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Abstract— Set-membership identification of single-input
single-output linear parameter varying models is considered
in the paper under the assumption that both the output
and the scheduling parameter measurements are affected by
bounded noise. First, we show that the problem of computing
the parameter uncertainty intervals requires the solutions to
a number of nonconvex optimization problems. Then, on the
basis of the analysis of the regressor structure, we present
somead hoc convex relaxation schemes to compute parameter
bounds by means of semidefinite optimization. Advantages of
the new techniques with respect to previously published results
are discussed both theoretically and by means of simulations.

Index Terms— Bounded error identification, Linear Param-
eter Varying, LMI relaxation, Parameters bounds.

I. I NTRODUCTION

Linear parameter varying (LPV) models belong to the
more general class of linear time-varying models and,
roughly speaking, they can be defined as linear systems
where either the matrices of the state equations or the
coefficients of the difference equation relating the input and
the output signals depend on one or more time varying
parameters whose real-time measurements are assumed to
be available. These models have received a considerable
attention from the identification and control community
in recent years and can now be considered as one of the
most popular tool to derive mathematical description of
nonlinear/time-varying phenomena. As to the identification
of LPV models, a relevant number of approaches has
appeared in the literature since the work by Nemani,
Ravikanth and Bamieh [1] which seems to be the first paper
addressing the problem. They consider linear parameter
varying models with a single time-varying parameter and
assume that the measurements of all the state variables
are available. A parameter estimation scheme based on the
minimization of a prediction error cost function is proposed
in [2] where LPV models with multiple time-varying
parameters are considered under the assumption of LFT
parameter dependence. Least mean square and recursive
least square algorithms are proposed in [3] to solve the
identification of LPV input-output models assuming that
measurements of input, output and scheduling parameters
are available. Persistency of excitation conditions in terms
of inputs and scheduling parameters trajectories are also
derived. Subspace identification of multiple input multiple
output (MIMO) LPV models with affine parameters
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dependence is considered in a number of papers. In [4] it
is shown that standard subspace algorithms cannot be used
in practice to identify LPV models since the dimensions
of the data matrices grow exponentially with the system
order. Significant improvements over the method proposed
in [4] are presented in [5], exploiting kernel methods,
and in [6] where an instrumental variable approach is
considered and the positive effect of using periodic
scheduling sequences is highlighted. Iterative subspace
system identification is considered in [7]. Application of
LPV subspace identification algorithms to both periodic
and nonlinear systems are discussed in [8] where the
proposed approach is applied to the modeling of helicopter
rotor dynamics. Separable least squares are exploited in
[9] to derive a novel algorithm for a class of nonlinear
parameter-varying models represented in the form of a
linear fractional transformation, while an orthonormal basis
functions based approach is presented in [10]. A detailed
overview of the available LPV modeling and identification
approaches can be found in the recent book [11] by Toth,
where the nontrivial relation between state-space and
input-output description for LPV systems is also discussed.
In all the papers mentioned above, the measurement error
is statistically described. An alternative to the stochastic
description of measurement errors is the bounded-errors or
set-membership characterization, where uncertainties are
assumed to belong to a given set (see, e.g., [12]). In this
context, all parameters belonging to thefeasible parameter
set (FPS), i.e. parameters consistent with measurements,
error bounds and the assumed model structure, are feasible
solutions to the identification problem. To the authors best
knowledge, only a couple of contributions address the
identification of LPV models when measurement errors
are supposed to be bounded. In [13] the problem of
identification and model validation of LPV systems in the
presence of bounded noise and a possible nonparametric part
is considered. A solution is proposed recasting the problem
in terms of checking the feasibility of a set of linear matrix
inequalities. In [14] the author consider the identification
of discrete-time LPV models with finite impulse response
structure and output measurements affected by bounded
noise.
In this paper a procedure for set-membership identification
of SISO discrete-time LPV models when both the output
and the time-varying parameters measurements are affected
by bounded noise is considered. Preliminary results on this
problem are presented in [15] and successfully applied
to the problem of deriving an LPV model of the vehicle



lateral dynamics in [16]. Thanks to a careful analysis of
the problem structure, a new convex relaxation approach is
proposed in this paper to compute the parameter uncertainty
intervals by means of semidefinite optimization. The
obtained bounds are proven to be tighter than those obtained
in [15]. The paper is organized as follows. Section II is
devoted to the problem formulation. In Section III we show
that computation of tight parameters bounds requires the
solution to nonconvex optimization problems. A brief review
of the algorithm proposed in [15] is presented in Section
IV, while the new identification procedure is described in
Section V. A simulated example is reported in Section
VI in order to highlight the improvement of the presented
procedure in the evaluation of the uncertainty intervals with
respect to the algorithm proposed in [15].

II. PROBLEM FORMULATION

Consider the SISO discrete-time LPV model described in
terms of the linear difference equation

A(q−1, λt)wt = B(q−1, λt)ut, (1)

where ut and wt are the input and the output signals
respectively, whileλt ∈ R

µ, λt = [λ1tλ2t . . . λµt
]T is a

vector of time-varying parameters which, according to the
LPV modeling and control literature (see, e.g., [17]) are
assumed to be measurable.A(·) andB(·) are polynomials in
the backward shift operatorq−1,

A(q−1, λt) = 1 + a1(λt)q
−1 + . . .+ ana(λt)q

−na, (2)

B(q−1, λt) = b0(λt) + b1(λt)q
−1+ . . .+ bnb(λt)q

−nb (3)

wherena ≥ nb and the coefficientsai and bj are assumed
to be nonlinear memoryless mappings of parametersλt
described by

ai(λt) =

ni
∑

k=1

ai,kφi,k(λt), (4)

bj(λt) =

mj
∑

h=0

bj,hψj,h(λt), (5)

whereφi,k(·) and ψj,h(·) are known nonlinear basis func-
tions. In our work we assume thatφi,k(·) andψj,h(·) belong
to the canonical polynomial basis in the parametersλt, and
we denote asdφi,k

and dψj,h
the degree ofφi,k(·) and

ψj,h(·), respectively. Letyt and zt be the noise-corrupted
measurements ofwt andλt respectively

yt = wt + ηt, (6)

zt = λt + εt, (7)

whereεt = [ε1tε2t . . . εµt
]T. Measurements uncertaintiesηt

and εst are known to range within given bounds∆ηt and
∆εst , more precisely

|ηt| ≤ ∆ηt, (8)

and

εt ∈ E = {εt ∈ R
µ : |εst | ≤ ∆εst , s = 1, 2, . . . , µ} (9)

The unknown parameter vectorθ ∈ R
nθ to be estimated is

defined as

θT = [a1,1 . . . a1,n1
. . . ana,1 . . . ana,nna

b0,0 . . . b0,m1
. . . bnb,1 . . . bnb,mnb

] ,
(10)

where nθ =
∑na
i=1 ni +

∑nb
j=0mj . In this paper we

address the problem of deriving uncertainty intervals on the
parametersθ. For the sake of simplicity and without loss
of generality, in the rest of the paper we only consider the
case of a scalar scheduling variableλt, that isλt ∈ R.

III. E VALUATION OF TIGHT PARAMETERS BOUNDS

The setD of all the LPV system parametersθ and the
noise samplesξt and ηt consistent with the measurement
data sequence, the assumed model structure and the error
bounds is described by equations (1) - (9), i.e.

D =
{

(θ, η, ε) ∈ R
nθ+N+(N−na) :

A(q−1
, zt − εt)[yt − ηt] = B(q−1

, zt − εt)ut,

|εt| ≤ ∆εt, |ηr| ≤ ∆ηr,

t = na+ 1, . . . , N ; r = 1, . . . , N
}

.

(11)

with η = [η1, . . . , ηN ]
T andε = [εna+1, . . . , εN ]

T. Therefore,
for j = 1, . . . , nθ, tight bounds on the parameterθj can be
computed by solving the optimization problems

θj = min
(θ,η,ε)∈D

θj , θj = max
(θ,η,ε)∈D

θj . (12)

Parameter uncertainty intervals onθj are defined asPUIj =
[

θj ; θj
]

. Because of the polynomial constraintsA(q−1, zt−
εt)[yt − ηt] = B(q−1, zt− εt)ut defining the feasible region
D, problems (12) are nonconvex. Therefore, standard non-
linear optimization tools (gradient method, Newton method,
etc.) can not be used because they can trap in local min-
ima/maxima. As a consequence, thePUIj obtained using
these tools is not guaranteed to contain the true unknown
parameterθj , which is a key requirement of any set-
membership identification method. One possible solution
to overcome such a problem is to relax the identification
problems (12) to convex optimization problems in order
to numerically compute lower bounds ofθj as well as
upper bounds ofθj . It can be shown (see [18]) that (12)
are semialgebraic optimization problems with an inherent
structured sparsity. Then, approximate solutions ofθj and
θj can be computed through a direct implementation of the
sparseLMI relaxation techniques described in [19] and [20].
Unfortunately, due to high memory usage, the relaxation or-
derδ has to be rather low to implement such an identification
procedure in a commercial workstation. Roughly speaking,δ

should be not greater than 2 when the number of parameters
θ is about 6 and the numberN of measurements is about 30.
In order to deal with problems with a larger number of mea-
surements and parameters, a relaxation method, called static



LPV relaxation, for evaluating parameter bounds of LPV
systems in the set-membership context is proposed in [15]
and it is briefly reviewed in Section IV for self-consistency
of the paper. In this work we propose an alternative method,
called partial-dynamic LPV relaxation, which reduces the
computational complexity of identification problems (12),
so that thesparseLMI relaxation techniques described in
[19] and [20] can be used to compute guaranteed parameter
bounds. Such a method provides parameter bounds tighter
than the ones obtained in [15].

IV. STATIC LPV RELAXATION

To the authors best knowledge, only one algorithm is
available in the literature to evaluate parameter bounds for
LPV systems when both the measurements on the output
and on the time-varying parameters are affected by bounded
noise. Such a method, called static LPV relaxation, was
proposed in [15] where an outer-approximationDs of the
feasible setD has been constructed. In particular, the set
Ds is defined by piecewise linear constraints and, although
generally nonconvex, it is the union of at most2nθ polytopes
in the parameters spaceRnθ . Relaxed parameter boundsθsj
andθ

s

j are computed by solving the optimization problems

θsj = min
θ∈Ds

θ

θj , θ
s

j = max
θ∈Ds

θ

θj . (13)

The relaxed parameter uncertainty intervalPUIsj , defined

as PUIsj =
[

θsj , θ
s

j

]

, is guaranteed to contain the true
unknown parameterθj , that is θj ∈ PUIsj , for every
j = 1, . . . , nθ.

V. PARTIAL -DYNAMIC LPV RELAXATION

In this section we present a new technique to relax (12)
to convex optimization problems. For the sake of clarity, a
general overview of the proposed method is first presented
in Section V-A. Then, detailed technical results are provided
in Section V-B.

A. Overview of the relaxation procedure

Let us rewriteD, defined by (11), in the matrix form

D =
{

(θ, η, ε) ∈ R
nθ+2N−na :

A
[

θ
T1
]T

= 0, |εt| ≤ ∆εt, |ηr| ≤ ∆ηr

t = na+ 1, . . . , N ; r = 1, . . . , N
}

.

(14)

whereA ∈ R
N−na,nθ+1 and thet-th row At of A is

At = [(yt+na − ηt+na)φ1,1(zt+na+1 − εt+na+1), . . . ,

(yt − ηt)φna,nna
(zt+na+1 − εt+na+1),

ut+na+1ψ0,0(zt+na+1 − εt+na+1), . . . ,

ut+na−nbψnb,mnb
(zt+na+1 − εt+na+1),

−yt+na+1 + ηt+na+1] .
(15)

Note that the rows of the matrixA are correlated with each
other since the noise variablesηt appears in all the rows

Ai, with i = t − na, t − na + 1, . . . , t. Besides, also the
columns of the matrixA are not independent of each other,
since they are correlated by the noise variable affecting the
scheduling parameter. The main idea of the partial-dynamic
LPV relaxation can be summarized in the following steps:

(i) First, consider the rows of the matrixA inde-
pendent with each other, keeping the correlation
between the columns. This leads to the construction
of an outer-boundDr of the original feasible setD.

(ii) Then, consider the columns of the matrixA in-
dependent with each other, keeping the correlation
between the rows. This leads to the construction of
another outer-boundDc of D.

(iii) Define the relaxed feasible parameter setDrc =
Dr ∩ Dc and, for everyj = 1, . . . , nθ, compute
minimum and maximum value of the parameters
θj over the feasible setDrc.

B. Technical results

Result 1: Construction of the setDr

Let us define the setDr as

Dr =
{

(θ, η, ε) ∈ R
nθ+2N−na :

A
r

t θ ≥ yt −∆ηt, A
r
t θ ≤ yt +∆ηt,

|εt| ≤ ∆εt, t = na+ 1, . . . , N} ,

(16)

whereA
r

t andArt are

A
r

t =
[

(−yt−1 +∆ηt−1sgn
(

φ1,1(zt − εt)
)

sgn(a1,1))φ1,1, . . . ,

(−yt−na +∆ηtsgn
(

φna,nna(zt − εt)
)

sgn(ana,nna))φna,nna ,

utψ0,0(zt − εt), . . . , ut−nbψnb,mnb
(zt − εt)] .

(17)

and

A
r
t =

[

(−yt−1 −∆ηt−1sgn
(

φ1,1(zt − εt)
)

sgn(a1,1))φ1,1, . . . ,

(−yt−na −∆ηtsgn
(

φna,nna(zt − εt)
)

sgn(ana,nna))φna,nna ,

utψ0,0(zt − εt), . . . , ut−nbψnb,mnb
(zt − εt)] .

(18)

The setDr is an outer approximation ofD. �

Remark 1: It can be proven that if the noise samplesηt
appearing in the rows of the matrixA defined in (17) are
not correlated, thenD = Dr.

In order to construct the outer-approximationDc of D we
first provide the following definitions:

φt
i,k

= min
|εt|≤∆εt

φti,k(zt − εt), φ
t

i,k = max
|εt|≤∆εt

φti,k(zt − εt),

(19)
γt
j,h

= min
|εt|≤∆εt

γtj,h, γtj,h = max
|εt|≤∆εt

γtj,h, (20)

and

c(φti,k) =
φ
t

i,k + φt
i,k

2
, ∆φti,k =

φ
t

i,k − φt
i,k

2
, (21)

c(γtj,h) =
γtj,h + γt

j,h

2
, ∆γtj,h =

γtj,h − γt
j,h

2
(22)



Result 2: Construction of the setDc

Let us define the setDc as

Dc =
{

(θ, η, ε) ∈ R
nθ+2N−na :

(Ac
t +∆Ac

t)θ ≥ yt − ηt, (Ac
t −∆Ac

t)θ ≤ yt − ηt,

|ηt| ≤ ∆ηt, t = na+ 1, . . . , N,
}

,

(23)

where

A
c
t =

[

−(yt−1 − ηt−1)c(φ
t
1,1), . . . ,−(yt−na − ηt−na)c(φ

t
na,nna

),

c(γt
0,0), . . . , c(γ

t
nb,mnb

)
]

,
(24)

∆Ac
t =

[

(yt−1 − ηt−1)∆φ
t
1,1sgn(yt−1 − ηt−1)sgn(a1,1), . . .

(yt−na − ηt−na)∆φ
t
na,nna

sgn(yt−na − ηt−na)sgn(ana,nna),

∆γt
0,0sgn(b0,0), . . . ,∆γ

t
nb,mnb

sgn(bnb,mnb
)
]

,
(25)

Then, the setDc is an outer approximation ofD. �

Proofs of Results 1 and 2 can be found in [18].

Remark 2: It can be proven that if the noise samplesλt
appearing in the elements of the rowAt in (15) are not
correlated, thenD = Dc.

Remark 3: Since φti,k(·) and ψtj,h(·) are continuous
functions, the Weierstrass theorem guarantees thatφti,k(·)
and γtj,h(·) achieve their global minimum and maximum
on the closed interval|εt| ≤ ∆εt. As is well known, such
a global minimum and maximum must either be stationary
points or lie on the boundary of the interval|εt| ≤ ∆εt and
their computation is straightforward asφti,k(·) and ψtj,h(·)
are polynomial functions.

An outer-approximation ofD tighter than bothDr and
Dc can be defined as the intersection ofDr and Dc, i.e.
Drc = Dr ∩ Dc. Then, bounds on the parametersθj can be
computed by solving the optimization problems

θ
pd
j = min

(θ,η,ε)∈Drc
θj , θ

pd

j = max
(θ,η,ε)∈Drc

θj , (26)

and parameter uncertainty intervals onθj obtained through
the partial-dynamic LPV relaxation are then defined as
PUI

pd
j =

[

θ
pd
j ; θ

pd

j

]

.

Property 1: Accuracy improvement of PUI
pd
j over

PUIsj
For everyj = 1, . . . , nθ, the parameter uncertainty interval
PUI

pd
j is tighter than the intervalPUIsj (obtained through

the static LPV relaxation [15]), i.e.PUIpdj ⊆ PUIsj . �

Proof of Property 1 is based on the fact the setDs is an
outer approximation of bothDr and Dc. Technical details
can be found in [18].

By exploiting the particular structure of the setDrc, we
now show as parameter boundsθpdj andθ

pd

j can be computed

through the solution of a set of semialgebraic optimization
problems.

Property 2: Topological features of the feasible setDrc

If the relative measurement error on the outputwt and on
the scheduling variableλt is smaller than100%, then the set
Drc is the union of at most2nθ setsDrc

i in R
nθ+2N−na, i.e.

Drc =
2nθ
⋃

i=1

Drc
i . (27)

The setDrc
i is the intersection ofDrc with the i-th orthant

Oi of the parameters spaceRnθ , i.e.

Drc
i = Drc ∩ Oi, (28)

The orthantOi is formally described as

Oi = {θ ∈ R
nθ : αijθj ≥ 0, j = 1, . . . , nθ} , (29)

whereαi ∈ Γ, beingΓ the set of allnθ-dimensional vectors
with components equal to±1.
Each setDrc

i , if not empty, is a semialgebraic region in
R
nθ+2N−na defined by polynomial inequalities of maximum

degreedrcθ = max{1 + max
i,k

{dφi,k
}, 1 + max

j,h
{dψj,h

}, 2}. �

Proof of Property 2 follows since in the orthantOi the sign
of the parametersθ, appearing in the definition of bothDr

i

andDc
i , is known. Besides, when the relative measurement

error on both the outputwt and on the scheduling variable
λt is smaller than100%, also the sign ofyt−ηt andzt−εt,
appearing the definition ofDc andDr respectively, is known.
See [18] for technical details.

Remark 4: The assumption, reasonable in practice, that
the relative error on the measurements ofwt and λt is
smaller than100% implies that the sign ofyt−ηt andzt−εt
is known. If such an assumption is not satisfied, then the set
Drc is the union of at most2nθ+2N−na semialgebraic sets.

Thanks to Property 2, identification problems (26) can
be decomposed into a collection of polynomial optimization
problems. In fact, solving (26) is equivalent to compute

θ
pd
j = min

l=1,...,2nθ

θ
pd
ji ; θ

pd

j = max
l=1,...,2nθ

θ
pd

ji , (30)

where θpdj and θ
pd

j are the solutions to the following the
semialgebraic optimization problems:

θ
pd
ji = min

(θ,η,ε)∈Drc
i

θj ; θ
pd

ji = max
(θ,η,ε)∈Drc

i

θj . (31)

The inherent structured sparsity of problems (31), which
will be highlighted by Property 3, is exploited to formulate
sparse LMI-relaxed problems for (31) in order to compute
lower (respectively upper) bounds ofθpdj (respectivelyθ

pd

j ).



By rewriting the feasible regionDrc
i defined by (28) as

Drc
i =

{

(θ, η, ε) ∈ R
nθ+2N−na :

gt(θ, η, ε) = A
r

t θ − yt +∆ηt ≥ 0,

gt+N (θ, η, ε) = −Ar
t θ + yt +∆ηt ≥ 0,

gt+2N (θ, η, ε) = (Ac
t +∆Ac

t)θ − yt + ηt ≥ 0,

gt+3N (θ, η, ε) = −(Ac
t −∆Ac

t)θ + yt − ηt ≥ 0,

gt+4N (θ, η, ε) = ∆εt − εt ≥ 0,

gt+5N (θ, η, ε) = ∆εt + εt ≥ 0,

gr+6N (θ, η, ε) = ∆ηr − ηr ≥ 0,

gr+7N (θ, η, ε) = ∆ηr + ηr ≥ 0,

gj+8N (θ, η, ε) = αijθj ≥ 0, αi ∈ Γ

t = na+ 1, . . . , N ; r = 1, . . . , N ; j = 1, . . . , nθ

}

,

(32)

the inherent structured sparsity of problems (31) can be
easily detected as described by the following property.

Property 3: Problems (31) enjoy the following features:
P 3.1: The functional involves only the variableθj .
P 3.2: For everyt = na + 1, . . . , N , constraintsgt ≥ 0

and gt+N ≥ 0, defining Drc
i in (32), depend only on the

parametersθ and the noise sampleεt.
P 3.3: For everyt = na+1, . . . , N , constraintsgt+2N ≥

0 and gt+3N ≥ 0 depend only on the parametersθ and the
noise samplesηt−i (for i = 0, 1, . . . , na).

P 3.4: For everyt = na+1, . . . , N , constraintsgt+4N ≥
0 andgt+5N ≥ 0 depend only on the noise variableεt.

P 3.5: For everyr = 1, . . . , N , constraintsgr+6N ≥ 0
andgr+7N ≥ 0 depend only on the noise variableηr.

P 3.6: For everyj = 1, . . . , nθ, the constraintgj+8N ≥ 0
depends only on the variableθj . �

Thanks to the structured sparsity of problems (31) high-
lighted by Property 3, the SDP relaxation proposed in
[19] and [20] can be applied to problems (31), leading to
approximate solutionsθpd,δji andθ

pd,δ

ji that are computed by
solving the convex SDP problems

θ
pd,δ
ji = min

p∈Dpd,δ
i

fj(p), θ
pd,δ

ji = max
p∈Dpd,δ

i

fj(p), (33)

whereδ is a given relaxation order,p is the decision variable
vector, the objective functionfj(p) is linear in the variables
p and the feasible regionDpd,δ

i is a convex set defined by
linear matrix inequalities (LMIs), which takes into account
the polynomial constraints defining the semialgebraic setDrc

i

of problems (31). In particular, the number of optimization
variablesp is O(N(nθ + na)2δ), while the size of the LMI
describingDpd,δ

i is O(N(nθ +na)δ). See [18] for technical
details on the computation of the number of optimization
variablesp and of the dimension of the LMI describing the
feasible regionDpd,δ.
The minimum valueδ of the LMI relaxation order, so that
(33) are well-defined, is⌈ρ(D

rc
i )
2 ⌉, where⌈·⌉ is the ceiling

operator andρ(Dpd,δ
i ) denotes the maximum order of the

polynomial constraints definingDrc
i . From Property 2 the

maximum degree of the polynomial constraints describing
Dpd,δ
i is equal todrcθ , thereforeδ = ⌈

drcθ
2 ⌉. The reader is

referred to [19] for details on the relaxation of sparse poly-
nomial optimization problems through LMI-based relaxation
techniques.
For a given relaxation orderδ ≥ δ, let us define theδ-relaxed
uncertainty intervals obtained through the partial-dynamic-
LPV procedure asPUIpd,δj =

[

θ
pd,δ
j ; θ

pd,δ

j

]

, where

θ
pd,δ
j = min

i=1,...,2nθ
θ
pd,δ
ji , θ

pd,δ

j = max
i=1,...,2nθ

θ
pd,δ

ji . (34)

Property 4: For every j = 1, . . . , nθ, the δ-relaxed pa-
rameter uncertainty intervalPUIpd,δj satisfies the following
properties.

P 4.1: Guaranteed relaxed uncertainty intervals.
For any relaxation orderδ ≥ δ, the δ-relaxed parameter

uncertainty intervalPUIpd,δj is guaranteed to contain the true
unknown parameterθj to be estimated, i.e.θj ∈ PUI

pd,δ
j .

P 4.2: Monotone convergence to intervalsPUIpdj .
The δ-relaxed parameter uncertainty intervalPUIpd,δj be-

comes tighter as the relaxation orderδ increases, that is

PUI
pd,δ+1
j ⊆ PUI

pd,δ
j . (35)

Further, as the LMI relaxation order goes to infinity, the
δ-relaxed parameter uncertainty intervalPUI

pd,δ
j converges

to the intervalPUIpdj . �

The proof of Properties P4.1 and P4.2 (see [18] for
details) follows from properties of monotone converge of
sparse LMI-relaxation techniques.

VI. SIMULATED EXAMPLE

In this section we propose a simulated example in order to
show the effectiveness of the presented identification proce-
dure and the accuracy improvement on the parameter bounds
evaluation with respect to the static LPV relaxation. The con-
sidered LPV system is described by (1) withA(q−1, λt) =
1 + 0.7λtq

−1 + (−0.4 + 0.3λ2t )q
−2 and B(q−1, λt) =

0.1q−1 + (1.1λt + 0.3λ2t )q
−2. Therefore, the true param-

eters vector isθ = [a1,1, a2,1, a2,2, b1,1, b2,1, b2,2]
T
=

[0.7, −0.4, 0.3, 0.1, 1.1, 0.3]
T and the functionsφi,k and

ψj,h in (4) and (5), which depend on the scheduling param-
eter λt, are φ1,1 = λt, φ2,1 = 1, φ2,2 = λ2t , ψ1,1 = 1,
ψ2,1 = λt and ψ2,2 = λ2t . The input sequence{ut} is
a random uniform distributed signal which takes values in
the interval [−1, 1], while λt = 2 sin(0.1t). The output
wt and the scheduling signalλt are corrupted by random
additive noisesηt andεt, respectively, uniformly distributed
in [−∆ηt, +∆ηt] and [−∆εt, +∆εt]. The chosen error
bounds ∆ηt and ∆εt are such that the signal to noise
ratios on the outputSNRw and on the scheduling signal

SNRλ, defined asSNRw = 10 log

{

N
∑

t=1

w2
t

/

N
∑

t=1

η2t

}

and SNRλ = 10 log

{

N
∑

t=1

λ2t

/

N
∑

t=1

ε2t

}

, are equal to27



Table I: Parameter central estimates (θcsj ), parameter bounds (θsj , θ
s
j ) and

parameter uncertainties∆θsj obtained through the static LPV relaxation

Parameter True θ
s
j θcsj θ

s
j ∆θsj

Value
a1,1 0.700 0.546 0.729 0.913 0.1837
a2,1 -0.400 -0.472 -0.409 -0.347 0.0627
a2,2 0.300 0.196 0.325 0.454 0.1293
b1,1 0.100 0.074 0.101 0.128 0.0269
b2,1 1.100 0.923 1.129 1.335 0.2060
b2,2 0.300 0.148 0.326 0.505 0.1785

Table II: Parameter central estimates (θ
cpd,δ
j ), parameter bounds (θpd,δj ,

θ
pd,δ
j ) and parameter uncertainties∆θ

pd,δ
j obtained through the partial

dynamic LPV relaxation for a relaxation orderδ = 2

Parameter True θ
pd,δ
j θ

cpd,δ
j θ

pd,δ

j ∆θpd,δj

Value
a1,1 0.700 0.601 0.718 0.835 0.1169
a2,1 -0.400 -0.444 -0.409 -0.373 0.0358
a2,2 0.300 0.193 0.282 0.372 0.0894
b1,1 0.100 0.087 0.101 0.114 0.0132
b2,1 1.100 0.997 1.113 1.229 0.1161
b2,2 0.300 0.169 0.297 0.424 0.1280

db and26 db, respectively. The number of measurements
N used to compute the parameter bounds is equal to 200.
First, bounds on the parameters are evaluated through the
static LPV approach. The obtained relaxed boundsθsj , θ

s

j

, the central estimateθcsj and the parameter uncertainty

bounds∆θsj , defined asθcsj =
θ
s

j+θ
s
j

2 and∆θsj =
θ
s

j−θ
s
j

2 , are
reported in Table I. Then, parameters bounds are evaluated
through the partial-dynamic LPV relaxation with a relaxation
orderδ = 2. The Matlab package SparsePOP [21] has been
exploited to relax the semialgebraic problems (31) into the
SDP problems (33). In Table II the obtained parameters
boundsθpd,δj andθ

pd,δ

j are reported, together with the central
estimateθcpd,δj and the parameter uncertainty bounds∆θpd,δj

defined asθcpd,δj =
θ
pd,δ

j +θpd,δj

2 and∆θpd,δj =
θ
pd,δ

j −θpd,δj

2 .
Results in Tables I and II show that the true parameters are
included in the parameter uncertainty intervals, as expected.
Besides, the partial-dynamic LPV relaxation provides pa-
rameter bounds tighter than the ones obtained through the
method proposed in [15]. As a matter of fact, even if a low
value of the relaxation orderδ is used, for each parameter
θj , the uncertainty bound∆θpd,δj is at least25% smaller than
∆θsj .

VII. C ONCLUSION

A new technique for the evaluation of parameter un-
certainty intervals for LPV systems when both the output
and the scheduling signal measurements are affected by
bounded noise is presented. Parameter bounds evaluation is
formulated in terms of nonconvex optimization problems.
In order to reduce the computational complexity of the
formulated problems, the feasible set is approximated by
a union of semialgebraic regions described by polynomial
inequalities that involve only a small number of decision
variables. Thanks to the structured sparsity of the identifica-
tion problem, relaxation techniques based on linear matrix

inequalities are exploited to compute parameters uncertainty
intervals, which are guaranteed to contain the true parame-
ters. The capability of the proposed identification technique
to provide a less conservative estimate of parameters bounds
with respect to the previously published results is shown both
theoretically and by means of a numerical example.
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