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Abstract

In this paper we present a procedure for the evaluation of bounds on the parameters of Hammerstein systems, from output
measurements affected by bounded errors. The identification problem is formulated in terms of polynomial optimization, and
relaxation techniques, based on linear matrix inequalities, are proposed to evaluate parameter bounds by means of convex
optimization. The structured sparsity of the formulated identification problem is exploited to reduce the computational
complexity of the convex relaxed problem. Analysis of convergence properties and computational complexity is reported.
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1 Introduction

Identification of block-structured nonlinear systems,
modeled by interconnected memoryless nonlinear gains
and linear dynamic subsystems, has attracted the at-
tention of many authors in the last decades. Early works
are surveyed in the papers (Billings, 1980), (Haber and
Unbehauen, 1990) while an up-to-date collection of re-
sults and algorithms can be found in the recent book
(Bai and Giri, 2010). These models are successfully
employed in many engineering fields, because they can
embed prior information on the process structure like,
e.g., the presence of nonlinearity either in the actuator
or in the measurement equipment. The configuration we
are dealing with in this paper, commonly referred to as
a Hammerstein model, is shown in Fig. 1; it consists of
a static nonlinear part N followed by a linear dynamic
system L. The identification of such a model relies solely
on input-output measurements, while the inner signal
zt, i.e. the output of the nonlinear block, is not assumed
to be available. A number of algorithms addressing such
a problem can be found in the literature. Among others

⋆ § Corresponding author V. Cerone. Tel. +39-(0)11-
5647064 Fax +39-(0)11-5647099
♯ This research was developed while Dr. D. Piga was a Ph.D
student at the Politecnico di Torino.

we mention the over-parametrization method (Chang
and Luus, 1971; Hsia, 1976; Bai, 1998), the subspace
identification (Verhaegen and Westwick, 1996), the
blind approach (Bai and Fu, 2002), the iterative method
(Narenda and Gallman, 1966), the nonparametric ap-
proach (Greblicki and Pawlak, 1989; Krzyżak, 1993), the
frequency domain method (Krzyżak, 1996) and the al-
gorithms based on the Bussgang’s theorem (Hunter and
Korenberg, 1986). As for Hammerstein system identi-
fication in set-membership context, in (Sznaier, 2009)
it is shown that the problem is NP-hard in the size
of the experimental data sequence, pointing out the
need of computationally tractable relaxations. In this
paper we consider the identification of single-input
single-output (SISO) Hammerstein models when the
nonlinear block can be modeled by a linear combination
of a finite and known number of nonlinear static func-
tions, while the linear dynamic part is described by an
IIR output error model with bounded output measure-
ment uncertainties. To the authors’ best knowledge,
the only contribution in the literature addressing such
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Fig. 1. Hammerstein system.
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a problem is a previous work by some of the authors
(Cerone and Regruto, 2003), where a two-stage identi-
fication procedure is presented. The main drawback of
the procedure proposed in (Cerone and Regruto, 2003)
is that it requires two different experiments where two
specific input signals are exploited. In this paper an
LMI-relaxation-based one-stage algorithm is presented
to compute bounds on parameters of both the nonlin-
ear and the linear subsystems. The proposed solution
is an improvement over the one presented in (Cerone
and Regruto, 2003) since: (i) the new approach pro-
vides parameter bounds of both nonlinear and linear
subsystems by performing a single dynamic experiment
without constraints on the class of input signals; (ii) the
computed parameter bounds are guaranteed to mono-
tonically converge to the exact ones as the order of
relaxation increases, while the parameter uncertainty
intervals computed in (Cerone and Regruto, 2003) are
in general not tight and their degree of conservativeness
is not systematically evaluated. The paper is organized
as follows. Main results on relaxation of polynomial
optimization problems are reviewed in Section 2 for
self-consistency of the paper. Section 3 is devoted to
the problem formulation. In Section 4 we show that
computation of tight parameter bounds requires the so-
lution to nonconvex polynomial optimization problems.
In Section 5 we show that the formulated identification
problem can be efficiently solved by means of LMI-
relaxation techniques. The effectiveness of the presented
identification procedure is shown in Section 6 through a
simulation example.

2 Notation and background results on con-
strained polynomial optimization

Preliminary results on the relaxation of sparse poly-
nomial optimization problems proposed by Lasserre
in (Lasserre, 2006), in the spirit of the work (Waki et
al., 2006), are reviewed here.

2.1 Moment matrix and localizing matrixes

Let us consider the constrained optimization problem

f⋆ = min
x∈S

f(x), (1)

where S ⊆ Rn is a semialgebraic set defined as S =
{x ∈ Rn : gs(x) ≥ 0, s = 1, . . . ,Ξ} with gs a real-valued
polynomial in the variable x = [x1, x2, . . . , xn]

T ∈ Rn

of degree ds = deg(gs), and f ∈ Pn
m[x], with Pn

m[x]
denoting the space of real-valued polynomials with de-
gree at most m in the variable x ∈ Rn. By defining
the set An

m = {α ∈ Nn
0 :
∑n

i αi ≤ m}, where αi is the
i-th component of the vector α and Nn

0 denotes the
set of n-dimensional nonnegative integers vectors, the
canonical basis hnm =

[
1 x1 x2 · · · xn x21 x1x2 · · · x1xn

x22 x2x3 · · · x2n · · · x31 · · ·xmn
]T

of the space Pn
m[x]

can be written as hnm = {xα}α∈An
m
, where xα =

xα1
1 xα2

2 · · ·xαn
n .

Let p = {pα}α∈An
m

be the sequence of moments (up
to order m) of a probability measure µ on Rn, i.e.
pα =

∫
xαµ(dx) and I0 = {1, . . . , n} be the union

of a collection of R sets Ir ⊂ {1, . . . , n}, that is

{1, . . . , n} =
R∪

r=1

Ir. Furthermore, let us partition the

index set S0 = {1, . . . ,Ξ} into R disjoint sets Sr,
r = 1, . . . , R. Let hnr

m (Ir) be the canonical basis of
the polynomial Pnr

m [x(Ir)], where nr is the cardinality
of the set Ir and x(Ir) = {xi|i ∈ Ir}. The truncated
moment matrix Mm(p, Ir) associated with the mo-
ments sequence p and the variables x(Ir) is defined
as Mm(p, Ir) =

∫
hnr
m (Ir)hnr

m (Ir)Tµ(dx). By denoting
with pβ(i,j)(Ir) the entry (i, j) of the matrix Mm(p, Ir),
the localizing matrix Mm(gsp, Ir) associated with the
moments sequence p and the polynomial gs(x) is de-
fined as Mm(gsp, Ir)(i, j) =

∑
α∈Anr

m
gsαp{β(i,j)(Ir)+α},

where gsα is the coefficient of the term xα in the poly-
nomial gs(x) and Mm(gsp, Ir)(i, j) denotes the entry
(i, j) of the matrix Mm(gsp, Ir). The reader is referred
to (Lasserre, 2006) for an illustrative example about
construction of moment and localizing matrixes.

2.2 Sparse LMI-relaxation for polynomial optimization
problems

For a given integer δ such that 2δ ≥ max{m,max
s
ds},

let us consider the SDP problem

fδ = min
p

∑
α∈An

2δ

fαpα

s.t. Mδ(p, Ir) ≽ 0, Mδ−d̃s
(gsp, Ir) ≽ 0,

s ∈ Sr, r = 1, . . . , R

where d̃s is the smallest integer greater than or equal to
ds

2 and f = {fα}α∈An
2δ

is the sequence of coefficients of

the polynomial f in the canonical basis hn2δ = {xα}α∈An
2δ

of the space Pn
2δ[x], i.e. f(x) =

∑
α∈An

2δ
fαx

α.

Proposition 1 If (i) constraints gs(x) ≥ 0 defining the
feasible set S in problem (1) depend only on the variables
x(Ir) = {xi|i ∈ Ir} for all r = 1, . . . , R and for all
s ∈ Sr and (ii) the objective function f can be written

as f =
∑R

r=1 fr, with fr ∈ Pnr
m [x(Ir)], for all r =

1, . . . , R, then fδ ≤ fδ+1 ≤ f∗. Furthermore, if (iii)
there exists a finite value G > 0 such that ∥x∥∞ ≤ G
for all x ∈ S and (iv) for all r = 1, . . . , R − 1, Ir+1 is

such that: Ir+1∩
r∪

j=1

Ij ⊆ Iq, for some q ≤ r, then then

lim
δ→∞

fδ = f∗.
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3 Problem statement

Consider the SISO discrete-timeHammersteinmodel de-
picted in Fig. 1. The nonlinear block maps the input sig-
nal ut into the unmeasurable inner variable zt through
the nonlinear function

zt =

nγ∑
k=1

γkψk(ut), t = 1, . . . , N ; (2)

where (ψ1,.....,ψnγ ) is a known basis of nonlinear func-
tions and N is the length of the data sequence. The lin-
ear dynamic part L is modeled by a stable discrete-time
system which transforms zt into the noise-free output wt

according to the linear difference equation

wt = −
na∑
i=1

aiwt−i +

nb∑
j=0

bjzt−j , (3)

with na and nb known constant. The measurement yt of
the noise-free output signal wt is corrupted by additive
noise ηt, i.e.

yt = wt + ηt, (4)

where ηt is assumed to range within given bounds ∆ηt,
i.e.

| ηt |≤ ∆ηt. (5)

The unknown system parameters are collected into

the vectors γ =
[
γ1, γ2, . . . , γnγ

]T ∈ Rnγ and θ =

[a1, . . . , ana, b0, . . . , bnb]
T ∈ Rnθ , where nθ = na+nb+1.

It must be pointed out that the parametrization of the
structure of Fig. 1 is not unique. In order to get a unique
parametrization, we assume, without loss of generality,
that the steady-state gain of the linear part is equal to
one, i.e.

1 +

na∑
i=1

ai =

nb∑
j=0

bj . (6)

In this paper we address the problem of deriving bounds
on parameters γ and θ consistently with given measure-
ments, error bounds and assumed model structure.

4 Evaluation of tight parameter uncertainty in-
tervals

In this section we show how evaluation of parameter
uncertainty intervals can be reduced to the computation
of global optimum solutions to a set of semialgebraic
optimization problems.
The mapping between the input signal ut and the noise-
free output wt for the Hammerstein model considered in
the paper can be obtained by substituting (2) into (3),
leading to the relation

wt = −
na∑
i=1

aiwt−i +

nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j). (7)

Thus, from (4) and (7), the mapping between input sig-
nal ut and output measurement yt is given by

yt = −
na∑
i=1

ai(yt−i − ηt−i) +
nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt.

(8)
Equations (5), (6) and (8) provide the following im-
plicit description of set Dγθη of all Hammerstein sys-
tem parameters (γ, θ) and noise samples ηt consistent
with given measurement data sequence, assumed model
structure and error bounds, i.e.

Dγθη =
{
(γ, θ, η) ∈ Rnγ+nθ+N :

yt = −
na∑
i=1

ai(yt−i − ηt−i) +

nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt,

|ηr| ≤ ∆ηr, 1 +

na∑
i=1

ai =

nb∑
j=0

bj ,

t = na+ 1, . . . , N ; r = 1, . . . , N
}
,

which can be rewritten as a set of nonnegative polyno-
mial constraints:

Dγθη =
{
(γ, θ, η) ∈ Rnγ+nθ+N :

gt(γ, θ, η) = −
na∑
i=1

ai(yt−i − ηt−i)+

+
nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j) + ηt − yt ≥ 0,

gt+N (γ, θ, η) =
na∑
i=1

ai(yt−i + ηt−i)+

−
nb∑
j=0

nγ∑
k=1

bjγkψk(ut−j)− ηt + yt ≥ 0,

gr+2N (γ, θ, η) = ∆ηr − ηr ≥ 0,

gr+3N (γ, θ, η) = ∆ηr + ηr ≥ 0,

(9)

g4N+1(γ, θ, η) =
na∑
i=1

ai − 1−
nb∑
j=0

bj ≥ 0,

g4N+2(γ, θ, η) = −
na∑
i=1

ai + 1 +
nb∑
j=0

bj ≥ 0,

t = na+ 1, . . . , N ; r = 1, . . . , N
}
,

(10)

with η = [η1, . . . , ηN ]
T
. Therefore, for k = 1, . . . , nγ

and j = 1, . . . , nθ, bounds on parameters γk and θj can
be computed by solving the constrained optimization
problems

γ
k
= min

(γ,θ,η)∈Dγθη

γk, γk = max
(γ,θ,η)∈Dγθη

γk, (11)

3



θj = min
(γ,θ,η)∈Dγθη

θj , θj = max
(γ,θ,η)∈Dγθη

θj . (12)

Uncertainty intervals on γk and θj are defined

PUIγk
=
[
γ
k
; γk

]
, PUIθj =

[
θj ; θj

]
. (13)

Remark 1 Intervals PUIγk
and PUIθj in (13) are re-

ferred to as tight uncertainty intervals, in the sense that
they are, by definition, the tightest intervals on the pa-
rameters γk and θj consistent with measurement data,

model structure and error bounds. γ
k
, γk, θj and θj are

referred to as tight parameter bounds. �

Assumption 1 In order to guarantee well-posedness of
identification problems (11) and (12), we assume that
γ
k
, γk, θj and θj are bounded. �

Property 1 The set Dγθη described in (9) is: (i)
bounded; (ii) basic closed semialgebraic (in particular,
the set is described by 2(N − na) bilinear inequalities
and 2N + 2 linear inequalities); (iii) compact.

Proof Because of Assumption 1 and eq. (5), Dγθη is a
bounded set. Besides, constraints gt ≥ 0 and gt+N ≥ 0
(with t = na+1, . . . , N) definingDγθη in (9) are bilinear
inequalities because of the product between the variable
ai and the noise ηt−i as well as the product between un-
known parameters bj and γk, while gr+2N ≥ 0, gr+3N ≥
0 (with r = 1, . . . , N), g4N+1 ≥ 0 and g4N+2 ≥ 0 are
linear constraints. Thus, Dγθη is a basic closed semial-
gebraic set, i.e., it is defined as the set of solutions of
a finite system of nonnegative polynomial inequalities.
Dγθη is compact since it is closed and bounded. �

Because of bilinear constraints gt(γ, θ, η) ≥ 0 and
gt+N (γ, θ, η) ≥ 0, Dγθη is, in general, a nonconvex set.
Therefore, problems (11) and (12) can not be solved by
means of standard optimization tools (gradient method,
Newton method, etc.) since such tools can trap in local
minima, which may prevent the computed uncertainty
intervals from containing the true system parameters,
key requirement in the context of set-membership iden-
tification. A possible solution to overcome such a prob-
lem is to relax identification problems (11) and (12) into
convex optimization problems in order to numerically
compute lower bounds of γ

k
and θj as well as upper

bounds of γk and θj .

5 Evaluation of parameter bounds through con-
vex relaxation techniques

Problems (11) and (12) are polynomial optimization
problems since the functional is linear and the feasible set

Dγθη is semialgebraic. Therefore, (11) and (12) can be re-
laxed through a direct implementation of the dense LMI-
relaxation technique proposed by Lasserre in (Lasserre,
2001). Such a procedure is based on the idea of relaxing
a polynomial optimization problem into a sequence of
semidefinite programming (SDP) problems with increas-
ing dimension, whose optima are guaranteed to converge
monotonically to the global optimum of the original
polynomial problem. In particular, for a given relaxation
order δ ≥ 1, application of the dense LMI-relaxation ap-
proach to identification problems (11) and (12), leads
to semidefinite programming problems where the num-

ber of optimization variables is

(
nγ+nθ+N +2δ

2δ

)
and

the feasible region is described by a moment matrix of

size

(
nγ+nθ+N+δ

δ

)
and 2(N − na) + 2N + 2 localiz-

ing matrixes, each one of size

(
nγ+nθ+N+δ−1

δ − 1

)
. Un-

fortunately, because of high computational burden and
memory storage requirements, a direct use of the dense
LMI-relaxation technique is limited to Hammerstein sys-
tem identification problems with a small number N of
measurements (roughly, N not greater than 5). In order
to deal with identification problems with a larger num-
ber of measurements, the peculiar structured sparsity of
identification problems (11) and (12) has been analyzed
to apply the sparse LMI-relaxation approach discussed
in Section 2.2. The inherent structured sparsity of prob-
lems (11) and (12) is highlighted by the following prop-
erty.

Property 2 Problems (11) (resp. (12)) enjoy the fol-
lowing features: (i) the objective function depends only
on the parameter γk (resp. θj); (ii) bilinear constraints
gt ≥ 0 and gt+N ≥ 0 defining the feasible set Dγθη de-
pend only on Hammerstein system parameters γ and
θ and noise samples ηt−i, with i = 0, 1, . . . , na; linear
constraints gr+2N ≥ 0 and gr+3N ≥ 0 depend only on
the noise variable ηr; linear constraints g4N+1 ≥ 0 and
g4N+2 ≥ 0 depend only on linear block parameters θ. �

Thanks to the inherent structured sparsity of identifi-
cation problems (11) and (12) described in Property 2,
sparse SDP-relaxed problems for (11) and (12) can be
formulated as described in the following.
LetX ∈ Rnγ+nθ+N be the collection of the optimization
variables for identification problems (11) and (12), i.e.

X = [γT, θT, ηT]
T
and Xi be the i-th component of the

vector X. In such a way, the first nγ components of X
are the nonlinear block parameters γ, components from
position nγ + 1 to nγ + nθ are the linear block param-
eters θ, while components from position nγ + nθ + 1 to
nγ + nθ + N are the noise variables η1, . . . , ηN . Let us
define the index sets Ir ⊂ {1, 2, . . . , nγ + nθ +N} and
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Sr ⊂ {na+ 1, . . . , N,N + na+ 1, . . . , 4N + 2} as

Ir = {1, 2, . . . , nγ + nθ,

nγ+nθ+r, nγ+nθ +r+1, . . . , nγ+nθ+r+na}
for r = 1, . . . , N − na

(14)

S1 = {na+ 1, N + na+ 1,

2N + 1,2N + 2,. . . ,2N + na+ 1,

3N + 1,3N + 2,. . . ,3N + na+ 1,4N + 1,4N + 2} ,
(15)

Sr = {na+ r,N + na+ r, 2N + na+ r, 3N + na+ r} ,
for r = 2, . . . , N − na.

(16)

The index sets Ir and Sr are constructed on the basis
of the sparse structure of identification problems (11)
and (12) highlighted by Property 2. More precisely, the
sets Ir and Sr are defined such that, for all s ∈ Sr, all
polynomial constraints gs ≥ 0 in the definition of Dγθη

depend only on variables Xi, with i ∈ Ir.
For a given relaxation order δ ≥ 1, application of the
sparse LMI-relaxation approach to problems (11) and
(12) leads to the following SDP problems:

γδ
k
= min

p∈Dδ
γθη

∑
α∈Anγ+nθ+N

2δ

Γkαpα, γδk = max
p∈Dδ

γθη

∑
α∈Anγ+nθ+N

2δ

Γkαpα,

(17)

θδj = min
p∈Dδ

γθη

∑
α∈Anγ+nθ+N

2δ

Θjαpα, θ
δ

j = max
p∈Dδ

γθη

∑
α∈Anγ+nθ+N

2δ

Θjαpα,

(18)
where Γk = {Γkα}α∈Anγ+nθ+N

2δ

andΘj = {Θjα}α∈Anγ+nθ+N

2δ

are, respectively, the vectors of the coefficients of γk and
θj in the canonical basis of polynomials of degree 2δ in
the variables X. The feasible region Dδ

γθη of problems

(17) and (18) is a convex set defined as

Dδ
γθη = {p : Mδ(p, Ir) ≽ 0, Mδ−1(gsp, Ir) ≽ 0,

r = 1, . . . , N − na, s ∈ Sr } ,
(19)

where Mδ(p, Ir) is the moment matrix of order δ asso-
ciated with variables X(Ir) andMδ−1(gsp, Ir) is the lo-
calizing matrix associated with variables X(Ir) taking
into account the constraint gs ≥ 0 defining the original
semialgebraic feasible region Dγθη.

Property 3 For a given relaxation order δ ≥ 1, let us
define the δ-relaxed uncertainty intervals on the nonlin-

ear block parameters as PUIδγk
=
[
γδ
k
; γδk

]
. For all k =

1, . . . , nγ , intervals PUI
δ
γk

satisfy the following proper-
ties.

P 3.1 Guaranteed relaxed uncertainty intervals.
For any δ ≥ 1, the interval PUIδγk

is guaranteed to con-

tain the true parameter γ0k, i.e. γ
0
k ∈ PUIδγk

.

P 3.2 Increasing accuracy in relaxed uncertainty
intervals evaluation.
For any δ ≥ 1, the interval PUIδγk

becomes tighter as the

relaxation order δ increases, that is PUIδ+1
γk

⊆ PUIδγk
.

P 3.3 Convergence to tight uncertainty intervals.
The interval PUIδγk

converges to the tight interval

PUIγk
as δ goes to infinity, that is lim

δ→∞
γδ
k

= γ
k
,

lim
δ→∞

γδk = γk.

Proof Index sets Ir and Sr defined in (14) and (16) were
carefully constructed in such a way that the assumptions
of Proposition 1 are satisfied. Furthermore, from condi-
tions (5) and Assumption 1, ∥X∥∞ is bounded. There-
fore, by applying the first part of Proposition 1 to iden-
tification problems (11) and (12) and to corresponding
SDP-relaxed problems (17) and (18) we get:

γδ
k
≤ γδ+1

k
≤ γ

k
; γδk ≥ γδ+1

k ≥ γk. (20)

Then, from the definition of the intervals PUIγk
and

PUIδγk
and conditions (20), we get:

γ0k ∈ PUIγk
⊆ PUIδ+1

γk
⊆ PUIδγk

, (21)

as stated in Properties P. 3.1 and P. 3.2. Besides, from
the second part of Proposition 1, convergence condi-
tions given by Property P. 3.3 follow. �
Results similar to Property 3 hold for δ-relaxed in-
tervals on the linear block parameters, defined as

PUIδθj =
[
θδj ; θ

δ

j

]
. As to the computational complexity,

the evaluation of intervals PUIδγk
and PUIδθj requires

the solution to SDP problems (17) and (18), whose size
is described by the following property.

Property 4 Computational complexity of SDP-
problems (17) and (18)
Optimization problems (17) and (18) enjoy the follow-
ing features:

(i) The number of free decision variables p is

(N−na)
(

nγ+nθ+na+1+2δ

2δ

)
− (N −na−1)

(
nγ+nθ+na+ 2δ

2δ

)
(ii) The feasible region Dδ

γθη is described by N−na mo-

mentmatrixes, each one of size

(
nγ + nθ + na+ 1 + δ

δ

)
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and 2(N − na)+2N+2 localizing matrixes, each one

of size

(
nγ + nθ + na+ δ

δ − 1

)
. �

Due to lack of space, the reader is referred to the techni-
cal report (Cerone et al., 2011) for the proof of Property
4.

6 A simulation example

In this section we show the effectiveness of the pre-
sented parameter bounding procedure through a nu-
merical example. The numerical computation is carried
out on a single-thread 2.40-GHz Intel Pentium IV with
3 GB of RAM. The nonlinear block of the Hammer-
stein system considered here is modeled by the polyno-
mial function zt = 0.3ut + 0.4u2t − 0.9u3t , thus the true

nonlinear parameter vector is γ0 =
[
γ01 , γ

0
2 , γ

0
3

]T
=

[0.3, 0.4, 0.95]
T
. The linear dynamic part is described by

(3) with true parameter vector θ0 =
[
a01, a

0
2, b

0
1, b

0
2

]T
=

[0.95, 0.85, 1.3, 1.5]
T
. Parameter bounds are evaluated

for three simulated data sets with different lengthN , i.e.
N = 50, N = 250 and N = 750. The system is excited
by a random input sequence uniformly distributed be-
tween [−2, +2]. The noise-free output wt is corrupted
by a random additive noise, uniformly distributed be-
tween [−∆ηt, +∆ηt] and the chosen error bounds ∆ηt
are such that the signal to noise ratio SNRw on the

output, defined as SNRw = 10 log

{
N∑
t=1

w2
t

/
N∑
t=1

η2t

}
,

is 27 db. Bounds on the parameters are evaluated by
solving (17) and (18) for a relaxation order δ = 2. The
Matlab package SparsePOP (Waki et al., 2008) has been
used to convert the original identification problems (11)
and (12) into their corresponding LMI relaxed problems
(17) and (18), which are numerically solved by the SDP
solver SeDuMi. In the case of identification of the Ham-
merstein system considered in this example, the com-
plexity of the SDP-problems (17) and (18), in terms of
number of decision variables, number and size of the mo-
ment matrixes and localizing matrixes defining the fea-
sible region, is reported in Table 1. In the same table
we also report the size of the SDP-problems, in terms
of number of variables and constraints, that would be
obtained when relaxing identification problems (11) and
(12) through a direct application of the dense LMI-
relaxation approach in (Lasserre, 2001), without taking
into account the structured sparsity of such identifica-
tion problems. Results in Table 1 show that a significant
computational burden reduction is obtained by exploit-
ing sparsity of problems (11) and (12). For instance, in
the case N = 750, the number of optimization variables
in (17) and (18) is 214,643, while the feasible region is
defined by 748 moment matrixes of size 66 and 2, 998
localizing matrixes of size 11. On the other hand, if the

Table 2
Nonlinear block. Parameter central estimates (γc

k), param-
eter bounds (γδ

k
, γδ

k) for N = 50, N = 250, N = 750 and

δ = 2
N Parameter True γδ

k
γc
k γδ

k

Value

50 γ1 0.300 0.127 0.298 0.469
γ2 0.400 0.214 0.406 0.598
γ3 -0.900 -1.095 -0.933 -0.772

250 γ1 0.300 0.235 0.304 0.372
γ2 0.400 0.289 0.402 0.515
γ3 -0.900 -1.020 -0.928 -0.837

750 γ1 0.300 0.264 0.311 0.357
γ2 0.400 0.327 0.418 0.508
γ3 -0.900 -0.944 -0.911 -0.879

Table 3
Linear block. Parameter central estimates (θcj), parameter

bounds (θδj , θ
δ
j)for N = 50, N = 250, N = 750 and δ = 2.

N Parameter True θδj θcj θ
δ
j

Value

50 a1 0.950 0.895 0.941 0.988
a2 0.850 0.805 0.850 0.895
b1 1.300 1.026 1.242 1.458
b2 1.500 1.266 1.477 1.689

250 a1 0.950 0.947 0.950 0.954
a2 0.850 0.846 0.851 0.856
b1 1.300 1.197 1.293 1.389
b2 1.500 1.445 1.492 1.539

750 a1 0.950 0.948 0.950 0.952
a2 0.850 0.848 0.849 0.851
b1 1.300 1.223 1.297 1.372
b2 1.500 1.462 1.482 1.517

sparsity was not taken into account, the number of op-
timization variables of the SDP relaxed problems would
be about 14 billion and the feasible region would be de-
scribed by a moment matrix of size 287, 661 and 2, 998
localizing matrixes of size 758, leading to an untractable
optimization problem. Results about the nonlinear and
the linear block parameter estimates are reported in Ta-
ble 2 and 3, respectively, which show the obtained pa-

rameter bounds γδ
k
, γδk, θ

δ
j and θ

δ

j ; the central estimates

γck =
γδ
k+γδ

k

2 and θcj =
θ
δ

j+θδ
j

2 when δ = 2. The CPU time
taken by the SeDuMi solver to compute the solution of
a single problem (17) and (18) is between 201 s and 253
s when the number of measurements N is equal to 50,
between 2372 s and 2453 s when N = 250 and between
4568 s and 4796 s when N = 750. The reported results
show that, as the number of observations increases (from
N = 50 to N = 750), the width of the parameter uncer-
tainty intervals ∆γδk and ∆θδj decreases. Furthermore,
true parameter values are included in the uncertainty
intervals PUIδγk

and PUIδθj , as expected.

7 Conclusions

A procedure for the evaluation of parameter uncertainty
intervals for Hammerstein systems is presented. Param-
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Table 1
Size of the SDP-problems obtained by relaxing identification problems (11) and (12) through sparse LMI-relaxation and dense
LMI-relaxation.

N LMI-Relaxation Number of Number of Size of Number of Size of
technique optimization moment matrixes each localizing matrixes each

variables defining the moment defining the localizing
feasible region matrix feasible region matrix

50 Sparse version 14,443 48 66 198 11
50 Dense version 521,855 1 1,711 198 58
250 Sparse version 71,643 248 66 998 11
250 Dense version 189 · 106 1 33,411 998 258
750 Sparse version 214,643 748 66 2,998 11
750 Dense version 14 · 109 1 287,661 2,998 758

eter bounds evaluation is formulated in terms of a set of
polynomial optimization problems, whose approximate
solutions can be computed by solving relaxed semidefi-
nite programming problems. Unfortunately, because of
high computational complexity, identification problems
are practically intractable when more than 5 measure-
ments are considered. In order to overcome this signif-
icant limitation, the peculiar structured sparsity of the
identification problem is exploited, making it possible
to reduce the computational complexity of the formu-
lated relaxed problems. The computed uncertainty in-
tervals are guaranteed to contain the true system param-
eters and to monotonically converge to the tight uncer-
tainty parameters as the order of relaxation increases.
The presented method can be efficiently applied to com-
pute bounds on the parameters of linear output-error
models, which are a subclass of the Hammerstein models
considered in the paper. Such a method can be straight-
forwardly extended, at least theoretically, to the identi-
fication of nonlinear output-error models with polyno-
mial input-output dependence. However, its direct ap-
plication for parameter bounding of generic polynomial
output-error structures could lead to relaxed SDP prob-
lems that can not be solved on commercial workstations
because of high computational burden. Development of
“ad hoc” relaxation strategies to evaluate parameter
bounds of specific polynomial output-error models, such
as Wiener systems with polynomial invertible nonlinear-
ity, is currently under investigation.
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