nγ + nθ +N} is the union of the sets Ir, that
is I0 =

∪N−na
r=1 Ir.

P 2.2: The set of the constraints indexes S0 =
{na+ 1, . . . , N,N + na+ 1, . . . , 2N, 2N + 1, . . . 4N + 2}
defining Dγθη is the union of the sets Sr, that is
S0 =

∪N−na
r=1 Sr.

P 2.3: The sets Sr are mutually disjoint.
P 2.4: For every s ∈ Sr, the polynomial polynomial

constraint gs(γ, θ, η) ≥ 0 defining Dγθη depends only on
the variables X(Ir) = {Xi : i ∈ Ir}.

P 2.5: The functional of identification problems (14) and
(15) depends only on the variables X(Ir) = {Xi : i ∈ Ir}.

P 2.6: For every r = 1, . . . , N − na− 1,

Ir+1 ∩
r∪

j=1

Ij ⊆ Ir.

�



Now, for a given relaxation order δ ≥ 1, let us consider the
SDP problems

γδ
k
= min

p∈Dδ
γθη

∑
α∈A2δ

Γkαpα, γδk = max
p∈Dδ

γθη

∑
α∈A2δ

Γkαpα

(19)

θδj = min
p∈Dδ

γθη

∑
α∈A2δ

Θjαpα, θ
δ

j = max
p∈Dδ

γθη

∑
α∈A2δ

Θjαpα

(20)
where Γk = {Γkα}α∈A2δ

(resp. Θj = {Θjα}α∈A2δ
) is the

coefficient vector of the function γk (resp. θj) in the basis
h = {Xα}α∈A2δ

, which is the canonical basis of the real-
valued polynomials of degree 2δ in the variables vector X .
The feasible region Dδ

γθη is a convex set defined as

Dδ
γθη = {p :Mδ(p, Ir) ≽ 0, r = 1, . . . , N − na

Mδ−1(gsp, Ir) ≽ 0, s ∈ Sr, r = 1, . . . , N − na }
(21)

where Mδ(p, Ir) is the moment matrix of order δ associated
to the variables X(Ir) and Mδ−1(gsp, Ir) is the localizing
matrix (associated to the variables X(Ir)) taking into
account the constraint gs ≥ 0 defining the original
semialgebraic feasible region Dγθη .

Remark 1: Since the linear block is known to be stable,
stability constraints on the parameters a1, . . . , ana can
be enforced in problems (14) and (15) with the method
presented in [27] in order to improve the evaluation of the
parameter bounds evaluation. �

The δ-relaxed uncertainty intervals, defined as
PUIδγk

=
[
γδ
k
; γδk

]
and PUIδθj =

[
θδj ; θ

δ

j

]
, enjoy

the following properties.

Property 3: For every k = 1, . . . , nγ and relaxation order
δ ≥ 1, the δ-relaxed uncertainty interval PUIδγk

satisfy the
following properties.

P 3.1: Guaranteed relaxed uncertainty intervals.
The interval PUIδγk

is guaranteed to contain the true param-
eter γk to be estimated, i.e. γk ∈ PUIδγk

.
P 3.2: Monotone convergence to tight uncertainty in-

tervals. The interval PUIδγk
becomes tighter as the relax-

ation order δ increases, that is PUIδ+1
γk

⊆ PUIδγk
. Besides,

PUIδγk
converges to the tight interval PUIγk

as the LMI
relaxation order goes to infinity, that is:

lim
δ→∞

γδ
k
= γ

k
, lim

δ→∞
γδk = γk. (22)

�

The proof of Properties P3.1 and P3.2 (see [28] for
details) follows from the properties of the index sets Ir
and Sr highlighted in Property 2 and direct application
of Theorem 1 to (14) and (15) and the corresponding
SDP-relaxed problems (19) and (20). Similar results to
Property 3 hold for the relaxed intervals PUIδθj .

The computational complexity of the SDP problems (19)
and (20) is now analyzed.

Property 4: Computational complexity of the SDP-
problems (19) and (20)

(i) The number of free optimization variables p is

(N − na)

(
nγ + nθ + na+ 1 + 2δ

2δ

)
+

−(N − na− 1)

(
nγ + nθ + na+ 2δ

2δ

)
.

(ii) The feasible region Dδ
γθη is described by:

• N − na moment matrixes, each one of size(
nγ + nθ + na+ 1 + δ

δ

)
,

• 2(N −na)+ 2N +2 localizing matrixes, each

one of size
(

nγ + nθ + na+ δ
δ − 1

)
. �

Technical details on the computation of number of
optimization variables p and dimension of the LMIs
describing Dδ

γθη in (19) and (20) are reported in [28].

VI. A SIMULATED EXAMPLE

In this section we show the effectiveness of the presented
parameter bounding procedure through a numerical example.
The numerical computation is carried out on a 2.40-GHz
Intel Pentium IV with 3 GB of RAM. The nonlinear block
of the Hammerstein system considered here is modeled by
the function zt = 0.3ut+0.2u2t −u3t , i.e. γT = [γ1 γ2 γ3] =
[0.3 0.2 − 1], while the linear part is a second order system
with parameters θT = [a1 a2 b1 b2] = [1.8 0.9 1.6 2.1].
The input is a random sequence uniformly distributed be-
tween [−1, +1]. Two different numerical experiments are
performed. In the first one, only N = 50 number of mea-
surements are expolited to compute the parameters bounds,
while in the second experiment N = 250 data are used.
The noise-free output wt is corrupted by random additive
noise, uniformly distributed between [−∆ηt, +∆ηt] and the
chosen error bounds ∆ηt are such that the signal to noise

ratio SNRw = 10 log

{
N∑
t=1

w2
t

/
N∑
t=1

η2t

}
is equal to 27

db. Bounds on the parameters are evaluated by solving (19)
and (20) for a relaxation order δ = 2. Stability constraints on
the linear block are enforced through the method described in
[27]. Note that, in the considered example with N = 50, the
number of optimization variable in (19) and (20) is 22,275,
while the feasible region is defined by 98 moment matrixes
of size 55 and 396 localizing matrixes of size 10. On the
other hand, if the sparsity was not taken into account, the
number of variable of the SDP relaxed problems would be
about 6 million and the feasible region would be described by
a moment matrix of size 5, 886 and 396 localizing matrixes
of size 108, leading to an untractable optimization problem
in the employed workstation. Results about the nonlinear and



Table I: Nonlinear block. Parameter central estimates (γck),
parameter bounds (γ

k
, γk) and parameter uncertainties ∆γk

for N = 50 and N = 250 measurements.
N Parameter True γ

k
γc
k γk ∆γk

Value
50 γ1 0.300 0.206 0.295 0.384 0.089

γ2 0.200 0.121 0.190 0.259 0.069
γ3 -1.000 -1.211 -1.000 -0.789 0.211

250 γ1 0.300 0.259 0.299 0.340 0.041
γ2 0.200 0.173 0.203 0.232 0.030
γ3 -1.000 -1.103 -1.000 -0.898 0.103

Table II: Linear block. Parameter central estimates (θcj ),
parameter bounds (θj , θj) and parameter uncertainties ∆θj
for N = 50 and N = 250 measurements.

N Parameter True θj θcj θj ∆θj
Value

50 a1 1.800 1.758 1.800 1.842 0.042
a2 0.900 0.856 0.899 0.941 0.043
b1 1.600 1.418 1.626 1.834 0.208
b2 2.100 1.882 2.087 2.292 0.205

250 a1 1.800 1.788 1.800 1.812 0.012
a2 0.900 0.888 0.900 0.911 0.012
b1 1.600 1.579 1.600 1.620 0.021
b2 2.100 2.071 2.099 2.126 0.028

the linear block are reported in Table I and II, respectively,
which show the obtained parameter bounds, the central esti-
mates γck and θcj as well as the parameter uncertainties ∆γk

and ∆θj defined as γck =
γk+γ

k

2 , θcj =
θj+θj

2 , ∆γk =
γk−γ

k

2

and ∆θj =
θj−θj

2 . The CPU time taken by SeDuMi to solve
a single problem (19) and (20) is between 223 s and 263 s
when the number of measurements N is equal to 50, and
between 2442 s and 2578 s when N = 250. The reported
results show that as the number of data increases (from
N = 50 to N = 250), the width of uncertainty intervals ∆γk
and ∆θj decreases, as expected. Furthermore, we point out
that the presented procedure provides satisfactory parameter
uncertainty intervals, even for a small set of data (N = 50).

VII. CONCLUSIONS

A single-stage procedure to evaluate parameter uncertainty
intervals for Hammerstein systems is proposed. The parame-
ters bounds evaluation is formulated in terms of constrained
polynomial optimization problems, whose approximate so-
lutions can be computed by a hierarchy of SDP problems,
which guarantees monotone convergence to global optima
as the relaxation order increases. The particular structure of
the original optimization problems made it possible a re-
duction of the computational complexity of the SDP relaxed
problems, preserving convergence to tight parameter bounds.
The presented identification procedure can be also applied
in the case of noise corrupted input sequence. As a matter
of fact, in such a case, the identification problem can be
still formulated in terms of sparse polynomial optimization
problem by considering the noise samples on the input signal
as variables.
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