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_ Abstract— Set-membership identification of single-input ~dependence is considered in a number of papers. In [4] it
single-output linear parameter varying models is considered js shown that standard subspace algorithms cannot be used
in the paper under the assumption that both the output iy nractice to identify LPV models since the dimensions

and the scheduling parameter measurements are affected by f the dat tri tiall ith th
bounded noise. First, we show that the problem of computing ©' € data matrices grow exponentially with the system

the parameter uncertainty intervals requires the solutions to order. Significant improvements over the method proposed
a number of nonconvex optimization problems. Then, on the in [4] are presented in [5], exploiting kernel methods,
basis of the analysis of the regressor structure, we present and in [6] where an instrumental variable approach is
somead hoc convex relaxation schemes to compute parameter gnsidered and the positive effect of using periodic

bounds by means of semidefinite optimization. Advantages of heduli is highliahted. | . b
the new techniques with respect to previously published results scheduling sequences is hignlighted. lterative subspace

are discussed both theoretically and by means of simulations. System identification is considered in [7]. Application of
Index Terms—Bounded error identification, Linear Param-  LPV subspace identification algorithms to both periodic

eter Varying, LMI relaxation, Parameters bounds. and nonlinear systems are discussed in [8] where the
proposed approach is applied to the modeling of helicopter
l. INTRODUCTION rotor dynamics. Separable least squares are exploited in

Linear parameter varying (LPV) models belong to thd9] to derive a novel algorithm for a class of nonlinear
more general class of linear time-varying models andjarameter-varying models represented in the form of a
roughly speaking, they can be defined as linear systerfigear fractional transformation, while an orthonormakisa
where either the matrices of the state equations or tHgnctions based approach is presented in [10]. A detailed
coefficients of the difference equation relating the inpud a overview of the available LPV modeling and identification
the output signals depend on one or more time varyingpproaches can be found in the recent book [11] by Toth,
parameters whose real-time measurements are assumedvkere the nontrivial relation between state-space and
be available. These models have received a consideralyiut-output description for LPV systems is also discussed
attention from the identification and control communityln all the papers mentioned above, the measurement error
in recent years and can now be considered as one of tise statistically described. An alternative to the stocicast
most popular tool to derive mathematical description oflescription of measurement errors is the bounded-errors or
nonlinear/time-varying phenomena. As to the identificatio Set-membership characterization, where uncertainties ar
of LPV models, a relevant number of approaches ha&ssumed to belong to a given set (see, e.g., [12]). In this
appeared in the literature since the work by Nemangontext, all parameters belonging to tfeasible parameter
Ravikanth and Bamieh [1] which seems to be the first papéeet (FPS, i.e. parameters consistent with measurements,
addressing the problem. They consider linear parametefror bounds and the assumed model structure, are feasible
varying models with a single time-varying parameter angolutions to the identification problem. To the authors best
assume that the measurements of all the state variablgwledge, only a couple of contributions address the
are available. A parameter estimation scheme based on thentification of LPV models when measurement errors
minimization of a prediction error cost function is propdse are supposed to be bounded. In [13] the problem of
in [2] where LPV models with multiple time-varying identification and model validation of LPV systems in the
parameters are considered under the assumption of LBpTesence of bounded noise and a possible nonparametric part
parameter dependence. Least mean square and recursiveonsidered. A solution is proposed recasting the problem
least square algorithms are proposed in [3] to solve thie terms of checking the feasibility of a set of linear matrix
identification of LPV input-output models assuming thainequalities. In [14] the author consider the identificatio
measurements of input, output and scheduling paramete&r discrete-time LPV models with finite impulse response
are available. Persistency of excitation conditions imter structure and output measurements affected by bounded
of inputs and scheduling parameters trajectories are algoise.
derived. Subspace identification of multiple input mukipl In this paper a procedure for set-membership identification
output (MIMO) LPV models with affine parametersof SISO discrete-time LPV models when both the output

and the time-varying parameters measurements are affected
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lateral dynamics in [16]. Thanks to a careful analysis oand

the problem structure, a new convex relaxation approach is u

proposed in this paper to compute the parameter uncertainty &t € € = {ee eR* e, | < Agy,,s=1,2,.., ) (9)
intervals by means of semidefinite optimization. Therhe unknown parameter vectére R™ to be estimated is
obtained bounds are proven to be tighter than those obtainggfined as

in [15]. The paper is organized as follows. Section Il is 0" =[ar1...a ot ...
=[a1,1--- 10y -+ Cnal---Gnann,

devoted to the problem formulation. In Section Il we show (10)

that computation of tight parameters bounds requires the b0,0 -+ bo,my -+ b1 - Dbmy ]

solution to nonconvex optimization problems. A brief revie \, hare ne = S + an m;. In this paper we
= i=1"" j=0 """

of the algorithm proposed in [15] is presented in SectioQqyress the problem of deriving uncertainty intervals an th
IV, while the new identification procedure is described INharameters). For the sake of simplicity and without loss

Section V. A simulated example is reported in Section generality, in the rest of the paper we only consider the
VI in order to highlight the improvement of the presented.sqe of a scalar scheduling variablg that is \; € R.
procedure in the evaluation of the uncertainty intervalgwi

respect to the algorithm proposed in [15].
[1l. EVALUATION OF TIGHT PARAMETERS BOUNDS
The setD of all the LPV system parametefsand the
noise sampleg; and », consistent with the measurement
Consider the SISO discrete-time LPV model described idata sequence, the assumed model structure and the error

Il. PROBLEM FORMULATION

terms of the linear difference equation bounds is described by equations (1) - (9), i.e.
Alg™ " M)we = Bg™h, M), (1) D= {(9»7775) e RIOTNFTINna)
where u; and w; are the input and the output signals Alg™ ze —ed)lye —m] = Ba™ ', 2 — ed)us, (11)
respectively, while\; € R*, A\, = [A;, g, ... 2,7 is a led] < Aee, |ne| < Anpr,
vector of time-varying parameters which, according to the t=na+1,...,N;r=1,.. N}
LPV modeling and control literature (see, e.g., [17]) are
assumed to be measurahM(-) andB(-) are polynomials in with n = [11,...,nn]" ande = [g,441,...,en] . Therefore,
the backward shift operatar, for j = 1,...,ng, tight bounds on the parametéy can be
computed by solving the optimization problems
Al x) =1+ai(M)g " + .o F ana(M)g™, (2 _
0;= min 0;, 60;= max 0. (12)
B(g™' A) = bo(A) +bi(A)g ™ H ..+ bas(A)g™™ (3) (O.n.c)eD (O.n,e)eD

Parameter uncertainty intervals 6nare defined a®UlI; =

[¢;; 0;]. Because of the polynomial constraipd$g ", z; —

ed)lys — ne] = B(q™1, 2; — &4 )u; defining the feasible region

D, problems (12) are nonconvex. Therefore, standard non-
i linear optimization tools (gradient method, Newton method

ai(\) = aikik(Ne), (4)  etc.) can not be used because they can trap in local min-
k=1

ima/maxima. As a consequence, thé/I; obtained using

wherena > nb and the coefficienta; andb; are assumed
to be nonlinear memoryless mappings of parameters
described by

m; these tools is not guaranteed to contain the true unknown
bi(Ae) :ij,hwj,h(/\t)7 (5) parameterf;, which is a key requirement of any set-
h=0 membership identification method. One possible solution
to overcome such a problem is to relax the identification
problems (12) to convex optimization problems in order
to numerically compute lower bounds df;, as well as
upper bounds of);. It can be shown (see [18]) that (12)
are semialgebraic optimization problems with an inherent
structured sparsity. Then, approximate solutiong) pfand
#; can be computed through a direct implementation of the

where ¢; 1 (-) and; »(-) are known nonlinear basis func-
tions. In our work we assume thaj ;(-) and; ,(-) belong
to the canonical polynomial basis in the parametgrsand
we denote asdg,, and dy,, the degree ofe; () and
¥;n(-), respectively. Lety, and z; be the noise-corrupted
measurements af; and )\; respectively

Yp = wy + Ny, (6) sparseLMI relaxation techniques described in [19] and [20].
Unfortunately, due to high memory usage, the relaxation or-
=Mt e, (") ders has to be rather low to implement such an identification

procedure in a commercial workstation. Roughly speaking,
should be not greater than 2 when the number of parameters
6 is about 6 and the numbeé¥ of measurements is about 30.

In order to deal with problems with a larger number of mea-
[n:] < Ay, (8) surements and parameters, a relaxation method, calléd stat

wheree; = [e1,€9, ...€,,]". Measurements uncertaintigs
ande,, are known to range within given boundsr, and
Ag,,, more precisely



LPV relaxation, for evaluating parameter bounds of LPVA;, with i = ¢ — na,t — na + 1,...,t. Besides, also the
systems in the set-membership context is proposed in [16blumns of the matrix4 are not independent of each other,
and it is briefly reviewed in Section |V for self-consistencysince they are correlated by the noise variable affectieg th
of the paper. In this work we propose an alternative methodcheduling parameter. The main idea of the partial-dynamic
called partial-dynamic LPV relaxation, which reduces th&PV relaxation can be summarized in the following steps:
computational complexity of identification problems (12), (j) First, consider the rows of the matrixd inde-

so that thesparseLMI relaxation techniques described in pendent with each other, keeping the correlation
[19] and [20] can be used to compute guaranteed parameter between the columns. This leads to the construction
bounds. Such a method provides parameter bounds tighter of an outer-bound" of the original feasible seb.
than the ones obtained in [15]. (i)  Then, consider the columns of the matrik in-

dependent with each other, keeping the correlation

IV. STATIC LPV RELAXATION . .
S c © between the rows. This leads to the construction of

To the authors best knowledge, only one algorithm is another outer-boun®© of D.
available in the literature to evaluate parameter bounds fo (i) Define the relaxed feasible parameter §@tc —
LPV systems when both the measurements on the output D" ND¢ and, for everyj = 1,...,ng, cOmpute
and on the time-varying parameters are affected by bounded minimum and maximum value of the parameters
noise. Such a method, called static LPV relaxation, was 9, over the feasible seb'e.

proposed in [15] where an outer-approximatid¥i of the
feasible setD has been constructed. In particular, the seB- Technical results
D3 is defined by piecewise linear constraints and, although Result 1: Construction of the setD”
generally nonconvey, it is the union of at m@st polytopes Let us define the seb” as
in thg parameters spad&’e. Relaxed pa.rar.net_er bound$ D — {(9% c) € Rno+2N e
and¢; are computed by solving the optimization problems o
-, A0 >y —Am, A<y +Anp,  (16)

S— 3 . _— .
Qj—enel%ﬁg, ‘)j_?é%}gaj' (13) lee| < Aey, t=na+1,...,N},

. . " a" r
The relaxed parameter uncertainty interal/I¢, defined WhereA; and 4; are
as PUI; = {Qj, 9;1 is guaranteed to contain the true 4; = [(—yi—1 + An—1sgn (1.1 (2 — &¢))sgn(ai 1)), .. -,
unknown parameted;, that is ¢; € PUI;, for every (=Yt—na + Anesgn(dna,nn. (2t — €1))sgn(ananng ) Pra.nna
Jj=1,...,n. w0,0(2t — €4y - -+, Ut—nbWnb,m,, (2t — €¢)] -
17)

V. PARTIAL-DYNAMIC LPV RELAXATION and

In this section we present a new technique to relax (12§ = (=91 = Ammasgn(dr1 (2t — &) sgn(ar1)dnns .,
to convex optimization problems. For the sake of clarity, a (=Yt—na = Anesgn(énanna (20 = €1)) 597(@na,nna))Sra,nnas

general overview of the proposed method is first presented uetho,0(2e — €¢), - - - s Ut—nbWnb,m,,, (26 — €0)] .
in Section V-A. Then, detailed technical results are preuid (18)
in Section V-B. The setD" is an outer approximation db. |

A. Overview 9f the relfalxatlon procegure _ Remark 1: It can be proven that if the noise samplgs
Let us rewriteD, defined by (11), in the matrix form appearing in the rows of the matriA defined in (17) are
Do {(07%6) € Rrot2N-na . not correlated, the® = D".

A[0"1]" =0, |et| < Aty o] < Ane (14) In order to construct the outer-approximati® of D we
t—ma+l... N:ir=1 ... N}. first provide the following definitions:
t : t _ =t _ t _
where A € RN—na,ne+1 gnd thet-th row At of 4 is éi,k - \s,ﬁ%lgst Qsi,k(zt Et)a ¢7z,k - ‘;flgaiia qbz,k(zt Et)a
19
At = [(yt-l-na - 77t+na)¢1,1(zt+na+l - 6t+na+1)7 LR} ’Yt . — min ,yjt . 7; , = max 'Y; I EZO;
(yt - ’r]t)(bna,n,m (ZtJrnaJrl - 5t+na+1)7 - lec|<Aee ’ ' let|<Aey '
Ut4na+1%0,0(Zt4nat1 = Ettnatl)s -« and
ut—i—na—nbﬂ}nb,mnb (Zt+na+1 - 5t+na+1)7 . B afk + ?Zk A . af,k 7:,k 1
—Yt+na+1 + nt-l—na—i-l] . C( i k) 9 ) ¢i,k, - 9 ) ( )
(15) t t
. . t Tj.h + ,Y‘] h t Vjh T lj.h
Note that the rows of the matriX are correlated with each c(vjn) = 5 s A = 7 (22)

other since the noise variableg appears in all the rows



Result 2: Construction of the set D¢
Let us define the seb¢ as

D° = {(9,77,6) € Rro+2N—na
(Af + AAY)O >y — e, (AL — AAY)O < ye — s,
[ne] < An, t:na—i—l,...,N,},

(23)
where
A? = [_(yt—l - Wt—l)c(¢i,1)7 ey _(ytfna - ntfna)c((b?tﬁ,a,nnax
t t
C(’YO,O)v e 76(’an,mnb):| )
(24)
AAS = [(yr—1 — 1) A1, 15gn(ye—1 — ni—1)sgn(ar1),. ..

)
(ytfna - nt*na)Adﬁm,nna SQH(ytfna - nt*na)SQn(ana,nna)a

A’Y(%,O'Sgn(b()ﬁ% (RN A’nyb,’"Lnb sgn(bnb,mnb)} )
(25)

Then, the seD¢ is an outer approximation db. |
Proofs of Results 1 and 2 can be found in [18].
Remark 2: It can be proven that if the noise samples

appearing in the elements of the rad; in (15) are not

correlated, therD = De°.

Remark 3: Since ¢ ,(-) and %! ,(-) are continuous
functions, the Weierstrass theorem guarantees #at-)

through the solution of a set of semialgebraic optimization
problems.

Property 2: Topological features of the feasible seD"
If the relative measurement error on the outpytand on
the scheduling variablg; is smaller thanl00%, then the set
D is the union of at mos2™¢ setsD!¢ in Rme+2N—na je,

2’7‘1,9
rc __ rC
D =D
i=1

(27)

The setD]* is the intersection o with the i-th orthant
O, of the parameters spa@®, i.e.

D¢ =D"N0O,, (28)
The orthant®; is formally described as
Oi:{GER”G:aij9j207j:17...,n9}, (29)

wherea; € T', beingT" the set of allng-dimensional vectors
with components equal te-1.

Each setD]¢, if not empty, is a semialgebraic region in
Rro+2N—na defined by polynomial inequalities of maximum
degreed;® = max{1 + r?%x{dmk,}? 1+ rrj;e}xlx{dw_ﬁh,}? 2}. 1

Proof of Property 2 follows since in the orthafif the sign

and 75, (-) achieve their global minimum and maximumof the parameters, appearing in the definition of botP”

on the closed intervale,| < Ac;. As is well known, such and D¢, is known. Besides, when the relative measurement
a global minimum and maximum must either be stationargrror on both the output; and on the scheduling variable
points or lie on the boundary of the interval| < As; and ), is smaller tharl00%, also the sign ofy, —n; andz, — ey,
their computation is straightforward ag , (-) and 4% ,(-)  appearing the definition db¢ andD" respectively, is known.
are polynomial functions. See [18] for technical details.

Remark 4: The assumption, reasonable in practice, that
the relative error on the measurementswaf and \; is
smaller thanl00% implies that the sign of; — 7, andz; —&;
is known. If such an assumption is not satisfied, then the set
D¢ is the union of at mose™e+2V—"e semialgebraic sets.

An outer-approximation ofD tighter than bothD” and
D¢ can be defined as the intersection ®f and D¢, i.e.
Dr¢ = D" NDe. Then, bounds on the parametérscan be
computed by solving the optimization problems

0"'= min_ 0;, 0, =
(0,m,e)eDre

(26)

max

9,
(0.me)epre

Thanks to Property 2, identification problems (26) can
and parameter uncertainty intervals énobtained through be decomposed into a collecthn of p_olynom|al optimization
the partial-dynamic LPV relaxation are then defined aBrobléms. In fact, solving (26) is equivalent to compute

pd _ [gpd, pPd

PUL” = {Qj s } g** = min 677 7= max 0 (30)
- i pd =T ng —Ji° T ng Ji?
Property 1: Accuracy improvement of PUI;" over I=1,...,2"6 I=1,...,2"0

PUI?

J i . . —nd
For everyj = 1,...,ny, the parameter uncertainty intervalyhere g7 and 9" are the solutions to the following the
PUT}" is tighter than the intervaPUI? (obtained through semialgebraic optimization problems:
the static LPV relaxation [15]), i.ePUIfd C PUI;. |

) ) ng = min_ 6 ??id = max_ 6;. (31)

Proof of Property 1 is based on the fact the #¥tis an (0,m,e)€D}* (0,m,e)€D}*

outer approximation of botfD” and D¢. Technical details
can be found in [18]. The inherent structured sparsity of problems (31), which
will be highlighted by Property 3, is exploited to formulate
By exploiting the particular structure of the sBt<, we sparse LMI-relaxed problems for (31) in order to compute

now show as parameter bourgf§ and??d can be computed lower (respectively upper) bounds 6 (respectively@?d).



By rewriting the feasible regio®;“ defined by (28) as maximum degree of the polynomial constraints describing

DP4Y is equal todre, therefores = [%2°]. The reader is
P 17 el o, nrcors 1

referred to [19] for details on the relaxation of sparse poly
g:(0,m,€) = Ay0 —y, + A, > 0, nomial optimization problems through LMI-based relaxatio
gi+n(0,m,6) = —AT0 +ye + A > 0, techniques.
Giran(0,m,€) = (A + AAS)O — yo + e > 0, For a given relaxation ordeér> 4, let us define thé-relaxed
Geran (0,77, €) = —(AS — AASD + gy — 1m0 > 0, uncertainty intervals O;Ezt,?lied It)r(;’réc')uigprziﬁghe partial-dyitam
Graan (0,1m,6) = Aey — e, > 0 LPV procedure a®UI;™" = |6.7°; 6, " |, where
grysn(0,m,€) = Ay + &0 > 0, pd,s . pd,s  ppd.d Apd,&
grren(0,n,€) = An. —n, >0, o = P O 0 = i1 o Oji (34)
gry7n(0,m,€) = Anr + 1 2 0, Property 4: For everyj = 1,...,ng, the d-relaxed pa-
gi+sn(0,n,€) = @ij0; >0, a; €T rameter uncertainty intervdPUIfd"’ satisfies the following
t=na+1,... N;r=1,...,N; 5=1,...,n6 ¢, properties. ) )

(32) P 4.1: Guaranteed relaxed uncertainty intervals.

_ _ For any relaxation orde§ > ¢, the -relaxed parameter
the inherent structured sparsity of problems (31) can hgncertainty intervaPU " is guaranteed to contain the true

easily detected as described by the following property. |,nknown parametefl; to be estimated, i.é); ¢ PUIJPd,é_

P 4.2: Monotone convergence to intervalsPUIfd.

The §-relaxed parameter uncertainty inter\BUIfd"s be-
comes tighter as the relaxation ordemcreases, that is

Property 3: Problems (31) enjoy the following features:
P 3.1: The functional involves only the variabfe.
P 3.2: For everyt = na + 1,..., N, constraintsg; > 0

and g,y > 0, defining D! in (32), depend only on the PUIY* C pUTP™®. (35)
parame.tersé? and the noise sample. . Further, as the LMI relaxation order goes to infinity, the
P 3.3: For everyt =na+1,..., N, constraintgy, oy > S-relaxed . - Rl 0
0 and g5y > 0 depend only on the parametetsand the -relaxe parameteurl uncertainty inter 7% converges
= H P
noise samples,_; (for i = 0,1,...,na). to the intervalPU ;™. u
P 3.4: Foreveryt =na+1,...,N, constraintsy; 4y > .
0 and g, sn > 0 depend only on the noise variable The proof of Properties P4.1 and P4.2 (see [18] for
P 3.5 For_everyr -1 N, constraintsg, ;x> 0 details) follows from properties of monotone converge of
and g,4+7n > 0 depend only on the noise variahje. sparse LMl-relaxation technigues.
P 3.6: For everyj = 1,...,ng, the constraing, sy > 0
depends only on the variabls. | VI. SIMULATED EXAMPLE

In this section we propose a simulated example in order to
Thanks to the structured sparsity of problems (31) highshow the effectiveness of the presented identificationesroc
lighted by Property 3, the SDP relaxation proposed igyre and the accuracy improvement on the parameter bounds
[19] and [20] can be applied to problems (31), leading t@yaluation with respect to the static LPV relaxation. The-co
approximate solutiong’.’f"s and 951 that are computed by sidered LPV system is described by (1) witt{(g~*, \;) =

solving the convex SDP problems 1+ 0.70g " + (=04 + 0.3X2)g™2 and B(g 5 \) =
—1 2\ ,—2
vis . 4 —pd,5 ‘ 0.1¢7 " 4+ (1.1X: + 0.3\7)q . Therefore, the true param-
Qﬁ _penglprcli,ci fip), 03 _pg)ap}fz{,é fip), (33) eters vector i = [a1,1, az1, G22, b1, b2, bz,z]T =

[0.7, —0.4, 0.3, 0.1, 1.1, 0.3]" and the functionsp; , and
whered is a given relaxation ordep, is the decision variable ;.4 in (4) and (5), which depend on the scheduling param-
vector, the objective functiotfi; (p) is linear in the variables eter ), are 11 = Aty o1 = 1, oo = A2, 1 = 1,

p and the feasible regio@fd’5 is a convex set defined by ¢, ; = ), and Voo = A\?. The input sequencéu;} is
linear matrix inequalities (LMIs), which takes into accoun a random uniform distributed signal which takes values in
the polynomial constraints defining the semialgebraid¥ét the interval [-1, 1], while A, = 2sin(0.1¢). The output

of problems (31). In particular, the number of optimizationy, and the scheduling signal, are corrupted by random
variablesp is O(N(ng + na)?), while the size of the LM additive noises;, ande;, respectively, uniformly distributed
describingD?™’ is O(N (ng +na)°®). See [18] for technical in [~Az,, +An,] and [~Ae,, +As]. The chosen error
details on the computation of the number of optimizatiomounds A7, and Ae; are such that the signal to noise
variablesp and of the dimension of the LMI describing theratios on the outpuSNR,, and on the scheduling signal
feasible regiornDr?9, N N
The minimum value) of the LMI relaxation order, so that SN R, defined asSNR, = 10log {Z wy 277262}
(33) are well-defined, i§22:2], where[] is the ceiling =1 t=1

N N
operator andp(D?"’) denotes the maximum order of the yq SNRy = 10log Z)\g Zgg , are equal ta27
polynomial constraints definin@;¢. From Property 2 the =1 =



Table |: Parameter central estimaté§30, parameter boundsﬂj, ?j) and
parameter uncertaintiesej. obtained through the static LPV relaxation

S

Parameter True 03 05° 0; A6
Value '
a1,1 0.700 0.546 0.729 0.913 0.1837
a2,1 -0.400 -0.472 -0.409 -0.347 0.0627
az,2 0.300 0.196 0.325 0.454 0.1293
b1,1 0.100 0.074 0.101 0.128 0.0269
ba,1 1.100 0.923 1.129 1.335 0.2060
by o 0.300 0.148 0.326 0.505 0.1785

Table II: Parameter central estimatdis]‘f"(d“s), parameter boundsggd";,
ﬁﬁd’é) and parameter uncertaintieafxeg.“i’‘s obtained through the partial
dynamic LPV relaxation for a relaxation ordér= 2

Parameter ~ True @?*° g% 5;"1’6 AgPH°
Value '
ai1 0.700 0.601 0.718 0.835 0.1169
as,1 -0.400 -0.444 -0.409 -0.373 0.0358
az,2 0.300 0.193 0.282 0.372 0.0894
b1 0.100 0.087 0.101 0.114 0.0132
ba 1 1.100 0.997 1.113 1.229 0.1161
bo.o 0.300 0.169 0.297 0.424 0.1280

inequalities are exploited to compute parameters uncaytai
intervals, which are guaranteed to contain the true parame-
ters. The capability of the proposed identification techeiq

to provide a less conservative estimate of parameters lsound
with respect to the previously published results is showth bo
theoretically and by means of a numerical example.
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