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Abstract— In parametric identification of Linear Parameter-
Varying (LPV) systems, the scheduling dependencies of the
model coefficients are commonly parameterized in terms of
linear combinations of a-priori selected basis functions. Such
functions need to be adequately chosen, e.g., on the basis of some
first-principles or expert’s knowledge of the system, in order
to capture the unknown dependencies of the model coefficient
functions on the scheduling variable and, at the same time, to
achieve a low-variance of the model estimate by limiting the
number of parameters to be identified. This problem together
with the well-known model order selection problem (in terms of
number of input lags, output lags and input delay of the model
structure) in system identification can be interpreted as a trade-
off between bias and variance of the resulting model estimate.
The problem of basis function selection can be avoided by using
a non-parametric estimator of the coefficient functions in terms
of a recently proposed Least-Square Support-Vector-Machine
(LS-SVM) approach. However, the selection of the model order
still appears to be an open problem in the identification of LPV
systems via the LS-SVM method. In this paper, we propose
a novel reformulation of the LPV LS-SVM approach, which,
besides of the non-parametric estimation of the coefficient
functions, achieves data-driven model order selection via convex
optimization. The properties of the introduced approach are
illustrated via a simulation example.

I. INTRODUCTION

Since its introduction in [12], the Linear Parameter-
Varying (LPV) paradigm has become a promising tool for
modeling and control of many real systems (see, e.g, the
book [10]). Motivated by the need of accurate and low-
complexity LPV models for control design purposes, signif-
icant efforts have been spent in the last years for developing
efficient identification approaches for LPV systems. In the
current literature, the existing LPV identification approaches
have been mainly formulated in discrete time (DT) and they
are categorized by the used model structure. In particular,
identification schemes for LPV models in a state-space (SS)
representation can be found in [14], [5], [7], [21], while
identification of LPV input-output (IO) models is addressed
in [1], [17], [6], [3]. An overview of the available LPV
identification approaches can be found in the book [16],
where the relation between state-space and input-output
representation of LPV systems is also discussed.

The simplest representation of LPV systems considered in
the discrete-time IO identification framework is given by an
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autoregressive with exogenous input (ARX) structure, which
is defined, in the single-input single-output (SISO) case, as

y(t) =

na∑
i=1

aoi (p(t))y(t− i) +

nb∑
j=0

boj (p(t))u(t− j) + eo(t),

(1)
where t ∈ Z denotes the discrete time, eo(t) ∈ R is a
zero-mean white noise, u(t) ∈ R and y(t) ∈ R are the
measured input and output signals of the system, respectively,
and p(t) ∈ Rnp is the so-called scheduling variable, which
ranges in a compact set P ⊆ Rnp and, according to the
literature (see, e.g., [16]), it is assumed to be measurable. The
coefficients aoi and boj are functions of the scheduling signal
p and they describe the varying linear dynamical relation
between the input and the output signals. For clarity of
exposition, in this paper we assume that p(t) is scalar (i.e.,
np = 1) and the coefficients aoi (p(t)) and boj (p(t)) have
a static dependence on p, i.e., aoi (p(t)) and boj (p(t)) only
depend on the value of p at time t. The following model
structure is used to describe the LPV-ARX system (1):

y(t) =

na∑
i=1

ai(p(t))y(t−i)+
nb∑
j=0

bj(p(t))u(t−j)+e(t), (2)

where e(t) denotes the residual term. In the parametric
identification of LPV systems, the dependence of the co-
efficient functions ai and bj on the scheduling parameter p
is commonly parameterized in terms of a linear combination
of a finite number of a-priori chosen basis functions ψs :
P → R in the variable p(t). More specifically,

ai(p(t)) =

nα∑
s=1

ai,sψs(p(t)), i = 1, . . . , na, (3a)

bj(p(t)) =

nα∑
s=1

bj,sψs(p(t)), j = 0, . . . , nb, (3b)

where {ψs}nα
s=1 : P → R is a set of known basis functions

in the scheduling parameter p(t), while {ai,s ∈ R}nα
s=1 and

{bj,s ∈ R}nα
s=1 are unknown constant parameters.

The choice of the number and of the type of the basis
functions ψs is a critical issue in LPV identification. In fact,
in order to adequately describe the unknown dependence
of the coefficient functions ai and bj on the scheduling
variable p, and thus to avoid structural bias, a large set of
basis functions ψs is typically chosen. This leads to an over-
parametrization of ai and bj . As a consequence, the estimated
parameters {ai,s ∈R}nα

s=1 and {bj,s ∈R}nα
s=1 tend to have a

large variance. This problem is known as bias/variance trade-
off and emerges not only in selecting the basis set {ψs}nα

s=1,
but also in choosing the order of the LPV model, namely,



na, nb and a possible delay of the input channel. In fact, an
under-parameterized model structure with low values of na
and nb might not adequately explain the dynamic behavior
of the system, while an over-parameterized LPV model
described by a large set of coefficient functions ai(p(t))
and bj(p(t)) leads to a high variance on the final estimates
of ai(p(t)) and bj(p(t)). A possible way to overcome this
problem is offered by the sparse estimation methods, like
the Non-Negative Garrote (NNG) [2], the LASSO [15] and
the SPARSEVA [11]. The underlying idea of the sparse
estimators is to consider a model structure able to describe a
large set of possible dynamics. A penalization term (typically
the ℓ1-norm of the parameters) is then included in the
identification process in order to enforce sparsity of the
coefficient estimates {ai,s ∈ R}nα

s=1 and {bj,s ∈ R}nα
s=1.

In this way, the model “best suited” for the approximation
of the underlying system is chosen directly from the data.
Application of the SPARSEVA and the NNG approach for
sparse identification of LPV-ARX models is discussed in [18]
and [20], respectively.

Alternative approaches to parametric identification of
time-varying and LPV systems are presented in [8], [4]
and [19], where the identification problem is formulated in
the Least-Squares Support-Vector-Machine (LS-SVM) set-
ting [13]. More precisely, in [19] the underlying dependence
of the coefficient functions ai and bj on p is not a-priori pa-
rameterized. In this way, the problem of bias/variance trade-
off is partially overcome since the basis set {ψs}nα

s=1 does
not need to be a-priori specified and the dependence of the
coefficient functions ai and bj on p is directly reconstructed
from data. However, the problem of selecting the model
order (i.e., the parameters na, nb and a possible delay in
the input channel) is not yet addressed in the LPV LS-SVM
framework. This paper aims at improving the original LS-
SVM based LPV identification scheme introduced in [19],
by presenting a method for selecting the model order via
an LS-SVM based identification approach. This allows to
jointly reconstruct the scheduling-parameter dependencies
and the LPV model order directly from data, with no prior
parametrization of the p-dependent functions ai and bj .

The paper is organized as follows: the proposed approach
for LPV model order selection in the LS-SVM setting is
discussed in Section II, where a quadratic programming
problem is formulated to select the dynamical order of
the LPV model under no assumptions on the underlying
dependence of the coefficient functions ai and bj on p. A
simulation example is presented in Section III to demonstrate
the effectiveness of the method.

II. LPV MODEL ORDER SELECTION

An extension of the LPV LS-SVM approach, which is
capable of joint selection of the model order together with the
non-parametric estimation of the model coefficients ai(p(t))
and bj(p(t)), is presented in this section. The symbol Imn will
be adopted throughout the paper to denote the set of indexes
{n, n+ 1, . . . , m}.

A. Primal formulation

Consider the LPV model structure introduced in (2), which
is rewritten as

y(t) =

na∑
i=1

ai(p(t))xi(t) +

nb∑
j=0

bj(p(t))xj+na+1(t) + e(t),

(4)

where xi(t) denotes the i-th component of the nf = na +
nb + 1-dimensional vector x(t) defined as

x(t) = [y(t− 1) . . . y(t− na) u(t) . . . u(t− nb)]
⊤
.

Similar to the parametric case (see (3)), let us write the p-
dependent functions ai(p(t)) and bj(p(t)) in (4) as

ai(p(t)) = θ⊤i ϕi(p(t)) i = 1, . . . , na, (5a)

bj(p(t)) = θ⊤j+na+1ϕj+na+1(p(t)) j = 0, . . . , nb, (5b)

where each θ⊤i ∈ RnH is a vector of parameters and ϕi (with
i = 1, . . . , na+nb+1) is a nonlinear map from P to an nH-
dimensional space, commonly referred as the feature space.
Unlike in parametric identification of LPV models, neither
the maps ϕi nor the dimension nH of the vectors θ⊤i and
ϕi(p(t)) are a-priori specified. Potentially, θ⊤i and ϕi(p(t))
can be infinite-dimensional vectors (i.e, nH = ∞). Based on
the previously introduced notation, the LPV model (4) can
be written in the compact form

y(t) =

nf∑
i=1

θ⊤i ϕi(t)xi(t) + e(t), (6)

where ϕi(t) is used as shorthand notation to indicate
ϕi(p(t)). Based on a finite record of input, output and
scheduling parameter measurements, our aim is to enforce
sparsity in the estimate of the functions ai(p(t)) (with i =
1, . . . , na) and bj(p(t)) (with j = 0, . . . , nb). In this way,
the model structure of system (1) can be detected and then
used to estimate the nonzero functions ai(p(t)) and bj(p(t))
characterizing the model in (2). To this aim, let us grid the
set P into M points P = {mk}Mk=1. Such points will be
referred in the sequel as nodes of P. The idea underlying
the proposed method is based on the minimization of the
multicriteria objective function

J (θ, e) =
1

2

nf∑
i=1

θ⊤i θi+
λ

2

N∑
t=1

e2(t) + µ
∥∥∥[η1 . . . ηnf ]

⊤
∥∥∥
1
,

(7)

where λ and µ are positive constants (regularization param-
eters) and ηi denotes the maximum absolute value of the
function θ⊤i ϕi over the nodes P = {mk}Mk=1, i.e.,

ηi = max
k=1,...,M

∣∣θ⊤i ϕi(mk)
∣∣ . (8)

Note that three criteria are considered in the definition of
the objective function J (θ, e). More precisely, the term∑N

t=1 e
2(t) aims at minimizing the prediction error, while

the regularization term
∑nf

i=1 θ
⊤
i θi is added in J (θ, e) to

prevent overfitting. In fact, since the dimension nH of the



parameter vector θi is not specified and it can be potentially
infinite, penalizing the 2-norm of θi is essential to achieve
an accurate estimate of the functions ai(p(t)) and bj(p(t))
in terms of the bias/variance trade-off. The latter term∥∥ [η1 . . . ηnf ]

⊤ ∥∥
1

is introduced to enforce sparsity in the
estimate of the model. More specifically, the regularization
term

∥∥ [η1 . . . ηnf ]
⊤ ∥∥

1
in (7) aims at shrinking θ⊤i ϕi to the

zero function in order to minimize the number of non-zero
coefficient functions ai(p(t)) and bj(p(t)) characterizing the
chosen LPV model structure.

By introducing the slack variables r = {ri}nf
i=1, the

considered identification problem can be formulated in terms
of a quadratic programm:

min
θ,e,r

1

2

nf∑
i=1

θ⊤i θi +
λ

2

N∑
t=1

e2(t) + µ

nf∑
i=1

ri, (9a)

s.t. e(t) = y(t)−
nf∑
i=1

θ⊤i ϕi(t)xi(t), t ∈ IN1 , (9b)

− ri ≤ θ⊤i ϕi(mk) ≤ ri, i ∈ Inf
1 , k ∈ IM1 . (9c)

Note that the parameters θi minimizing problem (9) cannot
be computed since it would require an explicit representation
of the feature maps {ϕi(t)}nf

i=1. In order to estimate both the
parameters θi and the feature maps ϕi(t) together, the dual
formulation of (9) is considered.

B. Dual formulation

Define the Lagrangian L(θ, e, r, α, β+, β−) associated
with problem (9) as

L(θ,e,r,α,β+,β−)=
1

2

nf∑
i=1

θ⊤i θi +
λ

2

N∑
t=1

e2(t) + µ

nf∑
i=1

ri

−
N∑
t=1

αt

(
e(t)− y(t) +

nf∑
i=1

θ⊤i ϕi(t)xi(t)

)

−
nf∑
i=1

M∑
k=1

β+
i,k

(
ri − θ⊤i ϕi(mk)

)
−

nf∑
i=1

M∑
k=1

β−
i,k

(
ri + θ⊤i ϕi(mk)

)
, (10)

where α = {αt}Nt=1, β+ = {β+
i,k}

nf ,M
i=1,k=1, β− =

{β−
i,k}

nf ,M
i=1,k=1 are the Lagrangian multipliers associated with

the constraints defining the feasible set of problem (9).
Define the Lagrange dual function g : RMnf+N → R as
the minimum of L(θ, e, r, α, β+, β−) over (θ, e, r), i.e.,

g(α, β+, β−) = inf
θ,e,r

L(θ, e, r, α, β+, β−). (11)

Since L(θ, e, r, α, β+, β−) is a convex quadratic function
of (θ, e, r), the Lagrange dual function g(α, β+, β−) can
be computed from the (necessary and sufficient) optimality

conditions:

∂L
∂θi

= 0 →θi =
N∑
t=1

αtϕi(t)xi(t)+
M∑
k=1

(
β−
i,k−β

+
i,k

)
ϕi(mk),

(12a)
∂L
∂e(t)

= 0 →e(t) =
1

λ
αt, (12b)

∂L
∂ri

= 0 →µ =
M∑
k=1

(
β+
i,k + β−

i,k

)
, (12c)

where the conditions in (12a) and (12c) are need to be
satisfied for all i ∈ Inf

1 , while (12b) holds for all t ∈ IN1 .
From substitution of conditions (12) into the definition of the
Lagrangian L(θ, e, r, α, β+, β−), the following expression
of the Lagrange dual function is obtained:

g(α,β+,β−)=− 1

2λ
α⊤α+α⊤Y − 1

2

nf∑
i=1

[
α

β−
i −β

+
i

]⊤
Ωi

[
α

β−
i −β

+
i

]
(13)

with

β+
i =

[
β+
i,1 . . . β+

i,M

]⊤
, β−

i =
[
β−
i,1 . . . β−

i,M

]⊤
, (14)

and

Ωi =

[
Xi

(
Φ

(N)
i

)⊤
Φ

(N)
i Xi Xi

(
Φ

(N)
i

)⊤
Φ

(M)
i(

Φ
(M)
i

)⊤
Φ

(N)
i Xi

(
Φ

(M)
i

)⊤
Φ

(M)
i

]
. (15)

In (15), Xi is a diagonal matrix of size N whose diagonal
entries are xi(1), . . . , xi(N), while Φ

(N)
i , Φ(M)

i , β+
i and β−

i

are defined as

Φ
(N)
i =

[
ϕi(p(1)) ϕi(p(2)) . . . ϕi(p(N))

]
, (16a)

Φ
(M)
i =

[
ϕi(m1) ϕi(m2) . . . ϕi(mM )

]
, (16b)

Note that the obtained Lagrange dual function g(α,β+,β−)
is a concave function since the matrix Ωi is positive semidef-
inite. As a matter of fact, Ωi is defined by the inner product[

Xi

(
Φ

(N)
i

)⊤(
Φ

(M)
i

)⊤
][
Φ

(N)
i Xi Φ

(M)
i

]
.

The Lagrange dual problem associated with (9) is then given
by the convex optimization problem:

min
α,β+,β−

− g(α, β+, β−) (17a)

s.t. µ =
M∑
k=1

(
β+
i,k + β−

i,k

)
(17b)

β+
i,k, β

−
i,k ≥ 0, i ∈ Inf

1 , k ∈ IM1 . (17c)

Note that, since the primal problem (9) is a convex
quadratic problem with linear equality constraints, strong
duality holds for (9). This means that the solution of (9)
can be evaluated from its dual formulation. Specifically,
once the Lagrangian multipliers are computed by solving the
(convex) optimization (17), the parameters θi minimizing (9)
are obtained from the optimality conditions (12a). However,
since we started with the assumption that the feature maps ϕi



are a-priori unknown and their dimension nH is potentially
infinite, the parameters θi can not be explicitly computed
neither via (12a) nor via the solution of the primal problem
(9). On the other hand, thanks to the structure of the matrices
Ωi (eq. (15)) characterizing the Lagrange dual function
g(α,β+,β−) in (13), the dual problem (17) can be solved
without a prior specification of the feature maps Φ

(N)
i and

Φ
(M)
i , as discussed in the sequel.
Let us rewrite the matrix Ωi in the block form:

Ωi =

 Ω
(N,N)
i Ω

(N,M)
i(

Ω
(N,M)
i

)⊤
Ω

(M,M)
i

 , (18)

where the (j, k)-th entry of the matrices Ω(N,N)
i ,Ω

(N,M)
i and

Ω
(M,M)
i is given by[

Ω
(N,N)
i

]
j,k

=xi(j)ϕ
⊤
i (p(j))ϕi(p(k))︸ ︷︷ ︸

Ki(p(j),p(k))

xi(k), (19a)

[
Ω

(N,M)
i

]
j,k

=xi(j)ϕ
⊤
i (p(j))ϕi(mk)︸ ︷︷ ︸
Ki(p(j),mk)

, (19b)

[
Ω

(M,M)
i

]
j,k

=ϕ⊤i (mj)ϕi(mk)︸ ︷︷ ︸
Ki(mj ,mk)

. (19c)

In (19), Ki(�, �) is a positive definite kernel function Ki :
R×R → R satisfying the Mercer’s condition [9] and defining
the inner products ϕ⊤i (p(j))ϕi(p(k)), ϕ

⊤
i (p(j))ϕi(mk) and

ϕ⊤i (mj)ϕi(mk). Specification of the kernels instead of the
maps ϕi is called the kernel trick [13], which allows the
characterization of the Lagrange dual function g(α,β+,β−)
and consequently the computation of the solution of problem
(17) without explicitly defining the feature maps ϕi. Radial
basis functions (RBFs) are typically chosen as kernels, i.e.,

Ki(p(j), p(k)) =exp

(
− (p(j)− p(k))

2

σ2

)
, i ∈ Inf

1 , (20)

where σ > 0 is a hyper-parameter chosen by the user to
control the width of the RBF.

Once the Lagrangian multipliers α, β+, β− are computed
through (17), the coefficients functions ai(�) and bj(�) are
estimated from (5) and the optimality conditions (12a), i.e.,

ai(�) = θ⊤i ϕi(�) =
N∑
t=1

αtKi (p(t), �)xi(t)+

+

M∑
k=1

(
β−
i,k−β

+
i,k

)
Ki(mk, �), i∈Ina

1 ,

bj(�) = θ⊤j ϕj(�) =
N∑
t=1

αtKj(p(t),�)xj(t)+

+

M∑
k=1

(
β−
j,k−β

+
j,k

)
Kj(mk,�), j∈Inf

na+1,

Note that only the combined estimate θ⊤i ϕi(�) can be com-
puted by means of the defined kernel function Ki. On the
other hand, the estimate of the parameter vectors θi is never
accessible separately.

III. SIMULATION EXAMPLE

The ability of the proposed approach for joint selection of
the model order together with the non-parametric estimation
of the model coefficients ai(p(t)) and bj(p(t)) is shown in
this section by means of an extensive Monte-Carlo study
based on a simulation example. The considered LPV data-
generating system is described by the difference equation

y(t) = ao1(p(t))y(t− 1) + ao2(p(t))y(t− 2)+
+bo5(p(t))u(t− 5) + eo(t),

(21)

where eo(t) is a white noise with Gaussian distribution
N (0, σ2

e ) and standard deviation σe = 0.1. The scheduling-
dependent coefficients ao1(p(t)), a

o
2(p(t)), and bo5(p(t)) are

described by the nonlinear functions:

ao1(p(t)) =

 −0.5, if p(t) > 0.5;
−p(t), if − 0.5 ≤ p(t) ≤ 0.5;

0.5, if p(t) < −0.5;
(22a)

ao2(p(t)) = sin(2πp(t)), (22b)

bo5(p(t)) =p
3(t). (22c)

For estimation purposes, a data set DN =
{u(t), y(t), p(t)}Nt=1 with N = 500 is gathered from
the system with u and p being white-noise processes,
independent of other, with uniform distribution U(−1, 1).
To analyze the statistical properties of the estimation, a
Monte-Carlo study of 100 runs is performed. At each
run, new realizations of u, p and eo are considered to
generate the data set for estimation. The average of the
signal-to-noise ratio (SNR) over the generated data is equal
to 12 dB, where the SNR is defined, at each run, as

10 log10

(∑N
t=1 w

2
o(t)∑N

t=1 e
2
o(t)

)
, (23)

with wo(t) denoting the noise-free system output.
The following over-parameterized LPV model is used to

describe the data-generating system:

y(t) =

na∑
i=1

ai(p(t))y(t− i) +

nb∑
j=0

bj(p(t))u(t− j) + e(t),

(24)

with na = nb = 10. The dependence of ai(p(t)) and bj(p(t))
on p is not specified. First, the coefficient functions ai(p(t))
and bj(p(t)) are estimated through the LPV LS-SVM ap-
proach proposed in [19], corresponding to the minimization
of the objective function J (θ, e) in (7) for µ = 0. Radial
basis functions are used as kernels. The values of the hyper-
parameters λ (in (7)) and σ (characterizing the RBF Ki in
(20)) are chosen via cross-validation based optimization, that
is by maximizing (with a grid search) the best fit rate (BFR)
w.r.t. a validation data set of length NV = 200, where the
BFR is defined as

BFR = max

{
0, 1− ∥y(t)− ŷ(t)∥2

∥y(t)− y∥2

}
, (25)

with ŷ(t) being the simulated model output and y is the
sample mean of the output over the validation data set. The



TABLE I
AVERAGE AND STANDARD DEVIATION (OVER THE 100 MONTE-CARLO RUNS) OF THE MAXIMUM ABSOLUTE VALUE ai OF THE COEFFICIENTS

FUNCTIONS ai(p(t)) ESTIMATED BY MEANS OF THE LS-SVM AND THE REGULARIZED LS-SVM (RLS-SVM) APPROACH.
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

True value 0.5 1 0 0 0 0 0 0 0 0
Mean (LS-SVM) 8.3·10−1 1.1 4.4·10−1 4.4·10−1 4.8·10−1 4.6·10−1 4.7·10−1 4.6·10−1 4.8·10−1 3.9·10−1

Mean (RLS-SVM) 3.2·10−1 6.3·10−1 2.7·10−4 3.8·10−4 1.1·10−4 9.3·10−5 3.4·10−5 7.4·10−4 3.1·10−4 6.2·10−5

std (LS-SVM) 2.1·10−1 1.0·10−1 2.1·10−1 2.1·10−1 2.5·10−1 2.2·10−1 2.3·10−1 2.1·10−1 2.1·10−1 1.9·10−1

std (RLS-SVM) 1.2·10−1 1.4·10−1 8.6·10−5 1.1·10−4 5.2·10−5 3.8·10−5 7.3·10−6 2.1·10−4 1.0·10−4 1.1·10−5

TABLE II
AVERAGE AND STANDARD DEVIATION (OVER THE 100 MONTE-CARLO RUNS) OF THE MAXIMUM ABSOLUTE VALUE bj OF THE COEFFICIENTS

FUNCTIONS bj(p(t)) ESTIMATED BY MEANS OF THE LS-SVM AND THE REGULARIZED LS-SVM (RLS-SVM) APPROACH.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
True value 0 0 0 0 0 1 0 0 0 0 0

Mean (LS-SVM) 3.3·10−1 3.0·10−1 3.5·10−1 3.2·10−1 3.3·10−1 1.06 2.8·10−1 4.6·10−1 4.8·10−1 4.1·10−1 4.2·10−1

Mean (RLS-SVM) 7.4·10−5 3.4·10−5 1.4·10−4 2.5·10−4 5.5·10−4 3.5·10−1 6.1·10−5 4.8·10−4 8.2·10−5 2.8·10−4 8.7·10−5

std (LS-SVM) 1.7·10−1 1.3·10−1 2.0·10−1 2.1·10−1 1.6·10−1 2.1·10−1 1.5·10−1 2.1·10−1 2.1·10−1 1.6·10−1 1.5·10−1

std (RLS-SVM) 1.8·10−5 8.3·10−6 1.4·10−4 7.7·10−5 2.9·10−5 1.8·10−1 2.4·10−5 1.0·10−4 5.2·10−5 9.9·10−5 3.9·10−5

obtained values of λ and σ have been: λ = 600 and σ = 0.4.
The estimates of the functions a1, a2 and b5 are depicted
in Fig. 1(a), Fig. 2(a) and Fig. 3(a), where the mean of the
estimated functions over the 100 Monte-Carlo runs is plotted
together with their standard deviation.

The regularized LS-SVM approach described in Section II
is now applied to select the order of the considered LPV
model. The interval P = [−1 1] is gridded into 7 nodes
P = {mk}7k=1 = {−1, −0.66, −0.33, 0, 0.33, 0.66, 1}.
In order to provide a fair comparison w.r.t. the original LS-
SVM approach, the values of λ and σ optimized for the
LS-SVM method (i.e., λ = 600 and σ = 0.4), are used.
The regularization parameter µ is computed by means of an
exhaustive search aiming at the maximization of the BFR
w.r.t. the validation set. The obtained value of µ has been
350.

The maximum absolute value ai and bj of the coefficients
functions ai(p(t)) and bj(p(t)) estimated via the original
LS-SVM approach and its regularized version is reported
in Table I and Table II, which show the average and the
standard deviation of ai and bj over the 100 Monte-Carlo
runs. It is important to highlight that ai and bj are the
maximum of |ai(�)| and |bj(�)| over the whole interval P =
[−1 1], and not only over the chosen nodes P . Results
in Table I and Table II show that the regularized LS-SVM
approach correctly detects the LPV model structure. In fact,
the only coefficient functions with an (average) maximum
absolute value greater than a threshold of 10−3 are a1, a2
and b5, which are exactly the nonzero coefficient functions
defining the considered data-generating system in (21). Note
that, because of the ℓ1-penalty term µ

∥∥ [η1 . . . ηnf ]
⊤ ∥∥

1
introduced in (9) to shrink the coefficient functions ai and
bj to zero, the estimates of a1, a2 and b5 are biased.
In fact, the estimated maximum values of |a1(�)|, |a2(�)|
and |b5(�)| over the interval P are 0.32, 0.63 and 0.35,
respectively, while the corresponding true values are 0.5, 1
and 1. Nevertheless, it is important to point out that the
nonzero coefficient functions should be estimated in two
stages. First, the proposed regularized LS-SVM approach
should be used to select the order of the LPV model. Then,

the zero coefficient functions should be discarded in the
description of the LPV model (24) and a lower-complexity
LPV model should be re-identified without considering the
regularization term µ

∥∥ [η1 . . . ηnf ]
⊤ ∥∥

1
. According to this

two-stage approach, the nonzero coefficient functions a1, a2
and b5 are then re-estimated. The obtained results are shown
in Fig.1(b), Fig. 2(b) and Fig. 3(b), where the mean estimated
functions a1, a2 and b5 together with the standard deviation
intervals over the 100 Monte-Carlo runs are plotted. Results
in Fig.1, Fig. 2 and Fig. 3 show that, as expected, detecting
the LPV model order is beneficial, in terms of variance
reduction, in the final estimate of the coefficient functions.

IV. CONCLUSIONS

This paper has addressed the problem of identifying LPV-
ARX models in the LS-SVM framework, where the underly-
ing dependence of the coefficient functions on the scheduling
parameter is not a-priori parameterized. The method dis-
cussed in the paper provides a systematic way to estimate the
dynamical order of LPV-ARX models by using only a set of
measured data generated by the plant, and without exploiting
any a-priori information on the underlying behavior of the
true LPV system. The reported simulation has shown the
effectiveness of the proposed approach to detect the LPV
model order and thus to provide a lower-variance estimate
(w.r.t. to the original LPV LS-SVM identification method
introduced in [19]) of the coefficient functions describing
the LPV model.
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[17] R. Tóth, P. S. C. Heuberger, and P. M. J. Van den Hof. Asymptotically
optimal orthonormal basis functions for LPV system identification.
Automatica, 45(6):1359–1370, 2010.
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